
The analysis of the Neumann and oblique
derivative problem.Weak theory

Youri Rozanov and Fernando Sansò

Abstract:
In this review paper the simple Neumann and oblique derivative problem is formulated for an
exterior domain and mapped by the Kelvin-Raleigh transform, to an internal domain. The weak
formulation of the two problems is subsequently studied and standard theorems of existence,
uniqueness and well-posedness are proved.
The conditions of validity for such theorems have a clear interpretation for the geometric point
of view.
An extensive Appendix, mostly without proofs, provides the relevant material on theory of
distributions and Sobolev spaces.

1 Motivation and formulation of the problem

In geodesy some of the most fundamental problems of the gravity field determination from
boundary observations are translated into exterior boundary value problems (BVP) for the
Lapalce or Poisson equation (cfr. [Sansò, 1995], [Sansò, 1997]).
After suitable linearization and reductions-simplifications of various kinds we finally come out
with a problem that can typically be formulated as follows:
Given a simply connected bounded open domain B with boundary S and the exterior open domain
Ω, given some known distribution f in Ω and a boundary datum g, to find a function (potential)
u in Ω such that

∆u = f in Ω (1.1)
e · ∇u+ bu = g on S (1.2)

u = 0
(

1
r

)
for r → ∞ (1.3)

Please note that we have been purposly ambiguous in denoting f as a distribution as it can
be legitimately interpreted in both senses, physically as a mass distribution outside S (this
happens when classical geodetic reductions are applied so that S lies partly inside the masses),
or mathematically, in L. Schwarz sense. It has to be remarked that the physical situation in
geodesy is such that f has a bounded support in Ω although we shall go beyond this hypothesis
for the sake of completeness in the analysis. As a byproduct of this remark we shall not insist
on the condition (1.3), which derives from the requirement that u is a regular harmonic function
outside a sphere of sufficiently large radius, but we shall define in the next paragraph conditions
of regularity at infinity suitable for the functional spaces we are going to work with.
As for the boundary condition (1.2) we remark that, excluding the case of mixed BVP’s, e can
be taken as a unit vector field on S. Typically in geodesy e (cfr. Fig. 1.1) is the direction of the
normal gravity γ, or its opposite. In turn γ is always directed fairly close to the radial direction
er, while the outer normal ν to S may be very distinct to e, although this happens only on a
small portion of the surface. In any event, we shall make the quite reasonable assumption that

cosα = e · ν ≥ α > 0 (on S) ; (1.4)
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Figure 1.1: The geometry of BVP’s analyzed.

this qualifies mathematically (1.1), (1.2), (1.3) as a regular oblique derivative problem. In this
evenience, by dividing (1.2) by cosα and rearranging the symbols in an obvious way, we can
write

ν · ∇u+ a · ∇u+ bu = g (1.5)

or

∂u

∂ν
+ a · ∇tu+ bu = g (1.6)

with a tangent to S,

a · ν = 0, (on S). (1.7)

and ∇t = ∇− ν∂ν , the tangent component of the gradient. Let us remark that S has to display
some regularity and in this paper to fix the ideas we shall accept that S is a C2,λ surface, i.e. it
has λ Holder continuous second derivatives in local coordinates.
In (1.6) a is small in the average (apart from mountainous areas) and a · ∇t can be considered
as a perturbation with respect to the main operator ∂ν In one important instance, when gravity
anomalies data are reduced to the ellipsoid for the determination of the geoid, we have identically
a ≡ 0.
Finally, the term in b might or might not be present, depending on the problem considered: this
is indeed not irrelevant to the mathematical analysis, since the uniqueness or non-uniqueness of
the solution does depend on the sign of b. For instance, the simple Molodensky problem with
boundary operator B =

(
∂
∂r + 2

r

)
, is well known to have a null space of dimension 3. On the

other hand, the operator b · u is much milder than ∂ν · u so that (1.6) can typically be turned
into a Fredholm type equation, once the corresponding problem with b = 0 has been analyzed.
Furthermore, b = 0 does correspond to the (linearized) fixed boundary gravimetric problem
(cfr. [Sansò, 1997]), which is becoming a realistic problem with nowadays GPS observations,
and which geodesy shares with another geoscience: geomagnetism.
Concluding, we will be considering the two problems
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a) The exterior Neumann problem 

∆u = f in Ω

∂u

∂ν
on S

u→ 0 at ∞

(1.8)

b) The exterior regular oblique derivative problem

∆u = f in Ω

∂u

∂ν
+ a · ∇tu = g on S

u→ 0 at ∞ .

