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Abstract

In this paper some of the problems of the physical geodesy, not solved till the end of the second
millennium are discussed. They are the problems connected to the Newtonian law of gravity first of
all. The gravitational constant is the most inaccurately determined constant of the nature and the
questions of the so-called non-Newtonian gravimetry are also not answered. An another problem
which needs further investigations is connected to the Mac Cullagh theorem: the time derivative of
the second zonal geopotential coefficient obtained from satellite orbit determinations is of about 50
times bigger than those obtained from the spindown value. The study of the tidal friction attracted a
lot of interest in the course of the XXth century. So great names as G. Darwin, A. Einstein, H.Jeffreys
expressed their interest in this field. In spite of this there are many important questions unsolved.
Among them should be mentioned the problem of the rotational history of our planet, the temporal
variation of the figure, of the normal gravity field of the Earth and the problem of the changes in its
inner structure.

1. Introduction

Our knowledge on the Earth increased dramatically in the course of last two, our three decades. The
progress in Earth sciences and among them in geophysical geodesy was reached first of all due to the
development in the technology. The new possibilities in computing techniques, in physics of very low
temperatures, in satellite sinence allows to produce equipment’s  the realization which was possible
only in the world of scifies earlier. The methods of space geodesy, as Very Long Base Interferometry
(VLBI), Satellite and Lunar Laser Ranging (SLR and LLR), Global Positioning System (GPS), the
new absolute (ballistic) and relative (criogenic) gravimeters allows to determine the figure and the
gravity field together with their temporal variations. The close cooperation of researchers, working in
different branches of geo-sciences, allows the progress in interpretation of observed geodynamical
phenomena. The use of results of seismology, of plate tectonics, of reology, of earth magnetism
studies among others render possible better understanding the figure and the gravity field of the Earth
and time dependent phenomena influencing the development of our planet.

To illustrate the progress the comparison of earth tidal research targets of sixties can be compared
with those of the present. Thirty years ago the tidal potential catalogue consists 377 elementary waves
and the accuracy of the tidal development was ~ 1 nm · s-2. Today we have 12935 waves and the
accuracy of this serie is ~700 times higher as earlier. In the course of sixties it was supposed that the
best places for  tidal studies are the central part of continents because at that places the indirect effect
of oceanic tides not modifies the earth tidal data. Today we know that it is not true, the oceanic tidal
influence is significant everywhere on the mainland’s, but this effect can be removed with the use of
the most modern cotidal maps. Thirty years ago nobody beleived that the microgal level can be
reached in the future with recording gravimeters. At the end of XXth century we are near to talk about
nanogal level in gravimetry. Earlier it was supposed that from the global tidal response significant
new information’s can be obtained - beyond the information’s derived from seismology - on physical
properties and on inner structure of the Earth. The optimism of “earth-tidalists” was connected first of
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all with possible detection of lateral in homogeneities within the Earth from their observations. This
hope was not confirmed by the development in the science, but there are another fields, where tidal
research is able to provide knowledge which seismology can not. This is first of all the study of the
nearly diurnal resonance of the Earth. At the same time the modern criogenic recording gravimeters
are able monitor beside the tides the polar motion and environmental phenomena, too.

2. Problems related to Newtonian law of gravity

First of all the scale dependence of the Newtonian gravitational constant G will be discussed in this
section.

At astronomical distance no G values can be provided due to the unknown masses, but the Newton’s
law can be tested with high accuracy. (Hubler, Cornaz, Kündig, 1995). In the range of  103 m - 107 m
the inverse - square law has been confirmed satisfactory from a comparison of the Earth-surface data
with orbital parameters of the LAGEOS satellite. At geophysical distances (102m-104m) many
experiments ware carried out. G∞ obtained from this determinations differs significantly from the
results of G0 values obtained in laboratories at distances 10-2 - 10° m (Stacey et at.,1987) . A
theoretical basis for this deviation in principle can be given by introduction of the so called Yukawa
type non-Newtonian gravity potential (Stacey et al., 1987):
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On the basis of experiments with scale (10-2m - 10-4m) - Airy type experiments - Stacey et al. (1987)
got for G∞ a value which is bigger than the G0 value obtained in laboratories (10-2 - 100 m distances).
The difference G∞  - G0 ∼  0.01 what leads to α  ∼  0.0075 ± 0.0036.

