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Abstract:

We will display the fundamental structure of classical electrodynamics. Starting from the axioms
of (1) electric charge conservation, (2) the existence of a Lorentz force density, and (3) magnetic
flux conservation, we will derive Maxwell’s equations. They are expressed in terms of the
field strengths (E,B), the excitations (D, H), and the sources (p,j). This fundamental set
of four microphysical equations has to be supplemented by somewhat less general constitutive
assumptions in order to make it a fully determined system with a well-posed initial value problem.
It is only at this stage that a distance concept (metric) is required for space-time. We will discuss
one set of possible constitutive assumptions, namely D ~ E and H ~ B.

1 Introduction

Is it worthwhile to reinvent classical electrodynamics after it has been with us for more than
a century? And after its quantized version, quantum electrodynamics (unified with the weak
interaction) had turned out to be one of the most accurately tested successful theories? We
believe that the answer should be affirmative. Moreover, we believe that this reformulation
should be done such that it is also comprehensible and useful for experimental physicists and
(electrical) engineers?.

Let us collect some of the reasons in favor of such a reformulation. First of all an “axiomatics”
of electrodynamics should allow us to make the fundamental structure of electrodynamics trans-
parent, see, e.g., Sommerfeld [?] or [?, 7, ?]. We will follow the tradition of Kottler-Cartan-van
Dantzig, see Truesdell & Toupin [?] and Post [?], and base our theory on two experimentally well
established axioms expressed in terms of integrals, conservation of electric charge and magnetic
flux, and a local axiom, the existence of the Lorentz force. All three axioms can be formulated in
a 4-dimensional (spacetime) continuum without using the distance concept (i.e. without the use
of a metric), see Schrodinger [?]. Only the fourth axiom, a suitable constitutive law, is specific
for the “material” under consideration which is interacting with the electromagnetic field. The
vacuum is a particular example of such a material. In the fourth axiom, the distance concept
eventually shows up and gives the 4-dimensional continuum an additional structure.

Some of the questions one can answer with the help of such a general framework are: Is the
electric excitation D a microscopic quantity like the field strength E7 Is it justified to give D

! Dedication to Erik W. Grafarend on the occasion of his 60th birthday: Wir wissen, dass heutzutage auch
die Geodaten relativistische Effekte bei ihren “Triangulationen” beriicksichtigen miissen. Wohl auch aus diesem
Grunde hat Herr Grafarend immer ein offenes Ohr fiir entsprechende Theorien gehabt. Die einfachste relativis-
tische klassische Feldtheorie, die wir kennen, ist die Elektrodynamik. Wir widmen diese Ausarbeitung Herrn
Grafarend zu seinem 60.Geburtstage in der Hoffnung, dass er sich iiber die schonen Seiten dieser Darstellung
genauso freut, wie wir es tun. Und dies umso mehr, als dass Herr Grafarend gleich am Anfang seiner Karriere
sich intensiv mit Geometrie und Cartan-Formalismus auseinandergesetzt hat.

2For this reason, we apply in this article the more widespread formalism of tensor analysis (“Ricci calculus”,
see Schouten [?]) rather than that of exterior differential forms (“Cartan calculus”, see Frankel [?]) which we
basically prefer.
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another dimension than E? The analogous questions can be posed for the magnetic excitation
H and the field strength B. Should we expect a magnetic monopole and an explicit magnetic
charge to arise in such an electrodynamic framework? Can we immediately pinpoint the (metric-
independent) constitutive law for a 2-dimensional electron gas in the theory of the quantum Hall
effect? Does the non-linear Born-Infeld electrodynamics fit into this general scheme? How do
Maxwell’s equations look in an accelerated reference frame or in a strong gravitational field as
around a neutron star? How do they look in a possible non-Riemannian spacetime? Is a possible
pseudoscalar axion field compatible with electrodynamics? And eventually, on a more formal
level, is the calculus of exterior differential forms more appropriate for describing electrodynamics
than the 3-dimensional Euclidean vector calculus and its 4-dimensional generalization? Can the
metric of spacetime be derived from suitable assumptions about the constitutive law?

