Bild von Institut mit Unilogo
unilogo Universität Stuttgart

Quo vadis geodesia...?

  Universität Stuttgart
Schriftenreihe der Institute des Studiengangs Geodäsie und Geoinformatik
Technical Reports Department of Geodesy and Geoinformatics

Quo vadis geodesia...?


Festschrift for Erik W. Grafarend on the occasion of his 60th birthday

herausgegeben von Friedhelm Krumm und Volker S. Schwarze
ISSN 0933-2839     Report Nr. 1999.6

pdf icon Foreword -  pdf icon Welcome Address -  pdf icon Contents -  pdf icon List of Authors -  pdf icon Part 1 (301 Pages, 5828kB) -  pdf icon Part 2 (274 Pages, 8949kB)

Contents Part 1

  • pdf icon Aduol Francis W O: Robust geodetic parameter estimation under least squares through weighting on the basis of the mean square error
  • pdf icon Awange Joseph L: Partial Procrustes solution of the threedimensional orientation problem from GPS/LPS observations
  • pdf icon Dorrer Egon: From Elliptic Arc Length to Gauss-Krüger Coordinates by Analytical Continuation
  • pdf icon Featherstone Will: Tests of two forms of Stokes's integral using a synthetic gravity field based on spherical harmonics
  • pdf icon Groten Erwin: Earth rotation as a geodesic flow, a challenge beyond 2000 ?
  • pdf icon Hartung Joachim: A Short-Cut Method for Computing Positive Variance Component Estimates
  • pdf icon Ilk Karl Heinz: Energiebetrachtungen für die Bewegung zweier Satelliten im Gravitationsfeld der Erde

Contents Part 2

  • pdf icon Moritz Helmut: The strange behavior of asymptotic series in Mathematics, Celestial Mechanics and Physical Geodesy
  • pdf icon Papo Haim: >Datum accuracy and its dependence on network geometry
  • pdf icon Schaffrin Burkhard: Reproducing estimators via least squares: An optimal alternative to the Helmert transformation
  • pdf icon Seitz Kurt: Ellipsoidal and topographical effects in the scalar free geodetic boundary value problem
  • pdf icon You Rey-Jer: Geodesy beyond 2000: An attempt to unify Geodesy by the geodesic flow in all branches
  • pdf icon Yurkina M I: A solution of Stokes' problem for the ellipsoidal Earth by means of Green's function