For the investigation of the reliability of G0 ≠ G∞ a special experiment was carried out at the
Geodynamical Observatory in Budapest deeply under the surface of the Earth. An underground
calibration line was set up which consists of 14 stations with a range of 1400±1 µ Gal. Gravity
differences, separation and the elevation difference between neighbouring stations are 100 µ Gal, 2-5
m, less than 2 cm respectively.

The gravity values for this horizontal line were determined with a computer regulated Eötvös torsion
balance. The instrumental constant of the torsion balance was obtained by the measurement of sensor
masses, the length of the arm of the balance and the torsion of the wire. This means: the gravity values
of the underground calibration line were obtained without the use of the gravimeters.
On the other hand a new gravimeter calibration device was proposed and designed by Varga (1989)
and it also was installed is the underground laboratory of the Geodynamical Observatory Budapest.
The principle of this instrument is simple. The artificially induced gravity changes are generated by a
suspended cylindrical ring with an inner diameter somewhat bigger than the width of the gravimeter
(usually LCR instruments) to be calibrated. The  ring is raised and lowered vertically and moved over
the gravimeter equipped by a distant reading device and installed on a column of suitable height.
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There are many advantages of this calibration procedure:

- The homogeneity of the generated gravity field is very high at the extrema;
- The moved vertically ring does not load the ground around the instrument;
- The gravimeter is stationary during the procedure what is necessary for a small instrumental drift;
- The experiment is symmetrical with respect to the gravimeter and owing to technical reasons the

gravity change brought about by the ring is greater than that caused by another geometrically
regular body.

Due to this positive features similar device was used in Italy (Achilli et al., 1995) and in the United
States (Schwartz, J.P. et al., 1998). All technical problems and the results of the calibrations are
described in Varga et al., (1991) and in Varga et al., (1995). With this device absolute calibrations
with accuracy of 0.l-0.2% can be carried out.

The difference of the calibration factors obtained for the same gravimeter along the calibration line
(i.e. by means of gravitational effect of 102-104 m  scale, air type experiment and derived from
measurements  with the heavy cylindrical mass (10-2-10° m distances))   is  of the  order of
10 –3, what means that the difference between the G ∞ and Go is also at most 10-3 and not 10-2 as was
supposed earlier (Stacey et al., 1987).

Another problem connected to the gravitational constant G is its, supposed by many authors, temporal

variation. The need of �≠
∂�
��

 follows from the cosmological considerations. Dirac’s expanding

Universe model proposed in 1937 naturally leads to a decreasing constant of gravitation and to the
theory of the expanding Earth of course. Using Dirac’s theory Jordan concluded (1966) that the Earth
radius  increases with a speed   da/dt = 0.5 mm⋅ y-1. Similar value for the expansion was derived by
Egyed (1997) da/dt = 0.7 mm⋅y-1, who supposed that originally the surface of our planet was as big as
the areas of all recent continents together. The most recent and complete description of these theories
can be found in the book by Carey (1988).

The critical review of da/dt and consequently of dG/dt can be carried out on the basis of the study of
the influence of tides on the long-term variations of the angular speed. Study of this type are usually
based on the principle of conversation of angular momentum and it is supposed that the Earth-Moon
system is isolated. For the sake of simplicity it can be supposed that the Moon revolves around the
Earth on a circular orbit in the plane of the terrestrial equator. In this case Euler’s equation can be
written as

( )
�

�
� =
∂

∂ ω

�

�
	








� P

P

P

P

∂
∂

+
= �

�
�

(3)