It is really the status of electrodynamics within the whole of physics which comes much clearer
into focus if one follows up such an axiomatic approach.

2 Foliation of the 4-dimensional spacetime continuum

From a modern relativistic point of view, the formulation of electrodynamics has to take place
in a 4-dimensional continuum (differentiable manifold) which eventually is to be identified with
spacetime, i.e. with a continuum described by one “time” coordinate z° and three “space”
coordinates z',z2, 23 or, in short, by coordinates z*, with i = 0,1,2,3. Let us suppress one
space dimension in order to be able to depict the 4-dimensional as a 3-dimensional continuum,

as shown in Fig.?7.

Figure 1: Foliation of spacetime: Each hypersurface h, represents, at a time o, the 3-dimensional
space of our perception one dimension of which is suppressed in the figure. The positive time
direction runs upwards.

We assume that this continuum admits a foliation into a succession of different leaves or hy-
persurfaces h. Accordingly, spacetime looks like a pile of leaves which can be numbered by a
monotonically increasing (time) parameter o. A leaf h, is defined by o(x') = const. It rep-
resents, at a certain time o, the ordinary 3-dimensional space surrounding us (in Fig.?? it is
2-dimensional, since one dimension is suppressed).

At any given point in h,, we can introduce the covector k; := 0;0 and a 4-vector n = (n’)

— (0 o1 2 3\ _ (0 ,a - : :
- Y Y Y - Y
(n”,n*,n* n°) = (n”,n®) such that n is normalized according to

n'k; =n'dio=1. (1)
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Here a,b... = 1,2,3 and 4,5... = 0,1,2,3. Furthermore, summation over repeated indices
is always understood. The vector n’ is “normal” to the leaf h,, whereas the covector k; is
tangential® to it.
With the pair (n,k) we can construct projectors which decompose all tensor quantities into
longitudinal and transversal constituents with respect to the vector n, see Fig.??. Indeed, the
matrices

L'j:=n'k; and T';:= 5;- —n'k; with L' +T" = 5;, (2)

represent projection operators, i.e.
LD =L, TGT=T%, L;T=T;L=0. (3)
Taking an arbitrary covector U;, we now can write it as
Ui ="U;+U;, where *U;:=L%U; and U, :=TU;. (4)

Obviously +U; describes the longitudinal component of the covector and U, its transversal
component, with n* U, = 0. Analogously, for an arbitrary vector V*, we can write

Vi=Wi4 Vi where V=L,V and V': =TV, (5)

Its transversal component V' fulfills V* k; = 0. This pattern can be straightforwardly generalized
to all tensorial quantities of spacetime.

For simplicity, we confine our attention to the particular case when “adapted” coordinates
2t = (0,2%) are used and when the “spatial” components of n vanish, i.e., n* = (1,0,0,0). In
that case, we simply have k; = 9;0 = (1,0,0,0) and hence o can be treated as a formal “time”
coordinate.

3 Conservation of electric charge (axiom 1)

The conservation of electric charge was already recognized as fundamental law during the time
of Franklin (around 1750) well before Coulomb discovered the force law in 1785. Nowadays, at
a time, at which one can catch single electrons and single protons in traps and can count them
individually, we are more sure than ever that electric charge conservation is a valid fundamental
law of nature. Therefore matter carries as a primary quality something called electric charge
which only occurs in positive or negative units of an elementary charge e (or, in the case of
quarks, in 1/3th of it) and which can be counted in principle. Thus it is justified to introduce
the physical dimension of charge ¢ as a new and independent concept. Ideally one should
measure a charge in units of e/3. However, for practical reasons, the SI-unit C (Coulomb) is
used in laboratory physics.

Two remarks are in order: Charge is an additive (or extensive) quantity that characterizes
the source of the electromagnetic field. It is prior to the notion of the electric field strength.
Therefore it is not reasonable to measure, as is done in the CGS-system of units, the additive
quantity charge in terms of the unit of force by applying Coulomb’s law. Coulomb’s law has
no direct relation to charge conservation. Secondly, in the Sl-system, for reasons of better
realization, the Ampere A as current is chosen as the new fundamental unit rather than the
Coulomb. We have C' = As (s = second).

