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Procrustes Analysis and Geodetic Sciences

Fabio Crosilla

Abstract

Procrustes analysis is a well known technique to provide least squares matching of two or more factor
loading matrices or for the multidimensional rotation and scaling of different matrix configurations.
Applied at first as a useful tool in factor analysis, today it has become a popular method of shape
analysis (Goodall 1991, Dryden and Mardia 1998).
This paper reviews the development of the most significant algorithms used in this particular field.
Starting from the solution of the classical “orthogonal procrustes problem”(Schönemann 1966) a first
extension including a scaling factor and a central dilation will be presented (Schönemann and Carroll
1970).
The solution of the “generalized orthogonal procrustes problem” to sets of more than two matrices will
be then reported (Gower 1975, Ten Berge 1977).
Furthermore, “weighted procrustes analysis” will be considered for the cases in which the residuals of
a matching procedure are differently weighted across columns (Lissitz et al. 1976) or across rows
(Koschat and Swayne 1991) of a matrix configuration .
Finally, some possible applications of procrustes methods for point coordinates transformations in ge-
odesy and photogrammetry will be mentioned. All this makes it possible to emphasize the capabilities of
the method proposed.

1. Unweighted procrustes analysis

The so-called “orthogonal procrustes problem” ( Schönemann, 1966) is the least squares problem that
makes it possible to transform a given matrix A into a given matrix B by an orthogonal transformation
matrix T in such a way to minimize the sum of squares of the residual matrix  E = AT - B , that is

tr (E’ E) = min,

under the orthogonal condition for matrix T, that is T’T = TT’ = I. In order to satisfy the minimum
condition, a Lagrangean function, defined as

F = tr (E’ E) + tr [ L (T’T - I) ],

where L is a matrix of Lagrangean multipliers, must be minimized, by setting the partial derivative of F
with respect to T equal to zero, that is

∂F/ ∂T = ( A’A + A’A) T - 2 A’B + T (L + L’) = 0 (1.1)

Putting A’A = P, A’ B = S and (L+ L’)/2 = Q, one can note that matrices P and Q are symmetric, so
that multiplying (1.1) on the left by T’, it results that

Q = T’S - T’ P T = Q’.

Now, since T’ PT is symmetric, T’S must be symmetric too; In this way

T’S= S’T.      (1.2)
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Multiplying (1.2) on the left by T

S = T S’T

and on the right by T’

T’ S T’ = S’

we finally have

SS’ = TS’ ST’.        (1.3)

Matrices S’S and SS’ are symmetric matrices, both of which can be transformed in a diagonal form by
orthonormal matrices and both of which have the same eigenvalues, according to Schönemann et al.
(1965). Equation (1.3) can be finally written as

W Ds W’ = T V Ds V’T’

so that W= TV or T = WV’

Matrix T is the orthogonal matrix which satisfies the least squares principle defined by tr (E’E) = min.
A first generalization to the Schönemann (1966) orthogonal procrustes problem was given by Schöne-
mann and Carroll (1970) when a least squares method for fitting a given matrix A to another given
matrix B under choice of an unknown rotation, an unknown translation and an unknown central dilation
was presented. The chosen model is the following

B = c AT + J g’ + E (1.4)

where J’ = (1111...1), A, B and T have the same meaning as before, g is a vector of translation com-
ponents, c is a scalar of central dilation and E is a matrix of residuals. To obtain the least squares solu-
tion for model (1.4), the Lagrangean function, written as

F = tr (E’ E) + tr [ L (T’T - I) ]

where

tr (E’ E) = tr B’B + c2 tr T’A’ AT + p g’g - 2 c tr B’ AT - 2tr B’J g’ + 2 c tr T’A’Jg’

and p is the number of rows of matrices A and B, must be differentiated with respect to the unknowns
T, g and c. Once the derivatives are set at zero, it results that

∂F/ ∂T = 2 c2 A’A T - 2 c A’B + 2 c A’ J g’ + TQ = 0 (1.5)

where Q = (L + L’)/2 = Q’ is an unknown symmetric matrix,

∂F/ ∂g = 2p g - 2 B’J + 2c T’A’J = 0 (1.6)

∂F/ ∂c = 2 c tr T’A’AT - 2 tr B’AT + 2 tr T’A’J g’ = 0 (1.7)

From equation (1.6) it follows that

g = (B- c AT)’ J/p (1.8)
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and from (1.5), according to some considerations already done about symmetry of matrices T’A’AT
and Q, it results that

T’A’B - T’A’Jg’ = symmetric matrix

which can also be written, according to (1.8) ,as

T’A’B - T’A’(JJ’/p)(B - cAT) = symm.

so that

T’A’(I - JJ’/p) B = symm. (1.9)

because cT’A’(JJ’/p)AT is symmetric. Equation (1.9) does not consider g and c and a solution for T
can be found following the already mentioned procedure applied for the “orthogonal procrustes” prob-
lem.