In (3) M, C, ω  are the mass, the polar moment of inertia and the angular speed of the Earth
respectively. Mm, Rm and nm stands for the mass of the Moon, for the Earth-Moon distance and for the
orbital speed of the Moon. Kepler’s law can be written as
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and its time derivative is
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In r.h.s. of above equation it can be evidently supposed that the time derivative of G is not time
dependent  ( )��� =∂∂ �  while the second term is zero. This way
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From astronomical data
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The total tidal torque is composed by the atmospheric (LAT), the earth (LET) and the oceanic (LOT)
tidal torque’s:
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 what is in contradiction with the theories on the expanding Universe

and Earth, because an increasing gravitational constant requires compression.

The third problem which will be discussed in this study in connection of the Newtonian law is the
problem of the numerical value and the accuracy of the gravitational constant. The value of the
gravitational constant G is known with much less accuracy than other fundamental constants of
physics. Authors of the best determinations of this universal constant claim to their results an
accuracy of 10-4, but the following list of the G values obtained by different scientists shows that the
disagreement between the individual results is of the order of 10-3.

AUTHORS YEAR ������ −⋅ ����
Rose et al. 1969 6.6699±0.0014
Facy & Poinkis 1970, 1971 6.6714±0.0006
Renner 1974 6.668±0.0002
Sagitov et al. 1978 6.6745±0.0008
Luther & Towler 1982 6.6726±0.0005
De Boer 1987 6.6670±0.0007
Michaelis et al. 1996 6.7154
Schwarz et al. 1998 6.6873±0.0094
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Moreover it can be concluded that G is the least known constant of fundamental physics. The
following compilation shows the relative errors of basic physics constants:

Avogadro constant 5.2 ⋅10-10

Boltzman’s constant 1.2 ⋅10-4

Elementary charge 2.8 ⋅10-6

Faraday  constant 2.8 ⋅10-6

Gravitational constant∗ 8.5 ⋅10-4

Mass of the neutron 5.1 ⋅10-6

Planck’s constant 5.5 ⋅10-6

Rydberg’s constant 8.3 ⋅10-6

Spead of the light 4.0 ⋅10-4

∗  The error value of G is the value given by CODATA (Cohen &Taylor, 1986)

There are several explanations why G is known with a low accuracy. First of all should be mentioned
the weakness of gravitational attraction in scales used in laboratories. For example: a force interaction
of two masses of 1g at the distance of 1 cm is 10-12 Newton while the pressure of the light of the Sun
is 10-10 Newton or the forces acting between a proton and a neutron are 10-8 Newton. Additionally
there is a metrological difficulty: G is defined by the fundamental quantities time, length and mass in
absolute scale, what leads of course to experimental difficulties. And finally there is a “psychological
problem” too: at this time there are no big research problems in the science, which would urgently
need a more accurate value of G.

The scatter of the G data listed above suggests that there can be systematic error in gravitational
constant values determined in different experiments. The hearth of them - expect the two last ones in
the table – is a torsion balance which was used in the beginning in static way and later on – after the
successful attempt of Eötvös at the very and of XIX century – dynamically. It was discovered
however that the torsion force is dependent on the frequency with which the torsion bar is oscillating.
The variability of the elastic constants is particularly significant at low frequencies used in laboratory
experiments. According to Maddox (1995) the frequency dependence of the elastic parameters of the
materials used in torsion balances is the main source of the systematic and big differences between
the laboratory G determinations.

In spite of the considerable difficulties it is important to try to increase the accuracy of G
determinations. It seems that one way can be in this direction the use of the laboratory calibration
device developed by us. This experimental tool has a clear geometry and the used quantities (mass of
the ring, its position etc.) are already or can be obtained with an accuracy necessary to get G with a
relative error of 1 part in 104 (or even a ten times 105). (Varga et al., 1995). To reach this level in our
knowledge about the value of the gravitational constant some development of the calibration device in
needed.

1. The influence of microseismic noise must be reduced significantly. The systematic beating with a
period of some minutes caused by the microseisms characterised with a period of some minutes
caused by the microseisms characterised with periods between 5 and 10 s produces gravity
variation of about 10 µGal.