As a preliminary step, let us remind ourselves that, in a 4-dimensional picture, the motion of a
point particle is described, as in Fig.??, by a curve in spacetime, by a so-called worldline. The
tangent vectors of this worldline represent the 4-velocity of the particle.

3The term “tangential” is used here in the sense of exterior calculus in which a covector (or 1-form) is repre-
sented by two ordered parallel planes — and the first plane is tangential to h,.
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Figure 2: World lines, decomposition of the electric current into the piece -7 longitudinal to n
and the transversal piece J, global conservation of charge.

If we mark a 3-dimensional volume €23 which belong to a certain hypersurface h,, then the total
electric charge inside )3 is

Q= / pdxtda?ds? (6)
Q3Cho

with p as the electric charge density. The total charge in space, which we find by integration
over the whole of space, i.e., by letting 23 — h,, is globally conserved. Therefore the integral in
(??) over each hypersurface hy,, hg,, ... keeps the same value.

The local conservation of charge, see Fig.??, translates into the following fact: If a number of
worldlines of particles with one elementary charge enter a prescribed but arbitrary 4-dimensional
volume €14, then, in classical physics, the same number has to leave the volume. If we count the
entering worldlines as negative and the leaving ones as positive (in conformity with the direction
of their normal vectors), then the (3-dimensional) surface integral over the number of worldlines
has to vanish.

part of 0€2,

Figure 3: Local conservation of charge: Each worldline of a charged particle that enters the
finite 4-volume 24 via its boundary 9€)4 has also to leave €14.
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Now, the natural extensive quantities to be integrated over a 3-dimensional hypersurface are
vector densities, see the appendix. Accordingly, in nature there should exist a 4-vector density
J*? with 4 independent components which measures the charge piercing through an arbitrary
3-dimensional hypersurface. Therefore, it generalizes in a consistent 4-dimensional formalism
the familiar concepts of charge density p and current density j*. The axiom of local charge
conservation then reads

/ J'd*S; =0, (7)

0Q4

where the integral is taken over the (3-dimensional) boundary of an arbitrary 4-dimensional
volume of spacetime, with d®5; being the 3-surface element, as defined in the appendix.
If we apply Stokes’ theorem, then we can transform the 3-surface integral in (?7) into a 4-volume
integral:
/ (@:T) 'S = 0. (8)
Qy
Since this is valid for an arbitrary 4-volume €14, we find the local version of the charge conser-
vation as

0,7 ' =0. 9)

In this form, the law of conservation of charge is valid in arbitrary coordinates.

If one defines a particular foliation, then one can rewrite (?7) in terms of decomposed quantities
that are longitudinal and transversal to the corresponding normal vector n. The 4-vector density
V& decomposes as

When adapted coordinates are used, the decomposition procedure simplifies and allows to define
the 3-dimensional densities of charge p and of current j as

p = J.jO — ‘-707 ja — la — ja' (11)
With this, one can rewrite the definition of charge (?7?) in an explicitly coordinate invariant form
o= [ 7ies, (12)

Q3Ches

since on h, we have d®Sy = dz'dz?dx® and d®S, = 0. Furthermore, Eq.(??) can be rewritten
in (143)-form as the more familiar continuity equation

Bpp + 0aj® =0. (13)

The charge @ in (??) has the absolute dimension* q. The 4-current is a density in spacetime, and
we have [J] = ¢/(t1®). Thus the components carry the dimensions [p] = [J°] = ¢/I3 o C/m?
and [j7) = [7°] = q/(t1%) = A/m?.

