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ABSTRACT 
 
The relations between the curvature and torsion of the satellite orbit with the orbital elements and the 
equipotential surface counterparts are revisited, using some angular quantities which define the 
geometry of the orbit and its relation to the equipotential surface and the line of force, i.e. the slope of 
the orbit (ζ), the zenith distance of the orbit (Z), the separation (θ) of the orbital plane from the 
equipotential surface and the separation (β) of the orbital plane from the Frenet osculating plane. 
 
 
1. INTRODUCTION 

The motion of a satellite along its orbit, a curve S in space, is governed by the well known differential 
equation of celestial mechanics x = )(xg , where x is the acceleration vector of the satellite and g the 
gravity vector, at the position x , ignoring additional small forces due to drag, solar pressure and luni-
solar attraction. Differences in acceleration at two indeed neighbouring points on S, e.g. x and 
x +d x /dS, establish the linear relation of differential changes of acceleration with relevant changes of 
satellite position, namely 
 

 
dS
dx = 

dS
)(d xg = w ( x ) 

dS
dx  (1.1) 

 
where w ( x ) is a linear operator (homography) synthesising all the mechanical properties of the 
gravity field. In terms of matrix notation, w ( x ) is represented by the gravity gradient tensor (or the 
Bruns tensor), W, in the equivalent linear transformation,  
 

 
dS
dx = 

dS
dg = W 

dS
dx  (1.2) 

 
where is the acceleration components, g the geocentric components of the gravity vector and x the 
geocentric co-ordinates of the satellite which refer to the geocentric reference frame ex represented by 
a triad of mutually orthogonal unit vectors (ex: 

x

xe , ye , ze ), where xe is directed to the vernal equinox 
and ze  to the pole. Gravity gradient tensor W is a basic topic of study in satellite gradiometry 
(Rummel 1986). It describes fully (see, e.g., Marussi 1985) the intrinsic geometry of the gravity field 
(Grafarend 1974- ) since it contains the curvatures and torsions of the equipotential surface as well as 
the curvatures of the line of force, at the satellite point. On the other hand, the differential changes of 
satellite acceleration, /dS, can be expressed in terms of curvature and torsion of the satellite orbit. 
The same holds for the differential change of position dx/dS, since it can be shown the relation 
between the variation of relevant Kepler elements with the curvature and torsion of the satellite orbit. 
This interrelation between the intrinsic properties of the gravity field with those of the satellite orbit 
has not been studied extensively in the geodetic literature. Some indeed isolated examples can only be 
mentioned treating the satellite orbit in terms of its intrinsic properties (Hotine 1969) and in relation 
with the intrinsic properties of the gravity field (Marussi 1962). In this paper the relations between the 
curvature and torsion of the satellite orbit and the equipotential surface counterparts are revisited, 
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using some angular quantities which define the geometry of the orbit and its relation with the 
equipotential surface and the line of force, i.e. the slope of the orbit (ζ), the zenith distance of the orbit 
(Z), the separation (θ) of the orbital plane from the equipotential surface and the separation (β) of the 
orbital plane from the Frenet osculating plane.     
 
 
2. FRAMES AND TRANSFORMATIONS 
 
Traditionally, the geometry of the satellite orbit S is respectively associated with the geocentric and 
the perigee-related reference frames ex and ep, the second represented here by the triad of mutually 
orthogonal unit vectors (ep: pe , e , ne ), where pe is directed to the perigee and ne is normal to the 
orbital plane. The rotational transformation of these frames are given by 
 
 ex = R3(−Ω) R1(−i) R3(−ω) ep (2.1) 
 
where ω the argument of perigee, i the inclination of the orbit and Ω the longitude of the ascending 
node, three quantities which define the space orientation of the orbit, with respect to the geocentric 
frame ex. One more triad of mutually orthogonal unit vectors, is also used, as a reference frame in 
satellite geodesy, namely the moving orbital triad (e: 1e , 2e , 3e ), where 1e is collinear with the radial 
vector from the geo-centre to the satellite, e2 is directed along the satellite orbit and )(= nee3 is normal 
to the orbital plane. This moving frame is related with ep via true anomaly f 
 
 f = cos−1 ( ep

. e1 ) , (2.2) 
 
by the transformation 
 
 e = R3(f) ep  . (2.3) 
 
True anomaly f and the radial distance r, of the satellite from the geo-centre, define as polar co-
ordinates, the position of the satellite with respect to the perigee-related frame ep. Considering the unit 
tangent vector of the orbit t , we can define the “slope” of the orbit ζ, as the angle from the radial 
vector e1  

 ζ = cos−1 ( e1
. t ) . (2.4) 