(1.9)

In this paper we shall present the theory of existence, uniqueness and stability of the solution
of the two problems in the framework of the weak concept, so called because the differential
operators have to be interpreted in distribution sense. In a forthcoming paper we shall present
the strong theory too, or the so-called analysis of the regularization problem, including its ex-
tension to the corresponding stochastic problems, where u has to be interpreted as a generalized
random field (cfr. [Sansò, 1997], [Sansò, 1995], [Sansò, Venuti, 1998]). Although there is a very
large mathematical litterature for problems like (1.8), (1.9) and although the results we shall
derive are not surprising, yet in the methods used for their proof and in particular in the use of
a generalized Ladyzenkaya identity for the regularization, there is some new material analysis.
Furthermore, the precise formulation of the condition for the existence and uniqueness of the
solution of the pure oblique derivative problem is sufficiently simple to be interpreted in a geode-
tic sense. On the other hand, a number of remarks that could be considerably shortened for
mathematicians, are nevertheless included into the paper to make it self-consistent for readers
from a geodetic environment.

2 The Kelvin-Raleigh transform

This transform, also called the inverse radii transform, is useful here because it maps (1.8), (1.9)
into BVP problems for an interior domain Ω, which is in this case bounded.
The transform is simultaneously a transformation of coordinates and of the unknown function:
more precisely, assume that B is such as to cover the unit ball

B ⊃ B1 ≡ {r ≤ 1} ,

so that if in this paragraph we call s the “exterior” radial variable, we have

sP > 1 , ∀P ∈ Ω ;

then we define a new variable r and a new unknown function (potential) v, as

s =
1
r
(s > 1), r =

1
s

(r < 1) (2.1)

v = (r, σ) =
1
r
u(

1
r
, σ) = s u(s, σ) . (2.2)

As it is obvious, by (2.1) Ω is mapped into a set Ω′ ⊂ B1.
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Figure 2.1: The geometry of the Kelvin-Raleigh transform.

so we have

Ω exterior to S

Ω′ interior to S′

Although not necessary, one can think that S and S′ have (at least locally) equations

S → s = S(σ)

S′ → r = R(σ) =
1

S(σ)
.

(2.3)

A simple computation then shows that the two exterior normals νs, νr are symmetrically placed
with respect to the radial unit vector er = es. A straightforward computation shows that

∆rv ≡ s5∆su ≡ s5f , (2.4)
∂v

∂ν
+

v√
R2 +R2

ϑ + 1

sin2
ϑ

R2
λ

= −S3 ∂u

∂νs
= −S3g . (2.5)

Accordingly we can map problem (1.8) into a problem of the form
∆v = F in Ω′

∂u

∂ν
+ bv = G on S′

(2.6)

where

F (r, σ) =
1
r5
f

(
1
r
, σ

)
; G(σ) ≡ −S3(σ)g(σ) (2.7)
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and

b ≥ b(σ) =
1√

R2(σ) +R2
ϑ + R2

λ

sin2
ϑ

≥ b0 = 1 . (2.8)

As for the oblique derivative problem (1.9) one sees that it is transformed into
∆v = F in Ω′

∂v

∂ν
+ a · ∇tv + bv = G on S′

(2.9)

where this time

a =
e

e · νr

− νr . (2.10)

It is an important remark that if e is directed close to the radial direction, then ar given by
(2.10) and

as =
e

e · νs

− νs

must be close one another in size. The situation is illustrated in Fig. 2.2 when e ≡ er

Figure 2.2: Geometry of the oblique derivative problem when e = er = es.

Accordingly, when a · ∇t can be considered as a perturbation in (1.9), the same is true in (2.9)
and vice versa.
Remark 2.1: now that we have established the correspondence between external and internal
problems at the level of notation we shall call again B instead of Ω′ the internal domain and S
instead of S′ its boundary.
Remark 2.2: with the inverse radii transform there is a certain modification of the functional
properties of the known terms. However, since by hypothesis S(σ) ∈ C2+λ we do not have,
in the context of this paper, significant differences between g and G. On the contrary, since

F = s5f we see that F ∈ L2(Ω′), considering that dΩ′ =
dΩ
s6

, implies∫
Ω′
F 2dΩ′ =

∫
Ω
s4f2dΩ < +∞ ,

which imposes a well-defined asymptotic constraint on f .
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3 Standard weak solutions of the Neumann and oblique deriva-

tive problems

We start from the Neumann problem
∆v = F in B

∂v

∂ν
+ bv = G on S

(3.1)

(b ≥ b|S ≥ b0 > 0) .

