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Zdeněk Martinec

It is a common belief that, after removing the first-degree spherical harmonics from the gravita-
tional potential, only a regularization of the downward continuation of a high frequency part of
the gravity is necessary to guarantee the existence of a unique solution to the Stokes boundary-
value problem for gravimetric determination of the geoid. In this paper, we will deal with the
original formulation of the problem prior to the downward continuation of gravity. We intend
to demonstrate numerically that, besides the spherical harmonics of degree one, the existence of
the solution is not also guaranteed for higher-degree harmonics. This lack of guaranty is due to
the fact that the input data – the surface gravity and the potential of the geoid – are prescribed
on different boundaries.

1. Formulation of the Stokes two-boundary-value problem

Let the geocentric radius of the geoid Sg be described by an angularly dependent function
r = rg(Ω), where (r,Ω) are the geocentric spherical coordinates, i.e., (rg(Ω),Ω) are points lying
on the geoid. We will assume that the function rg(Ω) is not known. Let H(Ω) be the height of
the Earth’s surface above the geoid reckoned along the geocentric radius. Unlike the geocentric
radius of the geoid, we will assume that H(Ω) is a known function. Finally, let the following
quantities be given: the gravity gS(Ω) measured on the Earth’s surface, the density �(r,Ω) of
the topographical masses (the masses between the geoid and the Earth’s surface), and the gauge
value W0 of the gravity potential on the geoid.
The question we pose is: how to determine the gravity potential W (r,Ω) inside and outside
the topographical masses and the radius rg(Ω) of the geoid? The problem is governed by the
Poisson equation with the boundary conditions given on the free boundaries St and Sg coupled
by means of height H(Ω):

∇2W = −4πG� + 2ω2 outside Sg , (1)
|grad W | = gS on St , (2)

W = W0 on Sg , (3)

W =
1
2
ω2r2 sin2 ϑ +

GM

r
+ O

(
1
r3

)
r → ∞ , (4)

where G is the gravitational constant, M is the mass of the Earth, and � is equal to zero outside
the Earth. The first-degree harmonics are left out from the potential W because of the geocentric
coordinate system.
Martinec and Matyska (1997) have shown that the boundary-value problem (1)–(4) can be lin-
earized with respect to the anomalous potential T h such that
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∇2T h = 0 outside Sg, (5)

∂T h

∂r

∣∣∣∣∣
P

+
2
rQ

T h
Pg

− εh(T h
P ) − εγ(T h

Pg
) = −∆gh +

1∑
m=−1

a1mY1m(Ω) , (6)

T h =
c

r
+ O

(
1
r3

)
for r → ∞ , (7)

where P , Pg and Q are the points on the Earth’s surface, the geoid and the level ellipsoid,
respectively, εh and εγ are ellipsoidal corrections (e.g., Jekeli, 1981), ∆gh is the Helmert gravity
anomaly and a1m are constants to be determined.

2. Numerical investigations

The original problem (1)–(4) as well as the problem described by eqns.(5)–(7) are scalar non-
linear free boundary-value problems since the radial coordinate of the geoid is one of the un-
knowns to be determined. Having some approximation of geoid, it is easy to transform the
latter free boundary-value problem to a problem with fixed boundaries. For example, replacing
Pg by rQ, rQ being the radius of the normal point Q, and P by rQ + H(Ω) in eqn.(6) yields the
ellipsoidal approximation of the Stokes two-boundary-value problem, where eqns.(5)–(7) serve to
determine T h; Bruns’s formula then gives the geoidal height N . Another possibility, most often
used in geoid height computations, is to approximate the geoid in the boundary condition (6)
by a mean sphere with radius R = 6371 km. This means the radius of the point Pg is replaced
by R and radius of the point P by R + H(Ω). The relative error introduced by this spherical
approximation is of the order of 3×10−3 in the classical problems (Heiskanen and Moritz, 1967,
sect.2-14), which then causes a long-wavelength error of at most 0.5 metres in geoidal heights.
In regional problems, where only shorter wavelengths are to be determined, this approximation
is often reasonable. In the following numerical tests we will employ the spherical approximation
of boundary condition (6) for its simplicity. We intend to concentrate on the effects connected
with the ‘two-boundary nature’ of this condition that appear only in a very short wavelength
part of the solution.
The solution to the Laplace equation (5) with the condition (7) can be represented as a series
of solid spherical harmonics r−j−1Yjm(Ω),

T h(r,Ω) =
jmax∑

j = jmin

j �= 1

j∑
m=−j

Tjm

(
R

r

)j+1

Yjm(Ω) , (8)

where jmin(≥ 0) and jmax are the respective minimum and maximum cut-off degrees, Yjm(Ω)
are spherical harmonics of degree j and order m, and Tjm are the coefficients of potential T h

to be determined. In order to normalize the potential coefficients Tjm, we have introduced the
mean Earth’s radius R into the expansion (8). Equation (6) in the spherical approximation then
becomes