1A theory of dimensions, which we are using, can be found in Post [?], e.g.. A quantity has an absolute
dimension, and if it is a density in spacetime we divide by ¢13. The components pick up a ¢ (a til) for an upper
(a lower) temporal index and an [ (an {™') for an upper (a lower) spatial index. A statement, see [?], that F and
B must have the same dimension since they transform into each other is empty without specifying the underlying
theory of dimensions.
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4 The inhomogeneous Maxwell equations as consequence

Because of axiom 1 and according to a theorem of de Rham, see [?], the electric current density
from (??) or (??) can be represented as a “divergence” of the electromagnetic excitation:

J'=0;HY,  HY=-H". (14)

The excitation H¥ is a contravariant antisymmetric tensor density and has 6 independent compo-
nents. One can verify that, due to the antisymmetry of H%, the conservation law is automatically
fulfilled, i.e., 8;7% = 8;0;H" = 0.

The 4-dimensional set (?7) represents the inhomogeneous Maxwell equations. They surface here
in a very natural way as a result of charge conservation. Charge conservation should not be
looked at as a consequence of the inhomogeneous Maxwell equations, but rather the other way
round, as shown in this tutorial. Of course, H¥ is not yet fully determined since

T = M 4 IR g, (15)

also satisfies (?7) for an arbitrary covector field ;.
The (1 + 3)-decomposition of H" is obtained similarly to the decomposition of the current (?7?):

H =K+ 1Y, (16)
The nontrivial components of the longitudinal and transversal parts read
HOa _ J_Hﬂa _ Da Hab _ Hab _ €abc H (17)
- - 9 - Ik - C

with the electric excitation D* (historical name: “dielectric displacement”) and the magnetic
excitation H, (“magnetic field”). Here €2 is the totally antisymmetric 3-dimensional Levi-
Civita tensor density with €2 = 1.

If we substitute the decompositions (?7) and (??) into (??), we recover the 3-dimensional form
of the inhomogeneous Maxwell equations,

9,D* = p, oy H, — 0,D% = j°, (18)

or, in symbolic notation, _
divD = p, curlH —D =3j. (19)

Since electric charge conservation is valid in microphysics, the corresponding Maxwell equations
(??) or (?7) are also microphysical equations and with them the excitations D* and H, are
microphysical quantities likewise — in contrast to what is stated in most textbooks, see [?] and
[?], compare also [?], e.g..

From (??) we can immediately read off [D?%] = [l p] = q/I? o C/m3? and [H,) = [17%] = q/(t]) o
A/m. Before we ever talked about forces on charges, charge conservation alone gave us the
inhomogeneous Maxwell equations including the appropriate dimensions for the excitations D¢
and H,.

Under the assumption that D® vanishes inside an ideal electric conductor, one can get rid of the
indeterminacy of D%, as spelled out in (?7), and we can measure D® by means of two identical
conducting plates (“Maxwellian double plates”) which touch each other and which are separated
in the D%field to be measured. The charge on one plate is then measured. Analogous remarks
apply to H,. Accordingly, the excitations do have a direct operational significance.
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5 Force and field strengths (axiom 2)

By now we have exhausted the information contained in the axiom 1 of charge conservation.
We have to introduce new concepts in order to complete the fundamental structure of Maxwell’s
theory. Whereas the excitation H = (D%, H,) is linked to the charge current J = (p, j¢), the
electric and magnetic field strengths are usually introduced as forces acting on unit charges at
rest or in motion, respectively. In the purely electric case with a test charge ¢, we have in terms
of components

Fo,~qE,, (20)

with F' as force and E as electric field covector.

Let us take a (delta-function-like) test charge current J = (p, j®) centered around a point
with spatial coordinates z®. Generalizing (?77?), the simplest relativistic ansatz for defining the
electromagnetic field reads:

force density ~ field strength x charge current density . (21)

We know from Lagrangian mechanics that the force ~ OL/0x is represented by a covector with
the absolute dimension of action % (here h is not the Planck constant but rather only denotes
its dimension). Accordingly, with the covectorial force density f;, the ansatz (??) can be made
more precise as axiom 2:

fi=F;7J%,  Fj=-Fj. (22)