Since we want to look for a solution less regular than H2 in B we have to find a way to write
(3.1) in a form that is equivalent to it for classical solutions, v ∈ H2, but which involves only
first order derivatives, v ∈ H1. This form is obtained by an application of a Green’s identity,
namely ∀ϕ ∈ �BD

∫
B
∇v · ∇ϕdB =

∫
S

∂v

∂ν
ϕdS −

∫
B

∆vϕdB =

= −
∫

S
bvϕdS +

∫
S
GϕdS −

∫
B
FϕdB (3.2)

Let us recall that ∀ϕ ∈ �BD means that ∀ϕ ∈ D (C∞ functions with compact support) we
take its restriction to B (open). Obviously if we take v ∈ H2, then F ∈ L2(B) and G ∈
H3/2(S) ⊂ H1/2(S) (cfr. Appendix) so that each single term of (3.2) is finite and meaningful
∀ϕ ∈ �BD; it is a basic issue that each term in (3.2) can be extended by continuity to the case
that v, ϕ ∈ H1(B), F ∈ [H1(B)]′, G ∈ H−1/2(S).
Lemma 3.1: let v, ϕ ∈ H1(B), F ∈ [H1(B)]′, G ∈ H−1/2(S) then, interpreting the integrals by
continuity as limits of sequences of regular functions,∣∣∣∣∫

B
∇v · ∇ϕdB

∣∣∣∣ ≤ ‖v‖H1 · ‖ϕ‖H1 (3.3)∣∣∣∣∫
S
bvϕdS

∣∣∣∣ ≤ const · ‖v‖H1(B) · ‖ϕ‖H1(B) (3.4)∣∣∣∣∫
S
GϕdS

∣∣∣∣ ≤ const · ‖G‖H−1/2(S) · ‖ϕ‖H1/2(S) (3.5)∣∣∣∣∫
B
FϕdS

∣∣∣∣ ≤ const · ‖F‖(H1)′ · ‖ϕ‖H1(B) (3.6)

� (3.3) derives from Schwarz inequality and observing that {∫B ∇v2dB}1/2 ≤ |v|H′ ;
(3.4) is again given by Schwarz inequality, recalling that b ≤ b, and trace theorems (see Ap-
pendix) ∣∣∣∣∫

s
bvϕdS

∣∣∣∣ ≤ const ‖v‖L2(S) ‖ϕ‖L2(S) ≤
≤ const ‖v‖H1/2(S) ‖ϕ‖H1/2(S) ≤ const ‖v‖H1(B) ‖ϕ‖H1(B)

(3.5) is a direct application of Lemma A.7 and of Sobolev trace Theorem. (3.6) is a direct
application of Lemma A.8. �
From Lemma 3.1 and Riesz representation theorem, of the dual of a Hilbert space with the same
space, we see that (3.1) can be transformed into a simple equation from H1(B) into H1(B); in
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fact we can claim that

A(v, ϕ) =
∫

B
∇v · ∇ϕdB +

∫
S
bvϕdS ≡< Av,ϕ >H1(B), (3.7)∫

S
GϕdS =< ΓG,ϕ >H′ (3.8)∫

B
FϕdB =< CF,ϕ >H′ (3.9)

with, respectively

‖Av‖H1(B) ≤ A ‖v‖H1(B) (3.10)

‖ΓG‖H1(B) ≤ Γ ‖G‖H−1/2(S) (3.11)

‖CF‖H1(B) ≤ C ‖F‖[H1(B)]′ . (3.12)

Accordingly (3.2), extended to the whole H1(B), becomes

〈Av,ϕ〉H1(B) = 〈ΓG−CF,ϕ〉H1(B) ∀ϕ ∈ H1(B)

or

Av = ΓG− CF , v ∈ H1(B) . (3.13)

Remark 3.1: from the form of (3.7) one immediately realizes that A is a selfadjoint operator
in H1(B), in fact by symmetry

〈Av,ϕ〉H′ = A(v, ϕ) = A(ϕ, v) = 〈Aϕ, v〉H1 = 〈v,Aϕ〉H1 . (3.14)

Since for sure ΓG − CF ∈ H1(B) the study of equation (3.13) is reconducted to the question
whether A is an isomorphism (i.e. continuous, invertible and with continuous inverse) of H1(B)
into itself.
To answer to that one can use a very basic lemma that we formulate here as Lemma 3.2 and
prove in the Appendix as Lemma A.10.
Lemma 3.2: ∀v ∈ H1(B) the following inequality holds∫

B
v2(P )dB ≤ const

{∫
B
∇v2dB +

∫
S
v2(P )dSP

}
. (3.15)

Remark 3.2: from Lemma 3.2 we basically see that A(v, v) is the square of an equivalent norm
in H1(B). In fact from (3.10) we already know that