 
If β is the small angle separating the orbital plane from the osculating plane of the orbit, in terms of the 
Frenet triad, (eF: t , n , b ), where t the unit tangent vector, n the unit normal and b the unit binormal, 
the relation between the e triad and the Frenet triad is given by the transformation 
 
 eF = R1(β) R3(ζ) e (2.5) 
 
which combined with (2.1) and (2.3) gives the relation between the Frenet and the geocentric triads 
 
  eF = R1(β) R3(q) R1(i) R3(Ω) ex   (2.6) 

 
where q, 
 
 q = ω + f + ζ (2.7) 
 
is the orientation of the orbit-tangent with respect to the equatorial plane. At each satellite point, the 
relevant equipotential surface (W=const.) intersects the orbital plane by an angle θ. The intersection of 
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the equipotential surface with the orbital plane defines the satellite trajectory on the equipotential 
surface, associated with the surface unit tangent vector *t . The angle ε, between the tangent to the 
orbit and its counterpart on the equipotential surface is, thus 
 
 ε = cos−1 ( t . *t ) (2.8) 
 
where ε, when added to q, gives the orientation of the tangent of the satellite trajectory on the 
equipotential surface, with respect to the equatorial plane. The unit vector N , normal to the 
equipotential surface along the vertical at the satellite point, is obviously orthogonal with *t , both 
belonging to a “natural” triad of mutually orthogonal unit vectors (eN: *t , T , N ), where *t defines 
the direction of the orbit on the equipotential surface, T the perpendicular direction, both vectors 

*t and T , on the horizontal plane, and N the opposite direction of the gravity vector g , 
 

 N = − g
g
1  (2.9) 

 
where g the intensity of gravity at the satellite orbit. The zenith distance Ζ, of the orbit, is defined by 
 
 Ζ = cos−1 ( N . t ) (2.10) 
 
and due to (2.8) and  (2.9), it is 
 
 Z = 90° − ε (2.11) 
 
 g . t = − g cosΖ = − g sinε (2.12) 
 
The definitions of the Frenet and the natural frames give their rotational transformation, as function of 
the angles β, ε, θ, 
 
  eN = R1(θ) R3(ε) R1(−β) eF   (2.13) 

 
from which, combining with (2.6), we obtain 
 
  eN = R1(θ) R3(ε+q) R1(i) R3(Ω) ex    . (2.14) 

 
For the model spherical field and for a polar circular orbit (eccentricity zero, inclination i = 90°), the 
above angular quantities ζ, θ, β, ε reduce to  
 
 ζ = θ = 90° (2.15) 
 β = ε = 0° (2.16) 
 
and consequently, the frames eF and eN coincide with e, 
 

 
Τ==

==
Ν=−=

3

∗
2

1

be
tte

ne
 (2.17) 

 
In such approximation, e1 is in the vertical direction, e2 is the tangent and 3e  normal to the orbital 
plane. The slope ζ is thus, the zenith distance Z of the orbit. It is clear that the slope of the orbit ζ, the 
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angular separations β and θ of the orbital plane from the Frenet osculating plane and from the 
equipotential surface respectively as well as the angular separation ε of the orbit-tangent from its 
counterpart on the equipotential surface, reflect the contribution of the anomalous field of forces 
which affect the satellite orbit. 
 
 
3. ACCELERATION 
 
The differential change of eF along the orbit S, is given by the Frenet-Serret relation 

 F
F

dS
eFe

=
d  (3.1) 

 F =  (3.2) 
















−
−

0τ0
τ0κ
0κ0

 
where κ, τ are respectively the curvature and the torsion of the orbit. The time derivative of x is the 
velocity vector x along the unit tangent vector t , of the orbit 
 
 x = v t . (3.3) 
 
The acceleration vector is the time derivative of (3.3) 
 
 x = t v + v t  (3.4) 
 

and since t = v 
dS
dt , equation (3.4) with the help of (3.1), (3.2) is written 

 
 x = t v + v2 κ n  (3.5) 
 
where  is the tangential acceleration and v2κ the normal, or centripetal, acceleration. Differentiating 
(3.5), along the orbit S, we obtain, with the help of (3.1), (3.2), 

v

 

 
dS
dx = t

dS
vd + ( 3 κ + v2 v

d
dS
κ

) n − v2 κ τ b  (3.6) 

 
which in matrix form is written 
 

 
dS
dx = 

dS
d T

Fx eF (3.7) 

 
where 

 
dS

d Fx = + 
















0
3
0
κv







































−00
00
001

2

2

τ
dS
dκ
dS

vd

  
κv

v  (3.8) 

Combining with (1.2) and (2.6) we obtain 

 
dS
dx =  R3(−Ω) R1(−i) R3(−q) R1(−β) 

dS
d Fx  (3.9) 

 
from which, with the approximations i=90°, β=0°, ζ=90°, it is 
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





















dS
d
dS
d
dS
d

z

y

x

= 3 κ + (3.10) v
















)+(
)+(Ω
)+(Ω

fωsin
fωcos sin
fωcos cos

+ 









































0)+()+(−
)+()+(Ω)+(Ω
)+(−)+(Ω)+(Ω

2

2

2

τ
dS
dκ
dS

vd

  
fωsin vfωcos

fωcosκ 2vfωcos sinvfωsin sin
fωsinκ 2vfωcos cosvfωsin cos

 