The newly introduced covariant 2nd-rank 4-tensor Fj; is the electromagnetic field strength. The
force density f; was postulated to be normal to the current, f; 7* = 0. Thus the antisymmetry of
the electromagnetic field strength is found, i.e., Fj; depends on 6 independent components. We
know the notion of force from mechanics, the current density we know from axiom 1. Accordingly,
axiom 2 is to be understood as an operational definition of the electromagnetic field strength
Fij-

With the decomposition

Fyj =~ Fj+ Ey,

(23)

we find the identifications for the electric field strength F, and the magnetic field strength 5¢
(historical names: “magnetic induction” or “magnetic flux density”):

Fao="Fao = Ea,  Fap = Fop = €ape B (24)

These identifications are reasonable since for the spatial components of (?7) we recover the
Lorentz force density and, for the static case, Eq.(??):

fa:Fajjj: aOJO+Fabjb:pEa+€abcijC' (25)

Symbolically, we have
f=pE+jxB. (26)

The time component of (??) represents the electromagnetic power density:

fo=Foa T =—Eqj". (27)

6 Conservation of magnetic flux (axiom 3)

Axiom 2 on the Lorentz force gave us a new quantity, the electromagnetic field strength with the
dimension [F] = action/charge = h/q =: ¢, with ¢ = work x time/charge = voltage X time il
Vs = Wb. Here Wb is the abbreviation for Weber. Thus its components carry the following
dimensions: [E,] = [Fuo] = ¢/(t1) o V/m and [BY] = [Fy) = ¢/1? o Wh/m? =T (for Tesla).
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Figure 4: Sketch of an Abrikosov lattice in a type II superconductor in 3-dimensional space. In
contrast to all the other figures, this is not an image of 4-dimensional spacetime.

We are in need of an experimentally established law that relates to F. And we would prefer,
as in the case of the electric charge, to recur to a counting procedure. What else can we
count in relation to the electromagnetic field? Certainly magnetic flux lines in the interior of
a type II superconductor which is exposed to a sufficiently strong magnetic field. And these
flux lines are quantized. In fact, they can order in a 2-dimensional triangular Abrikosov lattice,
see Fig.??7. These flux lines carry a unit of magnetic flux, a so-called flux quantum or fluxon
with ®g = h/(2¢) = 2.07 x 1071 Wb, see Tinkham [?]; here h is the Planck constant and e the
elementary charge. These flux lines can move, via its surface, in or out of the superconductor,
but they cannot vanish (unless two lines with different sign collide) or spontaneously come
into existence. In other words, there is a strong experimental evidence that magnetic flux is a
conserved quantity.

The number 2 in the relation &g = h/(2e) is due to the fact that the Cooper pairs in a super-
conductor consist of 2 electrons. Moreover, outside a superconductor the magnetic flux is not
quantized, i.e., we cannot count the flux lines there with the same ease that we could use inside.
Nevertheless, as we shall see, experiments clearly show that the magnetic flux is conserved also
there.

As we can take from Fig.??, the magnetic flux should be defined as a 2-dimensional spatial
integral. These flux lines are additive and we have

o — / B &5, . (28)
QoChe

Here B% is the magnetic field strength and d?S, the spatial 2-surface element. This definition
of the magnetic flux should be compared with the definition (?7?) of the charge. Here, in (77?),
we integrate only over 2 dimensions rather than over 3 dimensions, as in the case of the charge
in (?7). Thus in a spacetime picture in which one space dimension is suppressed, see Fig.?77,
our magnetic flux integral looks like an integral over a finite interval [A, B] embedded into the
hypersurface h, .

Now we are going to argue again as in Sec.3. If o — o0, i.e., if we integrate over an infinite
spatial 2-surface (A — 400, B — —00), then the total magnetic flux at time o is given by (77).
If we propagate that interval into the (coordinate) future, see the interval on the hypersurface
he,, then magnetic flux conservation requires the constancy of the integral ®. In other words,
if we orient the integration domain suitably, the loop integral, the domain of which is drawn in
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Figure 5: Magnetic flux in spacetime: The magnetic field B¢, if integrated over the interval
[A, B], represents, at time o1, the magnetic flux piercing through this 2-dimensional integration
domain.