A(v, v) = 〈Av, v〉H1(B) ≤ A ‖v‖2
H1(B) (3.16)

while from (3.15) we clearly get

‖v‖2
H1(B) =

∫
B
∇v2dB +

∫
B
v2dB ≤ Ã

{∫
B
∇v2dB +

∫
S
v2dS

}
≤

≤ Ã′
{∫

B
∇v2 +

∫
S
bv2dS

}
= Ã′A(v, v) . (3.17)

so we have

1

Ã′ ‖v‖
2
H1(B) ≤ A(v, v) ≤ A ‖v‖2

H1(B) . (3.18)
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This of course proves at once that A is an isomorphism of H1(B) onto itself. In fact by (3.17) A
is an invertible operator (Av = 0 → ‖v‖ = 0 → v = 0) and its range is closed in H2. Moreover
its range is dense in H1, because by selfadjointness if u ∈ H1 is such that

∀v ∈ H1, 0 = 〈Av,U〉 = 〈v,Au〉
we must have as well

Au = 0 ⇒ u = 0.

Then the range of A is the whole H1 and we have just proved the following theorem.
Theorem 3.1: ∀F ∈ [H1(B)]′, ∀G ∈ H−1/2(S) the Neumann problem (3.1), translated into
the weak form (3.2), has one and only one solution in v ∈ H1(B). Furthermore

‖v‖H2 ≤ C
{
‖F‖[H1(B)]′ + ‖G‖H−1/2(S)

}
. (3.19)

Remark 3.3: one might wonder why our Neumann problem has a unique solution while usually
in analysis it is claimed to have a null space constituted by constant functions.
Indeed this would be the case if we had b = 0 in (3.1); however in our case b ≥ b0 > 0 exactly
because we have inherited our BVP from an external formulation.
Since the external homogeneous Neumann problem is known to have only the zero solution, the
same happens to its internal image (3.1).
We can come now to the oblique derivative problem, formulated as

∆v = F in B

∂v

∂ν
+ a · ∇tv + bv = G on S .

(3.20)

Following the same reasoning as for (3.1) we immediately come to the weak formulation

∀ϕ ∈ H1,

∫
B
∇v · ∇ϕdB = −

∫
S
a · ∇tvϕdS −

∫
S
bvϕdS +

+
∫

S
GϕdS −

∫
B
FϕdB . (3.21)

By using the same symbolism as before and putting

α(v, ϕ) = 〈αv, ϕ〉H1
=
∫

(a · ∇tv)ϕdS (3.22)

we come straightforwardly to the formulation

〈Av,ϕ〉H1 + 〈αv, ϕ〉H1 = 〈ΓG− CF,ϕ〉H1 (3.23)

or

Av + αv = ΓG− CF , v ∈ H1 . (3.24)

Since we have proved in (3.18) that

A ≥ 1

Ã′ I

in H1(B), then (3.24) will have one and only one solution on condition that α is a bounded
operator in H1(B) and that for instance

‖α‖ < 1

Ã′ .
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Fortunately, following the famous theorem of Lax and Milgram (cfr. e.g. [Miranda, 1970]), we
can find a milder condition for the existence and uniqueness of the solution of (3.23), which is
summarized in the two requirements that

|A(v, ϕ) + α(v, ϕ)| ≤ const ‖v‖H1 ‖ϕ‖H1 (3.25)
A(v, v) + α(v, v) ≥ const ‖v‖2

H1 . (3.26)

In fact from (3.26) we immediately see that

(A+ α)v = 0 ⇒ v = 0 (3.27)

i.e. the operator (A+ α)−1 exists. Moreover (A+ α) must have a dense range in H1 since

u ∈ H1, 〈(A+ α)v, u〉 = 0 ∀v,→ 〈(A+ α)u, u〉 = 0
⇒ u = 0

Finally, combining (3.26) and (3.25) one gets

‖v‖2
H1 ≤ const 〈(A+ α)v, v〉 ≤ const ‖(A+ α)v‖H1 · ‖v‖H1

entailing

‖v‖H1(B) ≤ const ‖(A+ α)v‖H1(B) , (3.28)

which means that (A + α)−1 is continuous, i.e. the range of A + α is closed and then it is the
whole H1(B).
To prove (3.25) we need only to verify that

|α(v, ϕ)| ≤ const ‖∇tv‖H−1/2(S) ‖aϕ‖H1/2(S) . (3.29)

Now assume that a ∈ Cλ(S), λ > 1/2, then a is a multiplier in H1/2(S), i.e.