2. Because of the need of very accurate determination of the extreme it is necessary to introduce
adjustment calculations. This can be the least square method (the L2 norm) in case of Gaussian
error (noise) distribution. In the observations of the gravity during the calibration procedure a
number of outliers - possibly due to the long-periodic beating of microseisms – were detected
which can be handled with the robust estimations (Somogyi & Závoti, 1993).

3. If the construction of new superconducting gravimeters allows, an effective way to increase the
gravity effect is the reduction of the inner diameter of the ring from 30 cm  to 20 or to 15. The
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corresponding gravity effect generated by the cylindrical ring of mass 3200 kg will be 178 or 236
µGal, instead of 112 µGal.

Of course to get uncertainties of 10-4 or even better the spring gravimeters  - used until now - must be
replaced by new, transportable superconducting gravimeters with reduced diameter which are under
development recently at GWR company.
The superconducting gravimeters should be calibrated first along the calibration lines, measured with
absolute gravimeters. The accuracy of these calibration lines is 10-5 (Atzbacher & Gerstenecker,
1993). Afterwards with the calibrated gravimeters the gravity effect generated by a ring moved up and
down must be measured. The gravity effect caused by the ring is known with an accuracy of ∼ 10-5.  If
the G value is suitable the measured and the generated gravity values should coincide. With other
words: the comparison of these two gravity values allows  to  determine the G value.

3. Tidal friction, paleogeodesy and the development of the dynamical properties of the Earth
in geological time scale

Fossils and tidal deposits as well as the possibility to compute values of the lunisolar tidal torque for
different geological epochs allow us to model the variations in time the angular speed, the despinning
rate and the time variations of the Earth’s figure, assuming that the latter  remains, on global scale,
close to a hydrostatic equilibrium figure. On this basis we were able to infer the most important
kinetic parameters over much of the geological past.
Lambeck (1980) performed a linear regression of paleontological  data of Phanerozoic ( last (5-6) 108

years of  geological history) and obtained a constant despinning rate of  -5.4 ⋅10-22  rad ⋅s-2 similar but
somewhat higher rates follows from SLR and LLR (-5.98 ⋅10-22 rad  ⋅s-2 and –6.07 ⋅10-22 rad ⋅s-2).
These last data differ to a certain extent obtained from astronomical observations (-5.6 ⋅10-22 ⋅rad s-2)
(see e.g. Varga et al., 1998). It was found on the basis of more complete paleontological and
sedimentological data sets, that the mean despinning rate was smaller in the Proterozoic than in the
Phanerozoic. The linear trend in the variation of length of day (l.o.d.) in the Phanerozoic ca  be
modelled as

τ�
���
�� −=��� (5)

On the other hand for the linear trend in the Proterozoic it can be suggested tentatively

τ�
���
�� −=��� (6)

Where τ is the time before present (BP) in 109 years.

It is clear from (5) and (6) that during the Poterozoic (Ptz) ( )( )������������
��
� �⋅−  the despinning
rate was five time smaller than during the Phanerozoic (Pz).

The result concerning the low despinning rate in the Proterozoic solves the problem of the Moon
having been ever too near to the Earth. But on the other hand significant difference in the despinning
reflected in (5) and (6) between Pz and Ptz needs explanation.  At least two mechanisms may be
invoked, but both of them are liable to be critized . The first involves the idea that the world ocean
was less deep two or three billion years ago than it is now, and the shelf lines were shorter in global
scale. The second idea is that the formation of the core was not completed entirely soon after the
Earth it self was formed intensively up to  5·108  years BP. On the basis of tidal friction data it makes
sence to estimate the paleogeodetic and geodynamical parameters of the Earth. The next table shows
the Earth angular speed (ω), length of day (l.o.d.), geometric flattening (f), dynamic shape factor (J2)
and precession constant (H) in the course of geological history:
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Time BP ω l.o.d. 103f 103 J2 103 H
(in 106 years) º/hr Hours