Fig.??, has to vanish since no flux is supposed to leak out along the dotted “vertical” domains
at spatial infinity.
Analogously as we did in the case of charge conservation, we want to formulate a corresponding
local conservation law in an explicitly covariant way. We saw that the global conservation of
magnetic flux is expressed as the vanishing of the integral of B over the particular 2-dimensional
loop in Fig.??. In a 4-dimensional covariant formalism, the natural intensive objects to be
integrated over a 2-dimensional region are second order antisymmetric covariant tensors, see the
appendix. The magnetic field strength B is just a piece of the electromagnetic field strength
F. Thus, it is clear that the natural local generalization of the magnetic flux conservation, our
axiom 3, is

/ %FJ d*S7 =0, (29)

o3

where the integral is taken over the boundary of an arbitrary 3-dimensional hypersurface of
spacetime, as is sketched in Fig.??. We apply Stokes’ theorem

/ I Fy d3S; = 0, (30)
Q3

and, since the volume is arbitrary, we have the local version of magnetic flux conservation as

We substitute the decomposition (??) into (??). Then we find the homogeneous Maxwell equa-
tions,

0,B*=0,  ™OE.+0,B*=0 (32)

or, symbolically, _
divB=0, curl E4+ B =0. (33)

Thus both, the sourcelessness of B% and the Faraday induction law follow from magnetic flux
conservation. Both laws are experimentally very well verified and, in turn, strongly support the
axiom of the conservation of the magnetic flux.

The recognition that Maxwell’s theory, besides on charge conservation, is based on magnetic
flux conservation, sheds new light on the possible existence of magnetic monopoles. First of
all, careful search for them has not lead to any signature of their possible existence, see [?].
Furthermore, magnetic flux conservation would be violated if we postulated the existence of
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Figure 6: Conservation of magnetic flux in spacetime: Consider the arbitrary 3-dimensional
integration domain €23. The integral vanishes of the field strength Fj; over the 2-dimensional
boundary 923 of the 3-dimensional domain €23. The analogous is true for the flux integral over
09Q3.

a current on the right hand side of (?7). Now, Eq.(??) is the analog of (?7), at least in our
axiomatic set-up. Why should we believe in charge conservation any longer if we gave up
magnetic flux conservation? Accordingly, we assume — in contrast to most elementary particle
physicists, see Cheng & Li [?] — that in Maxwell’s theory proper there is no place for a magnetic
current® on the right hand side of (??).

7 Constitutive law (axiom 4)

The Maxwell equations (??) and (??) or, in the decomposed version, (??) and (?7?), respectively,
encompass altogether 6 partial differential equations with a first order time derivative (the
2 remaining equations can be understood as constraints to the initial configuration). Since
excitations and field strengths add up to 6 + 6 = 12 independent components, certainly the
Maxwellian set is underdetermined with respect to the time propagation of the electromagnetic
field. What we clearly need is a relation between the excitations and the field strengths. As we
will see, these so-called constitutive equations require additional knowledge about the properties
of spacetime whereas the Maxwell equations, as derived so far, are of universal validity as long
as classical physics is a valid approximation. In particular, in the Riemannian space of Einstein’s
gravitational theory the Maxwell equations look just the same as in (??) and (?7). There is no
adaptation needed of any kind, see [?].

If we investigate macroscopic matter, one has to derive from the microscopic Maxwell equations
by statistical procedures the macroscopic Maxwell equations. They are expected to have the
same structure as the microscopic ones. But let us stay, for the time being, on the microscopic
level.