‖aϕ‖H1/2(S) ≤ const ‖ϕ‖H1/2(S) ≤ const ‖ϕ‖H1(B) . (3.30)

On the other hand (cfr. the Appendix)

‖∇tv‖H−1/2(S) ≤ const ‖v‖H1/2(S) . (3.31)

So (3.29) and then (3.26) is proved under the only condition a ∈ Cλ(λ > 1/2). As for (3.26) we
first of all have

α(v, v) =
∫

S
(a · ∇tv)vdS =

1
2

∫
S
a · ∇t(v2)dS

= −1
2

∫
S
(∇t · a)v2dS . (3.32)

Therefore (recalling also (3.15), (3.17))

A(v, v) + α(v, v) ≡
∫

B
∇v2dB +

∫
S

[
b− 1

2
(∇t · a)

]
v2dS ≥ const ‖u‖2

H1(B) ,

if

b− 1
2
∇t · a ≡ β0 > 0 . (3.33)

Therefore we have just proved the following theorem.
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Theorem 3.2: ∀F ∈ [H1(B)]′, ∀G ∈ H1/2(S) and for every a such that

a ∈ Cλ(S)(λ > 1/2), b− 1
2
∇t · a ≥ β0 > 0 (3.34)

we have one and only one solution v of (3.20) in H1(B). Moreover

‖v‖H1(B) ≤ const
{
‖F‖[H1(B)]′ + ‖G‖H1/2(S)

}
. (3.35)

In this way we have accomplished the main analysis of the problem initially defined, (1.8), (1.9),
in the light of the standard theory of weak solutions of BVP’s for the Laplace operator.
From the mathematical point of view, to complete this analysis, one has to verify whether by
adding regularity conditions to the data one gets a corresponding regularity improvement of the
solution: for instance is it true that if we assume F ∈ L2(B) and G ∈ H1/2(S) (i.e. data one
order of derivation more regular) we have also for the solution v ∈ H2(B)? This question will
be answered in a paper to follow this one.
Remark 3.4: s a last comment, let us observe that the condition (3.34) has a simple rough
interpretation from the geometric point of view, in fact since

a =
νe

cos I
− ν ,

where νe is the normal to the ellipsoid through the point, ν is the normal to S and I the
inclination of S with respect to the normal vertical, for regions where I ∼ 0, cos I ∼ 1

∇t · a ∼= 2(ce − cs) (3.36)

where ce is the mean curvature of the ellipsoid and cs is the mean curvature of S. Going through
the reciprocal radii transformation, mean curvatures become mean curvature radii ρe, ρs, while
b ≤ 1

R becomes just the radial distance of the point P on the surface from the origin; so (3.34)
with (3.36) transformed becomes just

rP ≥ (ρe − ρs)P

which is certainly a reasonable assumption. A closer look to this relation should be given when
the surface S becomes rougher and the inclination I plays a major role.
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A Appendix

In this appendix we shall try to summarize, mostly without proofs, the theory of Sobolev spaces
and a few facts about functional analysis which have been used throughout the paper.
Definition A.1: D is the space of functions ϕ ∈ C∞(R3)1 endowed with the notion of limit{

ϕn→D ϕ
}

⇔ {Supp ϕn,Supp ϕ ⊂ Kcompact fixed set,

ϕ(K)
n → ϕ(K)uniformly on K

}
(A.1)

We note that indeed in (A.1) (A.1) can change from sequence to sequence but has to be fixed
with respect to n. We recall also that([A indicating the closure of A)

Supp ϕ ≡ [{x;ϕ(x) �= 0}] .

Definition A.2: D(B), B open, is the subspace of D

D(B) ≡ {ϕ ∈ D ; Supp ϕ ⊂ B} (A.2)

Lemma A.1: D(B) is a closed subspace of D.
Definition A.3: D′ is the topological vector space of distributions, T , in R3, i.e. of linear
continuous functionals on D

T, 〈T,ϕ〉 ∈ R , |〈T,ϕ〉| < +∞ ∀ϕ ∈ D (A.3)
〈T, λϕ+ µψ〉 = λ 〈T,ϕ〉 + µ 〈T,ψ〉 (A.4)
{ϕn→D ϕ} ⇒ 〈T,ϕn〉 → 〈T,ϕ〉 . (A.5)

Lemma A.2: D′ is a complete topological vector space, with the weak dual topology

{Tn → T} ⇔ 〈Tn, ϕ〉 → 〈T,ϕ〉 , ∀ϕ ∈ D (A.6)

Remark A.1: let f be a measurable function f ∈ L2
loc (i.e.

∫
(r≤R) f

2dB < +∞ ∀R); then

〈Tf , ϕ〉 ≡
∫

R3

fϕdx (A.7)

is a distribution Tf which we identify with the function f

Tf = f

In particular T = 0 can be made to coincide with any measurable function equal to zero almost
everywhere, since

〈T,ϕ〉 =
∫
fϕdx = 0 ∀ϕ ∈ D

implies
f = 0 a.e.