0 15.00 24.00 3.35 1.08 3.27
50 15.00 23.68 3.44 1.11 3.36

100 15.31 23.50 3.49 1.13 3.41
200 15.33 23.52 3.56 1.13 3.42
300 15.73 22.58 3.69 1.19 3.60
400 16.60 21.69 4.11 1.33 4.00
500 17.25 20.87 4.43 1.43 4.31
800 17.44 20.64 4.53 1.46 4.41

1000 17.84 20.18 4.74 1.53 4.61
1400 18.32 19.65 5.01 1.61 4.87
1600 18.53 19.43 5.12 1.65 4.98
2000 18.74 19.21 5.23 1.69 5.08

These data set renders possible the study of the geodetic – geodynamical development of our planet
during its history.

The author would like to express his thanks at this place to Erik W.Grafarend who called his attention
to the MacCullagh theorem and to its role in understanding geodynamical phenomena.
In case of hydrostatic equilibrium the external potential of the Earth can be written as
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Equation (7) – in which C and A are the polar and equatorial moments of inertia – is one of the
important starting points of the study of the dynamics and structure of the Earth.

Because in the scientific literature the MacCullagh formula (7) is, as a rule, without a reference to its
author it seems necessary to give some basic information on its discoverer James MacCullagh (1809-
1847). He was an Irish mathematician and physicist, had a brilliant carrier at the Trinity College in
Dublin and was an elected fellow of the Royal Irish Academy. He held at first the chair of
mathematics (1832-43) and made a mathematical center from his university. From 1843 he worked at
the chair of natural philosophy. His main field of interest was geometry and optics, published also
different remarkable studies in gravimetry and on rotation solid bodies. With the use of (7) the
external gravity potential of a rotating body (U) for n=0,2 is
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The last term of the r.h.s. is the potential of the centrifugal force, which generates variations in gravity
if ω is time dependent due to the despinning of the Earth axial rotation for example.
The second term in r.h.s. of (8) can be expressed as

( )( )Φ−=Φ=− ����
�
�

���
�
�

�

����� o���	 ωω (9)

Here the last term contributes to the dynamics of the Earth similarly to the second term in the
MacCullagh equation
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The second term of r.h.s. of (9) would be equal to the r.h.s. of (10) if a coefficient of proportionality  k
is introduced which involves the integrated mechanical properties of the Earth.
Therefore with the use of the r.h.s. of (9)

( )Φ=∗ ���
� �

�� o��
�

	 ω (11)

and introducing the Helmert’s geodynamical constant
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At the surface of the Earth (13) gives
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The time derivative of the second zonal geopotential coefficient o
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On the basis of spindown value valid for the present epoch and for the last 0.5⋅109 years (Pz) with the
use of (15)
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The time derivative of the dynamic shape factor o

�
�  has undergone significant variations in the course

of geological history. As a consequence of (5) and (6) the variations of the dynamics of our planet is
different in the Ptz and the Pz:
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during the last  2⋅109 years (17)
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in the time-interval (2.0-1.0)109 years BP

With (17) the time derivatives of the polar and equatorial momentums of the polar and the equatorial
momentums of inertia are
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Values obtained in (17) and (18) are tools for the study of geodynamical processes acting long time
(say longer than 106-107 years). They are expressing changes in the inner structure of the Earth. (16)
and (17) apparently contradict to results obtained for the secular changes in J2 obtained with the laser
data of geodetic satellites. The mean of these data is (Varga 1998)
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what is evidently too high for long lasting (longer than 106-107 years) geological processes. If, for
example, the question is: when A will be – hypothetically - equal C on the basis of present day data
the following relation can be derived from (18)
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What means that A will be equal to C in case of (16) within 2.1⋅109 years. Studies of the present
glacial discharges show that dJ2/dt deduced from satellite data can be explained by this phenomenon.
As it was shown by Vermeersen et al.(1997), time derivative of J2 allows us a study of the viscosity
profile of the Earth’s mantle and the dependence of dJ2/dt on mantle viscosity. The secular variation
of the second degree zonal harmonic has its maximum when the viscosity is about 1020 Pa⋅s in the
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upper and 1021 Pa⋅s in the lower mantle. In case of decreasing viscosity, the magnitude of dJ2/dt gets
significantly reduced. This circumstance can be important for the explanation of the difference
between satellite (18) and geological (16) values for the time derivative of the second degree
component of the geopotential.