Then we can make an attempt with a linear constitutive relation between H% and F},

Hz] — 5 >2zjl~::l Fkl — 5 mekl Fkl7 (34)

with the tensor density x*/* that is characteristic for the spacetime under consideration. We
require [x] = 1, i.e., for the dimensionfull scalar factor factor f we have [f] = q/¢ = ¢*>/h il
C/(Vs) = A/V = 1/Q. The dimensionless “modulus” x“* because of the antisymmetries of

H¥ and F};, obeys - ) -
Xz]kl — _X]zkl — _Xz]lk ) (35)

5This argument does not exclude that, for topological reasons, the integral in (??) could be non-vanishing, as
in the case of a Dirac monopole with a string, see [?].
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Moreover, if we assume the existence of a Lagrangian density for the electromagnetic field
L ~ H" F;j, then we have additionally the symmetries

IR = M ikl (36)

The vanishing of the totally antisymmetric part comes about since the corresponding Euler-
Lagrange derivative of £ with respect to the 4-potential A; identically vanishes; here Fj; =
20;;A;). For X7k this leaves 20 independent components®. One can take such moduli, if applied
on a macrophysical scale, for describing the electromagnetic properties of anisotropic crystals,
e.g.. Then also non-linear (for ferromagnetism) and spatially non-local constitutive laws are in
use.

The simplest linear law is expected to be valid in vacuum. Classically, the vacuum of spacetime
is described by its metric tensor ¢*/ = ¢/* that determines the temporal and spatial distances of
neighboring events. Considering the symmetry properties of the density /¥, the only ansatz
possible, up to an arbitrary constant, seems to be

XM = /= det gmn (g““gjl - gj’“g“) : (37)

Note that xy“*! is invariant under a rescaling of the metric 9ij — Q2gij, with an arbitrary function
Q(z"). Using this freedom, we can always normalize the determinant of the metric to 1.

As an example, let us consider the flat spacetime metric of a Minkowski space in Minkowskian
coordinates,

c? 0 0 0

-» 0 -1 0 0

(%

Vel g 0 1 o (38)
0 0 0 -1

If we substitute (??) into (?7) and, in turn, Eq.(??) and f = \/eo/po into (?7?), then we
eventually find the well-known vacuum (“Lorentz aether”) relations,

H' =,/%niknﬂFm o  D=coE, H=(1/u)B. (39)

The law (?77?) converts Maxwell’s equations, for vacuum, into a system of differential equations
with a well-determined initial value problem.

Acknowledgments: We are grateful to Marc Toussaint for discussions on magnetic monopoles.
G.F.R. would like to thank the German Academic Exchange Service DAAD for a graduate
fellowship (Kennziffer A/98/00829).

A Four-dimensional calculus without metric and integrals

In a 4-dimensional space, in which arbitrary coordinates x* are used, with i = 0, 1,2, 3, one can
define derivatives and integrals of suitable antisymmetric covariant tensors and antisymmetric
contravariant tensor densities without the need of a metric. The tensors are used for representing
intensive quantities (how strong?), the tensor densities for extensive (additive) quantities (how
much?). The natural formalism for defining integrals in a coordinate invariant way is exterior
calculus, see Frankel [?]. However, we will use here tensor calculus, see Schouten [?] and also
Schrodinger [?], which is more widely known under physicists and engineers.

SWith such a linear constitutive law it is even possible to derive, up to a conformal factor, a metric of spacetime,
provided one makes one additional assumption, see [?, ?].
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Integration over 4-dimensional regions — scalar densities

Consider a certain 4-dimensional region 4. Then a integral over {24 is of the form

Ad'S, (40)
Q4

where d*S := dzdx'da?dx? is the 4-volume element which is a scalar density of weight —1. We
want this integral to be a scalar, i.e., that its value does not depend on the particular coordinates
we use. Then the integrand A4 has to be a scalar density of weight +1. In other words, when
using the tensor formalism, the natural quantity required to formulate an invariant integral over
a 4-dimensional region is a scalar density of weight +1.