Definition A.4: D′(B) is the topological dual of D(B).
Definition A.5: let Ω be the largest open set such that

〈T,ϕ〉 = 0 ∀ϕ,Supp ϕ ⊂ Ω ;
1The notions given here are all valid in Rn but we limit ourselves to the case of R3, relevant to geodetic

problems.
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then the support of T is the closed set

Supp T = ΩC (A.8)

Remark A.2: D′(B) is isomorphic to the closed subspace of D′ of all T such that Supp T ⊂ B.
Definition A.6: first we observe that any differential monomial

Ds = Ds1
1 D

s2
2 D

s3
3 , |s| = s1 + s2 + s3 ,

is a continuous linear operator such that

Dsϕ = ψ ∈ D , ∀ϕ ∈ D ,

because Supp ψ ⊆ Supp ϕ; then we define

DsT = U ⇔ 〈U,ϕ〉 ≡ (−1)|s| 〈T,Dsϕ〉 , ∀ϕ ∈ D (A.9)

Remark A.3: any measurable function considered as a distribution has distributional deriva-
tives of any order.
In particular two functions f, g coinciding almost everywhere have the same derivatives, since
u = f − g = 0 a.e. so that

〈Diu, ϕ〉 = −〈u,Diϕ〉 = −
∫
uDiϕdx = 0 .

Note that, with Definition A.6 for any function f with continuous derivatives Dif , the distribu-
tional derivativs are the same functions.
Definition A.7: the Sobolev space Hk (k integer ≥ 0) is defined as the linear subspace of D′

of functions f such that(
Dj = Dj1

1 D
j2
2 D

j3
3

)
,

∫ k∑
|j|=0

(Djf)2dx < +∞ , (A.10)

for instance for f ∈ H1 ∫ f2 +
3∑

j=1

(Djf)2

 dx < +∞ .

Let us observe that (A.10) is the square of a norm derived from a scalar product, then Hk is at
least a pre-Hilbert space.
Remark A.4: by using the Fourier transform f̂ of f and using the Parseval’s identity, we see
that (A.10) is equivalent to ∫  k∑

|j|=0

ξ2j

∣∣∣f̂ ∣∣∣2 dξ < +∞ . (A.11)

where ξ2j = ξ2j1
1 ξ2j2

2 ξ2j3
3 .

Since clearly the polynomial

k∑
|j|=0

ξ2j = 1 + ξ21 + ξ22 + ξ23 + . . . ≥ 1

is strictly positive, we see from (A.11) that f̂ ∈ L2, i.e. f ∈ L2 and more precisely that

f ∈ Hk ⇔ f̂ =

 k∑
|j|=0

ξ2j

−1/2

ĝ ; ĝ ∈ L2 (A.12)
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Lemma A.3: as a consequence of (A.12) we see that Hk is complete, i.e. it is a Hilbert space.
Remark A.5: since we have, ∀ξ

a
(
1 + |ξ|2)k ≤

k∑
|j|=2

ξ2j ≤ b
(
1 + |ξ|2)k , (a, b > 0),

we see that condition (A.11) is equivalent to∫
(1 + |ξ|2)k

∣∣∣f̂ ∣∣∣2 dξ < +∞ (A.13)

which defines an equivalent norm in Hk.
Definition A.8: for any real s ≥ 0 we define Hs as the space of f ∈ L2 such that∫

(1 + |ξ|2)s
∣∣∣f̂ ∣∣∣2 dξ < +∞ (A.14)

In this way we can define as well fractionary Sobolev spaces like H1/2,H3/2 etc.
We note explicitely that (A.14) makes sense also ∀s real, s < 0; so we can introduce as well
Sobolev spaces with negative order.
Definition A.9: let �B be the operator of restriction to B of a function f defined in R3; then

Hs(B) ≡ {�Bf ; f ∈ Hs} . (A.15)

Lemma A.4: Hs(B) is a Hilbert space and, when s = k integer,

‖f‖2
Hk(B) =

∫
B

 k∑
|j|=0

Djf

2

dB (A.16)

Lemma A.5: for any real s, s′, we have the embedding chain

D ⊂ Hs ⊂ Hs′ (s′ ≤ s) ; (A.17)

meaning that
f ∈ D ⇒ f ∈ Hs , f ∈ Hs ⇒ f ∈ Hs′ (s′ ≤ s) ;

the embedding operator J
J : Hs → Hs′ Jf ≡ f

is dense and, when s′ < s, compact.
This means that the image of D in any Hs is dense and that given a sequence {fn} bounded in
Hs (‖fu‖Hs < const), it has at least an accumulation point f in Hs′ .
The same holds true for D(B),Hs(B),Hs′(B).
We underline that the above statements are valid for positive as well as for negative s.
Remark A.6: with the help of local coordinates systems one can extended the concept of
Sobolev spaces to surfaces. To make it simple let’s assume that S is a surface with finite,
continuous curvature so that we can introduce local systems of coordinates