1
R

jmax∑
j = jmin

j �= 1

j∑
m=−j

[
(j + 1)

(
R

R + H(Ω)

)j+2

− 2 + e2
0(3 cos2 ϑ − 2)

]
Yjm(Ω)Tjm+

+
e2
0

R

jmax∑
j = jmin

j �= 1

j∑
m=−j

sin ϑ cos ϑ
∂Yjm(Ω)

∂ϑ
Tjm = ∆gh −

1∑
m=−1

a1mY1m(Ω) . (9)
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This boundary condition must hold in any direction Ω. In order to ensure it, we will employ the
Galerkin method in which eqn.(9) can be rewritten as a system of linear algebraic equations for
coefficients Tjm:

Am = d , (10)

where m is a column vector composed of potential coefficients Tjm, i.e.,

m := {Tjm|j = jmin, ..., jmax, j �= 1,m = −j, ..., j} , (11)

A is the matrix composed of the weighted left-hand side of eqn.(9),

Aj1m1,jm :=

:=
∫
Ω0

[
(j + 1)

(
R

R + H(Ω)

)j+2

− 2 + e2
0(3 cos2 ϑ − 2)

]
Yjm(Ω)Y ∗

j1m1
(Ω)dΩ+ (12)

+e2
0

∫
Ω0

sin ϑ cos ϑ
∂Yjm(Ω)

∂ϑ
Y ∗

j1m1
(Ω)dΩ ,

and d is a column vector of weighted right-hand side of eqn.(9),

dj1m1 := R

∫
Ω0

∆gh(Ω)Y ∗
j1m1

(Ω)dΩ , (13)

where j1 = jmin, ..., jmax, j1 �= 1, and m1 = −j1, ..., j1.

2.1. An example: constant height

Let us first consider a simple, but illustrative, case when H = H0 = const. over the Earth, and
e2
0 = 0. Introducing function

Kj(H0) := (j + 1)
(

R

R + H0

)j+2

− 2, for j ≥ 2 , (14)

the transfer matrix Aj1m1,jm between unknown parameters Tjm and the gravity anomalies ∆gh

on the right-hand side of eqn.(9) becomes Aj1m1,jm = Kj(H0) δjj1δmm1 and thus

Tjm =
R

Kj(H0)

∫
Ω0

∆gh(Ω)Y ∗
jm(Ω)dΩ . (15)

Since 0.998 < R/(R + H0) < 1 for the Earth, it is clear that limj→∞ Kj = −2 for any fixed
H0 > 0. On the other hand, Kj > 0 for low degrees j because 0.976 < K2 < 1. This means that
there is a range of j’s in which Kj is zero or near zero. For those j’s the solution of eqn.(10) is
unstable or even does not exist once Kj = 0.
Let us estimate the range of j’s for which the solution of eqs.(10) becomes unstable for this
simple example. Figure 1 plots the values of Kj for height H0 equal to 1 km, 5 km and 10 km.
We can see that the increase of Kj with increasing j is confined to low degrees j and then Kj

starts to decrease to its limiting value -2. That is why, the determination of disturbing potential
T h is stable only in some part of the spectral domain. The width of the stable part grows with
decreasing H0.
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Figure 1: Transfer function Kj(H0) between unknown coefficients Tjm and gravity anomalies
∆gh for H0 = 1 km, 5 km, and 10 km.
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Figure 1a: A detail of Figure 1.
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Figure 2: The roots jzero of function Kj(H0) for H0 ∈ (100m, 104 m).

Figure 2 plots those jzero for which function Kj(H0) vanishes. For such degrees matrix A is
singular and the solution of system of equations (10) does not exist. Since spherical degree j
corresponds to a given resolution ∆Ω in a spatial domain, ∆Ω = π/j, we may also convert
critical degree jzero to a critical spatial resolution size ∆Ωzero, ∆Ωzero = π/jzero, for which the
solution to our problem does not exist. Figure 2 shows that, for instance, jzero = 10980, for
H0 = 5 km, and the critical spatial resolution size is ∆Ωzero