Integration over 3-dimensional regions — vector densities

Now we want to define invariant integrals over some 3-dimensional hypersurface 23 in a four-
dimensional space which can be defined by the parameterization z* = z*(y*), a,b,c = 1,2,3,
where y® are also arbitrary coordinates on 23. Then we call

1 Oxd dx* ot

dSSii i
31 R Ba Byb aye

abc d 1dy2dy (41)
the 3-surface element on (3. This quantity is constructed by using only objects that can be
defined in a general 4-dimensional space without metric or connection. It can be constructed
as soon as we specify the parameterization of (3. Here €5 is the 4-dimensional Levi-Civita
tensor density of weight —1 and €®¢ the 3-dimensional Levi-Civita tensor density of weight +1
on 3. Furthermore, this hypersurface element turns out to be a covector density of weight —1
with respect to 4-dimensional coordinate transformation. With this integration element to our
disposal, the natural form of an invariant integral over Qg is

Ald3S; . (42)
Q3
Therefore, the natural object to be integrated over )3 in order to obtain an invariant result is
a vector density of weight +1.

Integration over 2-dimensional regions — covariant tensors or contravariant tensor
densities

Analogously, we can parameterize a 2-dimensional region {2 by means of z* = 2%(2%), a, 3 = 1, 2,
where 2% are arbitrary coordinates on 5. Then we can immediately construct the followmg
2-surface element

1 0x* Ox!
ez]kl 8— 8
where €7 is the Levi-Civita density of weight 4+1 on §. This surface element is an antisymmetric

second order covariant tensor density of weight —1. Then an invariant integral is naturally
defined as

d%S;; = e d2'dz2?, 43
J

1 ..
—.A”dQSi-, 44
/;222 J ( )

with A% being an antisymmetric second order contravariant tensor density of weight +1.
Alternatively, one can write the same integral in terms on an antisymmetric second order covari-
ant tensor A;; := %eijkl.Akl and an antisymmetric second order contravariant surface element

oxk oz

2 Qij =
a5 920 028 ¢

P dztd? (45)
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such that 1 1
—AY :/ ~A;; d2SY 4
o 2A S] o 2 J S ( 6)

Since extensive quantities are represented by densities, we would take the first integral for them,
whereas for intensive quantities the second integral should be used. Analogous considerations
can be applied to (?7) and (?7?).

Stokes’ theorem

Stokes’ theorem gives us as particular cases the following integral identities (see [?] p.67 et seq.):

/Q @Thd's= [ TS, (47)

024
g 1 ..
AN 43 Q. — — i J2q..
/Qg(a]H )d*S, /8932% d25;; . (48)
B Decomposition of totally antisymmetric tensors into longitu-

dinal and transversal pieces

Here we provide the decomposition formulas for totally antisymmetric covariant and contravari-
ant tensors, which are the natural generalization of the decomposition of vectors and covectors.

We start by considering an antisymmetric covariant tensor of rank p, namely U;, . ;,. Its longi-
tudinal and transversal components are given by
Uiy =D L Unmia..i) Uiy.iy = (0 + V)L Usy 4y (49)
where k; := 0,0, and L = nikj. They fulfill the following properties:
U, . =0, U, =0 U, (50)

For p = 1,2, 3,4 we can explicitly write:

‘ D ‘ quantity ‘ definition ‘ explicitly ‘
1] 10 LU 0k Un,
2| U, | 2 Uy 27 (kiU — k3 Unt)
3] LUk 3L U k) " (kiUnjk + kjUmki + kxUmij)
41 TUym AL Uiy | 0™ (KUt = kjUnmikti + kkUmiig — BiUpnigi)

Now we turn to V*1-» an antisymmetric contravariant tensors of rank p. We define the decom-
position as

Lyiteis — ) L[ilﬂnvmﬁg...ip] : Vitein = (p+ 1)L[mmvi1...ip] _ (51)
They fulfill
g, Vitin = 0, kg LV itin = Yitein (52)
For p =1, 2,3,4 we have the following explicit expressions for the longitudinal components:
‘ P ‘ quantity ‘ definition ‘ explicitly ‘
1 Lyt L, vm 'k, V™
2| v | 2LM,ymid ko (V™ — iy ™)
3| Lvisk | 3Ll ymlik Fo (V19K VIR 4y
4 | Lyiikl 4L[i|mvm\jkl} k. (nivmjkl _ pIymkli 4 pkymlij _ nlvmijk)

An analogous scheme is valid for the corresponding densities.
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