σ ≡ (ϑ, λ), σ ∈ Q ≡ {ϑ1 ≤ ϑ ≤ ϑ2, λ1 ≤ λ ≤ λ2}

with orthogonal coordinate lines along the principal curvature directions.
Then ∀f sufficiently smooth

∇tf = eϑ
1
ρϑ

∂f

∂ϑ
+ eλ

1
ρλ

∂f

∂λ
(A.18)
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(ρϑ, ρλ curvature radii).
Assume now that f ≡ 0 outside the patch Aσ ≡ x(σ), (σ ∈ Q) where the local system σ is
defined above, then, considering that dS = ρϑρλdϑdλ, we can set∫

S
(∇tf)2dS =

∫
Aσ

(∇tf)2dS =
∫

ϑ

[
ρλ

ρϑ

(
∂f

∂ϑ

)2

+
ρϑ

ρλ

(
∂f

∂λ

)2
]
dϑdλ

showing that, if a ≤ ρλ

ρϑ
≤ b, the two conditions

∫
S
|∇tf |2 dS < +∞ ,

∫
Q
|∇σf |2 dQ < +∞ (A.19)

are equivalent.
Since we can split S into a finite number of regular overlapping patches, we see that the case
f ∈ H1(S) can be defined through coordinates transformations, stretching S on �2.
Definition A.10: let S be a surface with a parametric representation, x(t1, t2), continuous up
to k-th derivatives, then we define Hk as the closure of {�Sϕ , ϕ ∈ D} in the norm∫

S

k∑
s1+s2=0

(
∂s1

∂t1

∂s2

∂t2
f

)2

dS = ‖f‖2
Hk(S) ; (A.20)

in particular ∫
S

(
f2 + |∇tf |2

)
dS = ‖f‖2

H1(S) ;

moreover, by stretching S on �2 one can define as well Hs(S) for any real s ≥ 0.
Lemma A.6: the operator of multiplication of f ∈ H1/2(S) by a function α ∈ Cλ

(λ > 1/2) is bounded in H1/2(S)

‖αf‖H1/2(S) ≤ const · ‖f‖H1/2(S) . (A.21)

This is easy to understand by using an equivalent definition of the H1/2(S) norm

‖f‖2
H1/2(S) =

∫
S
f2dS +

∫
S
dSy

∫
S
dSx

|f(x) − f(y)|2
|x− y|4 ,

given by Gagliardo (cfr. [Lions, Magenes, 1968]).
Lemma A.7: let f ∈ Hs(B), s > 1/2; then, if we call �Sf the trace of f on S, we have

�Sf ∈ Hs−1/2(S) ; ‖�Sf‖Hs−1/2(S) ≤ C ‖f‖Hs(B) (A.22)

Remark A.7: let us note explicitely that Hs(B), when s > 1/2, is a space of functions which
on S can have a trace �= 0. Therefore one cannot say that D(B) is dense in Hs(B). We call

(s > 1/2),Hs
0 (B) ≡ [D(B)]Hs(B) ; (A.23)

Hs
0(B) is a proper closed subspace of Hs(B). On the contrary, when s < 1/2, it is not possible

to define a continuous operator of trace �S, therefore we have

(s < 1/2) Hs(B) ≡ [D(B)] . (A.24)

(A.24) holds for negative values of s, too. On the other hand, as claimed in Lemma A.5, when
B ≡ �3,D is dense in all the Hs.
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Remark A.8: let us observe that ∀ϕ,ψ ∈ D the following inequalities hold∣∣∣∣∫ ϕψdx

∣∣∣∣2 ≡
∣∣∣∣∫ ϕ̂∗ψ̂dξ

∣∣∣∣2 ≤
∫

|ϕ̂|2 (1 + |ξ|2)−sdξ · (A.25)

·
∫ ∣∣∣ψ̂∣∣∣2 (1 + |ξ|2)sdξ ≡ ‖ϕ‖2

H−s ‖ψ‖2
Hs ,

where the integrals refer to two whole R3.
Since in R3D is dense in both H−s and Hs we see that if we take

ϕn ∈ D ϕn →
H−s

f

ψn ∈ D ψn→
Hs
g

we can extend the symbol
∫
ϕψdx to∫

fgdx ≡ lim
n,m→∞

∫
ϕnψmdx ; (A.26)

furthermore we have

∀f ∈ H−s, ∀g ∈ Hs;
∣∣∣∣∫ fgdx

∣∣∣∣ ≤ ‖f‖H−s ‖g‖Hs . (A.27)

If we repeat the same reasoning for s > 1/2 and ϕn ∈ D(B), ψn ∈ D(B), since D(B) is dense in
Hs