.= 1 arcmin. To interpret the
result in other words, let us imagine that the Earth’s topography is a Bouguer spherical shell
with a constant height of 5 km above the geoid and the Stokes two-boundary-value problem is
solved in a spatial domain such that the potential T h(R,Ω) is parameterized by discrete values
T h(R,Ωi) in a regular angular grid with grid step size ∆Ω. Then the solution to the Stokes
two-boundary-value problem will not exist if the grid step size ∆Ω of the parameterization of
T h is less than or equal to the critical step size ∆Ωzero, i.e., of about 1 arcmin in our example,
even though the surface gravity data would be known continuously on the Earth’s surface.
To map the non-existence of the solution for regional geoid determination and for a more realistic
model of the Earth’s topography, we need to set up and to solve the system of eqn.(10) for high
degrees and orders (jmax = 104 − 105). This leads to computational difficulties because of
huge consummation of computational time and memory; with today’s computer equipment it
is impossible to carry out the analysis of the existence for such a general case. Thus, we are
forced to approximate the Earth’s surface by a simplified model of axisymmetric geometry. By
making use of the analysis of this simplified case, we will attempt to estimate the range of critical
spectral degrees jzero for the actual case.

2.2. Axisymmetric geometry

Let the height H(ϑ, λ) of the Earth’s surface above the geoid is modelled by zonal as well as
tesseral and sectoral spherical harmonics of the global digital terrain model TUG87 (Wieser,
1987) cut at degree 180. To create a rotational symmetric body, axisymmetric height H(ϑ)
will be generated by height H(ϑ, λ) taken along a fixed meridian λ = λ0. In the case of an
axisymmetric surface, the elements Aj1m1,jm of matrix A do not depend on angular orders m
and m1; they can be written as

Aj1j =
∫ π

ϑ=0

[
(j + 1)

(
R

R + H(ϑ)

)j+2

− 2+
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+e2
0(3 cos2 ϑ − 2)

]
Pj(cos ϑ)Pj1(cos ϑ) sin ϑdϑ+ (16)

+e2
0

∫ π

ϑ=0
sinϑ cos ϑ

dPj(cos ϑ)
dϑ

Pj1(cos ϑ) sin ϑdϑ .

Note that the elements Aj1j can only be evaluated by a method of numerical quadrature.
To analyse the posedness of the Stokes two-boundary-value problem, we will employ the eigen-
value analysis of matrix A. According to this method, a non-symmetric matrix A can be
decomposed to the product of three matrices,

A = UΛU−1 , (17)

where the columns of matrix U are formed from the right eigenvectors of A, the rows of U−1

are formed from the left eigenvectors of A, and the diagonal matrix Λ consists of eigenvalues of
A. We have employed subroutines BALANC, ELMHES and HQR (Press et al., 1992, sect.11.5
and 11.6) to find the eigenvalues of a non-symmetric matrix A.
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Figure 3: The meridian profile λ = 80o of topographical height H(ϑ, λ) generated by the global
digital terrain model TUG87 (Wieser, 1987) cut at degree 180. This profile is used to create a
body with the axisymmetric geometry of external surface.
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Figure 4: The eigenvalue spectra of matrix A for various cut-off degrees jmax and a body with
axisymmetric surface generated by height H(ϑ, λ = 80o) multiplied by 10 (jmin = 21). The
ellipsoidal corrections εh and εγ are equal to zero.
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Figure 4a: A detail of Figure 4.

Figure 3 shows the topographical height H(ϑ, λ0) along the meridian profiles λ0 = 80o reaching
value Hmax = 5353 metres. The consequent Figure 4 shows a plot of the eigenvalues of matrix A
for an axisymmetric body with the outer surface generated by this meridian profile. In order to
avoid high degrees j, and thus, be able to perform the eigenvalue analysis in real CPU time, we
multiply function H(ϑ) by a factor of 10. The minimum spherical degrees jmin of the potential
series (8) is jmin = 21, which models the situation when low-degree harmonics of potential T h

are determined by another approach, e.g., when considering a satellite gravitational model. In
Figure 4, where we further put the eccentricity of the level ellipsoid equal to zero, e0 = 0, we
change the maximum cut-off degree jmax of the disturbing potential T h and plot eigenvalues
of matrix A ordered according to their size (note that the eigenvalues are real numbers in this
particular case). Inspecting Figure 4 we can observe that the eigenvalue spectrum of matrix
A intersects the zero level starting from degree jzero

.= 800. Once the cut-off degree jmax of
the spherical harmonic expansion (8) of potential T h is greater or equal to jzero, the eigenvalue
spectrum of A contains a null eigenvalue or an eigenvalues of a very small size. The matrix A
becomes ill-conditioned or even singular and the inverse A−1 may be distorted by large round-off
errors or may not exist at all; in such a case the Stokes two-boundary-value problem does not
have a unique and stable solution. As in the preceeding section, the critical degree jzero can
again be converted to the critical spatial discretization size ∆Ωzero for a case when the Stokes
two-boundary-value problem is solved in a spatial domain.