 
 
4. INTRINSIC PROPERTIES OF THE ORBIT 
 
Differentiating (2.6) and due to (2.1), recalling the relevant transformations, we obtain  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
where 

 

 
Equation (4.1) g
parameters ω, i, Ω
 

 








τ

 
and the inverse re
 

 

dβ
( )

( )

( )
dS
dΩβ)(q)(i)((i)(q)β

dS
diβ)(q)((q)β

dS
dqβ)(β

dS

1313131

13131

131

1

−−−+

−−+

−+

=

RRRPRRR

RRPRR

RPR

PF

  (4.1) 

P1 = ;  P3 = 
0 0 0
0 0 1
0 1 0

 
 
 
 − 

0 1,0 1
0 0 0
0 0

− 
 
 
  

. (4.2) 

ives the curvature and torsion of the orbit, in terms of differential change of 
, f, ζ, β along the orbit, 























Ω















β+ββ−β

β−βββ
=









−

dS
d
dS
di
dS
dq

isinqcoscosicossinqsincossin
isinqsinqcos0

isinqcossinicoscosqsinsincos

0
dS
dβ
κ

 (4.3) 

lations, for i ≠ 0°, are 
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





















β−τ

κ

























ββ−

β−β

β−β−β+β

=



























Ω 0

dS
d

isin
qcoscos

isin
qsin

isin
qcossin

qsincosqcosqsinsin

icotqcoscossinicotqsinicotqcossincos

dS
d

dS
di

dS
dq

 (4.4) 

 
 
5. INTRINSIC PROPERTIES OF THE GRAVITY FIELD 
 
The differential change of eN along the orbit-trace S* on the equipotential surface, is given by 
 

 N
*

d
dS
e

= K* eN (5.1) 

 
with 

 K* = 
g n

g

n g

0
0

0
g

 κ κ
 −κ τ 
 −κ −τ 

 (5.2) 

 
where κn, κg the normal and the geodetic curvatures respectively and τg the geodetic torsion of the 
equipotential surface, namely the second derivatives of the geopotential W, 
 

 κn= 2∗∂

∂

τ

W1 2

g
= 

1
g

Wt*t*   

 κg = 2

2

Τ∂
∂ W1

g
= 

1
g

WTT (5.3) 

 τg = 
Τ∂∂

∂
∗

2

τ
W1

g
= 

1
g

Wt*T 

 
The curvatures and torsion of the equipotential surface, in (5.3), the components of the curvature of 
the line of force χ, tangent to the vertical direction N , given by 
 

χt* = 
Τ∂∂

∂
∗

2

τ
W1

g
= ∗∂

∂
τ
g1

g
= 

1
g

Wt*N, 

(5.4) 

χT = 
Ν∂Τ∂

∂2W1
g

= 
Τ∂

∂g1
g

= 
1
g

WTN 

and the gradient along the vertical 

 
Ν∂

∂g = 2

2

Ν∂
∂ W = WNN  . (5.5) 

 
form the gravity gradient tensor WN with respect to the  to the eN triad, 
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 WN= g 





















Ν∂
∂1

∗

∗

g
g

χχ

χκτ
χτκ

Tt

Tgg

tgn

=  (5.6) 
















NNTNN*t

TNTT*Tt

N*t*Tt*t*t

WWW
WWW
WWW

 
with the condition 

 )
∂
∂−(=+
Ν
g2

g
1κκ 2

gn ω  (5.7) 

 
where ω  the Earth rotation. Equation (5.1) is written as 
 

 N
*

d dS
dS dS
e

= K* eN (5.8) 

 
which, with the help of (2.8) and (2.11), it is 
 

 Nd
dS
e

= sinZ K* eN = K eN (5.9) 

 
where obviously 
 K = sinZ K* . (5.10) 
 
 
6. ORBIT AND GRAVITY FIELD CURVATURES AND TORSIONS 
 
Differentiating (2.6) and due to (3.1), (5.1), with the relevant transformations, we obtain the relation 
between F and K matrices of orbit and equipotential surface curvatures and torsions.  
 
 
 
 
 
 
 

 
 
 
 
 
from which we obtain
 

sinsin

0

siβcos

0

dS
d












β

=























β−τ

κ

 
and due to (4.3), for i

 

( ) ( ))()()(-)(-β 131131 RRKRRRRF β−εθθε=
( )

( )

dS
dβ

dS
dβ)(β

dS
dβ)()()(-β

1

131

13131

P

RPR

RRPRR

+

ε−−

θ−εε−

 

 (6.1) 

 

dS
dZ

sin

0

cos

dS
dZsin

cossin

sincos

ZcosβcosZsinβcosZ

ZsinZcosZsin

Zcosβsin-ZsinβsinZn

g
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ng

2

2
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






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
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



β

β
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


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
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





θ−τ

θκ+θκ

θκ−θκ


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






−

 (6.2) 

 ≠ 0°, we obtain 
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