0(B) but not in H(B) we see that

∀f ∈ H−s(B), ∀g ∈ Hs
0(B) ;

∣∣∣∣∫
B
fgdB

∣∣∣∣ ≤ ‖f‖H−s(B) ‖g‖Hs(B) (A.28)

On the other hand when we take a closed surface S, since by coordinate transformation we map
it onto R2, we have, like in (A.27),

∀f ∈ H−s(S), ∀g ∈ Hs(S) ;
∣∣∣∣∫

S
fgdS

∣∣∣∣ ≤ ‖f‖Hs(S) ≤ ‖g‖H−s(S) . (A.29)

Therefore we claim that, indicating by X ′ the dual of a space X,

H−s ≡ (Hs)′ , H−s(B) ≡ (Hs
0(B))′ , H−s(S) = (Hs(S))′ (A.30)

and by these identifications we mean that if F ∈ (Hs)′ then there is f ∈ H−s such that

F (g) ≡
∫
fgdx, ∀g ∈ Hs

and so forth.

The above Remark is a particular case of a more general result.
Lemma A.8: let X,Y be two Hilbert spaces with X ⊂ Y , the embedding being dense and
continuous; then if we identify Y ′ ≡ Y via the Riesz theorem we can write

X ⊂ Y ≡ Y ′ ⊂ X ′ (A.31)

with Y ′ ≡ Y continuously and densely embedded in X ′, so that ∀x′ ∈ X ′ we can write

x′(x) ≡ (x′, x)Y (A.32)
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understanding the scalar product as a limit of (yn, x)Y with yn ∈ Y and yn→
X′x

′.

Lemma A.9: if Dk is any differential operator of order |k|, then Dk is a continuous linear
operator of Hs into Hs−|k|, i.e.∥∥∥Dkf

∥∥∥
Hs′

≤ const ‖f‖Hs′+|k| ; (A.33)

moreover if A is any continuous linear operator A : Hs → Hs′ (s′ > s), then A is a compact
operator of Hs into itself.
Lemma A.10: we want to sketch the proof of the following fundamental inequality (Rellich):
∀f ∈ H1(B) we have ∫

B
f2dB ≤ const

{∫
S
f2dB +

∫
B
|∇f |2 dB

}
. (A.34)

� It is enough to prove (A.34) ∀�Bf, f ∈ D. Let us consider the Green’s function G(x, y) of
the Laplacian in the domain B and put

w(x) ≡ G(x, 0) .

The function w(x) is harmonic in B\{0}, w = 0 on S while w = 0
(

1
r

)
when r → 0; moreover the

surfaces Sw ≡ {x;w(x) = w} are interior to one another while w → ∞, so that if Bw ≡ interior
{Sw}, one has

B0 = B, Bw1 ⊂ Bw2 iff w1 ⊃ w2 , (A.35)

in addition the vector −∇w is such that

|∇w| �= 0 in B\{0} , |∇w| = 0
(

1
r2

)
for r → 0 (A.36)

so that

|∇w| ≥ G0 > 0 ; (A.37)

furthermore the force lines of −∇w never cross, while they have a focus in 0 and if we introduce
a curvilinear coordinate 
Q as in Fig. A.1, ∀Q �= 0 we have a couple {P, 
} such that P ∈ S, 0 ≤

 ≤ L which identifies univocally Q.
We also observe that −∇w is directed as the exterior normal to Sw and that

|∇w| =
∂u

∂

; (A.38)

furthermore, from Gauss theorem, we know that(
∂w

∂


)
Q

dSQ ≡
(
∂w

∂


)
P

dSP , (A.39)

implying that

∀Q;P ∈ B\{0}, dSQ ≤ CdSP ; (A.40)

likewise ∀Q′ with 
Q′ ≤ 
Q we have

dSQ′ ≤ JdSQ . (A.41)

Then, for f ∈ D, we write
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Figure A.1: Green’s coordinates in B.

f(Q) = f(P ) +
∫ Q

P

(
∂f

∂


)
d
 ⇒ |f(Q)|2 ≤ 2

[
f2(P ) + L

∫ Q

P

(
∂f

∂


)2

d


]

so that, using (A.40) and (A.41),

|f(Q)|2 dSQ ≤ const

[
f2(P )dSP +

∫ Q

P

(
∂f

∂


)2

dSQ′ · d

]
.

Observing that dSQd
 = dBQ and extending the integration from Q up to the origin O along
the force line LP , we get∫

LP

|f(Q)|2 dBQ ≤ const · L
[
f2(P )dSP +

∫
LP

(
∂f

∂


)2

dBQ′

]

which finally integrated over all P ∈ S0 proves (A.34). �
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