The next test investigates the influence of the ellipsoidal corrections terms εh and εγ on the
posedness of matrix A. We choose the same body as in the preceeding example together with
jmin = 21 and jmax = 1600 and compute the eigenvalues of matrix A putting e2

0 = 0 and
e2
0 = 0.006694, respectively. Figure 5 shows those eigenvalues the magnitudes of which are

smaller than 3. (Note that the eigenvalues of A for the case e2
0 = 0.006694 are complex num-

bers.) We can observe that the eigenvalue spectrum of A changes significantly when e2
0 differs

from zero: there is no null eigenvalue and the magnitude of the smallest eigenvalue is larger
than 1. In other words, the ellipsoidal corrections εγ and εh
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Figure 5: The real vs. imaginary parts of the eigenvalues of matrix A with (lower branch)
and without (upper branch) the ellipsoidal corrections εh and εγ . The axisymmetric body is the
same as that considered in Figure 4 (jmin = 21, and jmax = 1600).
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Figure 6: The eigenvalue spectra of matrix A for various cut-off degrees jmax = jmin+∆j,∆j =
300, 500, ..., 1600, and a body with axisymmetric surface generated by height H(ϑ, λ = 80o)
(e2

0 = 0 and jmin = 10000).
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Figure 6a: A detail of Figure 6.

act as regularization factors removing the ill-posedness of matrix A. It also means that, in this
particular case, εγ and εh cannot be subtracted from the right-hand side of eqn.(10) as known
quantities determined a priorily by using a known global gravitational model of the Earth; such
usage of ellipsoidal corrections is often recommended in real geoid computations.

In order to create a more realistic example, we use the same profile of topographical height
as plotted in Figure 3, but now, in contrast with preceeding example, we will not multiplied
height H(ϑ) by 10. In this case, it is not possible to carry out the eigenvalue analysis of matrix
A starting from degree jmin = 21 and going up to degrees jmax ≈ 104 − 105 due to a huge
consummation of computer time and memory. We have to confine ourselves to a smaller range
of sought spherical harmonics. That is why we choose jmin = 10000 and jmax in the range
between 10300 and 11600. The results for the case e2

0 = 0 are shown in Figure 6. We can
again observe that eigenvalue spectra intersect the zero-level starting at degree jzero

.= 10500.
It means that whenever jmax ≥ jzero, the spectrum of matrix A contains an eigenvalue which
is very close or equal to zero. Consequently, matrix A becomes ill-conditioned or even singular.
Putting e2

0 = 0.006694 (this case is not plotted here) has a similar stabilization effect as in the
case shown in Figure 5.
To carry out the eigenvalue analysis of matrix A needs a lot of computer time. However, the
critical spherical degree jzero for which the existence of the solution to the Stokes two-boundary-
value problem is not guaranteed can be estimated by analysing the existence of a solution for
a model with a constant topographical height over the world. If we replace H0 in the example
in section 2.1. with the maximum topographical height Hmax, then such an estimate jconst

obviously underestimates the actual jzero, i.e., it is too pessimistic, and hence it holds

jzero ≥ jconst , (18)

where jconst is determined by the roots of function Kj(Hmax) given by eqn.(14), i.e., jconst

satisfies the equation

(jconst + 1)
(

R

R + Hmax

)jconst+2

− 2 = 0 . (19)
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For the examples in Figures 4 and 6, we obtain jconst
.= 698 when Hmax = 53530 metres, and

jconst
.= 10158 when Hmax = 5353 metres. We have already learnt that the actual critical

numbers are jzero
.= 800 and jzero

.= 10500, respectively. So, the criterion (18) estimates jzero

quite well.

3. Conclusion

This paper formulated and discussed the existence of a solution to the Stokes two-boundary-
problem for geoid determination. We considered the boundary condition (6) relating to this
problem without assuming that the surface gravity data had been continued from the Earth’s
surface to the geoid. The boundary condition (6) has not a usual form, because it contains the
unknown anomalous potential referred to both the Earth’s surface and the geoid coupled by
the known topographical height. The numerical analysis of the ’two-boundary’ condition (6)
performed for a simplified model of the Earth’s surface has revealed that the transfer matrix
between the unknown potential on the geoid and the surface gravity anomalies may become
ill-conditioned or even singular at a certain critical wavelength of a finite length. The existence
of solution is not guaranteed for this critical geoidal wavelength. Once this ill-posed case occurs,
to obtain a bounded and non-oscillating solution, the Stokes two-boundary-value problem must
be regularized in such a way that this critical geoidal wavelength and its vicinity are excluded
from the solution. We have given an estimate of critical geoidal wavelength; for the highest part
of the Earth’s surface, the critical geoidal wavelength is about 1 arcmin.
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