4. Conclusion

The above described unsolved problems of geodynamics are subjectively selected. There were not
mentioned many still not solved questions. For example the excitation mechanisms of the Chandler
wobble not understood yet, the frequency of the core notations is different from observations and
from theory possibly due to the use of simplified theoretical model of the Earth. The scientist of XXI
century shall solve these questions of course together with many another ones. One of the varantiy for
this is the excellent school of theoretical geodetic research founded and led by Professor Erik W.
Grafarend at the Stuttgart University.

References

Achilli,V., Baldi, P., Casula, G.., Errani, M., Focari,S:, Guerzoni, M., Palmonari, F., Raguni, G.,
1995: A calibration system for superconducting gravimeters. Bulletin Geodetique, 69, 73-80.

Atzbacher, K., Gerstenecker, K., 1993: Secular gravity variations: recent crustal movements or scale
factor changes? J.Geodynamics, 18, 1-4,107-121.

Carey, S.W., 1988: Theories of the Earth and Universe. Stanford University Press.
Cohen,E.H., Taylor,B.N., 1986: Adjustment of the physical constants. Codata Bulletin, 62.
Egyed, L., 1957: A new dynamic conception of the internal constitution of the Earth. Geological

Rundschau, 46, 101-121.
Hubler, B., Cornaz, A., Kündig, W., 1995: Determination of the gravitational constant with a lake

experiment: new constraints for non-Newtonian gravity. Phys.Rev. D., 51, 4005-4016.
Jordan, P., 1966: Die Expansion der Erde. Verlag Viehweg & Sohn.
Lambeck,K., 1980: The Earth’s variable rotation (Geophysical Causes and Consequences).

Cambridge University Press.
Maddox, J., 1995: Systematic errors in “Big G”? Nature, 377,573.
Schwartz, J.P., Robertson. D.S., Niebauer, T.M., Faller, J.E., 1998: A free – fall determination of the

Newtonian constant of Gravity, Science, 282, 5397, 2230-2234.
Somogyi, J., Závoti, J., 1993: Robust estimation with interactively reweighted least square method.

Acta Geod. Geoph. Mont. Hung., 28, 2-4, 465-490.
Stacey, F.D., Tuck, G.J., Moore, G.I., Holding, S.C., Goodwiz, G.D., Zhow, R.K., 1987: Geophysics

and the law of gravity. Rev. of modern Physics, 59, 1, 157-174.
Varga, P., 1989: Laboratory calibration of gravimeters. Österreichische Beiträge zur Meteorologie

und Geophysik, 2, 111-121.
Varga, P., Csapó G., Becker, M., Groten, E., 1991: Laboratory calibration of LCR type gravimeters.

XXth General Assembly, IUGG, Vienna.
Varga, P., Hajósy, A., Csapó, G., 1995: Laboratory calibration of LaCoste – Romberg type

gravimeters by using a heavy cylindrical ring. Geohys. J.Int., 120, 745-752.
Varga, P., Denis, C., Varga, T., 1998: Tidal friction and its consequence in paleogeodesy, in the

gravity field variations and in tectonics, J. Geodynamics, 25, 61-84.
Varga, P., 1998: Temporal variation of second degree geopotential. Reports of the Finnish Geodetic

Institute, 4, 125-128.
Vermeersen. L.L.A., Fournier, A., Sabadini, R., 1997: Changes in rotation induced by Pleistocene ice

masses with stratified analytical Earth model. J.Geophys. Res., 102, 27689-27702.