Letting S*= A’(I - JJ’/p) B,

matrix products S*’S* and  S*S*’ will be computed, and from their singular value decomposition

S*’S* = V DsV’

S*S*’ = WDsW’

the solution for T = WV’ can be found. Substituting (1.8) in (1.7), equation (1.7) can be solved for the
contraction factor c

c= tr T’A’( I- JJ’/p) B/ tr A’(I - JJ’/p) A (1.10)

Inserting the result for c in equation (1.8) the value of the estimated g can be finally obtained.

One interesting thing to note is that the matrix of best fit B̂  and that of the residuals E= B - B̂  given
respectively by

B̂  = cAT + Jg’ = c AT + (JJ’/p)(B - c AT) = (JJ’/p)B + c(I - JJ’/p) AT

and by

E = B - B̂  = (I- JJ’/p)(B- c AT)

do not involve g. The fit is the same independent of the origin of both data set configurations. For this
reason, from the practical point of view in terms of computation, the first recommended step to take
consists of the calculation of the two column centered matrices

A* = A - J k’ and

B* = B - J h’

where k = A’J/p and h = B’J/p.
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Afterward one has to enter a standard orthogonal procrustes algorithm to obtain the transformation

matrix T and the matrix A*T. The final computations are related to the scalar c, given by

c = tr [ ( T' A*’) B*] / tr A*’A*

and the matrix of best fit

B̂  = c (A*T) + J h’.

To measure the least squares fit, the criterion function itself, that is

e= tr E’E = tr B’(I - JJ’)/p B - (tr T’A’ (I - JJ’)/p B)2 / tr A’(I- JJ’)/p A

is commonly adopted in the literature. This is however not symmetric in the sense that a fit of A to B
generates different values for the elements of e than a fit of B to A. In order to satisfy a symmetry
condition, Lingoes and Schönemann (1974) defined at first a new symmetric measure of fit given by

es = e u -1/2

where u = tr B’ (I - JJ’/p) B/ tr A’ (I - JJ’/p) A

which satisfy es (A,B) = es (B,A),and does not depend on the order of matching and u is a constant.
As reported by Lingoes and Schönemann (1974) es depends upon the norm of the target matrix B.
Such dependency must be avoided when the comparison of the fits for different target matrices is
wanted. To achieve the desired scale invariance, the following measure was finally proposed

S = e / tr B’(I - JJ’/p) B

In this case the measure remains invariant for different orders of fitting and is 0 - 1 bounded.

2. Generalized Procrustes analysis

A generalization of the classical procrustes analysis was given by Gower (1975) and Ten Berge (1977)
where the problem of best fitting more than two matrices was taken into account. Instead of consider-
ing the matching of all possible independent matrix pairs, the procrustes analysis is generalized in such
a way that m matrices are simultaneously subjected to similarity transformations until a proper fit crite-
rion is reached. The criterion adopted consists in the minimization of the sum of square distances be-

tween each point of the m ones Pj(i) (i = 1...m) belonging to the same cluster and their centroid Gj (j=

1...n), summed for all n clusters. The problem of rotating, translating and scaling m matrices (m ≥ 2)
toward a best least squares fit consists in finding orthonormal matrices Ti (i= 1...m), translation vectors
ti, and scale factors ci, for which the function

)]t T  A(c )t T  Ac [(  ' )] t T  Ac ( - )t T  Ac [(trS j jjj

m

ji
i iiij jjji iii +−+++= ∑

<

(2.1)

is minimized (Gower 1975).
The Gower’s method starts with an initial centering of the matrices, so that all column sums are zero

and a successive scaling of each Ai by a general w1/2 so that ∑ w tr A’iAi = m.
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In the following, with the symbol Ai, column centered and scaled matrices will be considered. Rotation
matrices and scaling constants are adjusted in sequence. The solution of the rotation problem consists
of finding orthonormal matrices Ti for which the function

f(T1...Tm) = ∑
< ji

tr ( AiTi - AjTj)’ (AiTi - AjTj)

is minimized or equivalently the function

g(T1...Tm) = ∑
< ji

tr Ti’ Ai’ AjTj

is maximized. Ten Berge (1977) suggests the following iterative procedure to solve the problem:

Step 1: Rotate A1 to  ∑
=

m

2j
jA  , thus yielding A1T1(1)

Step 2: Rotate A2 to A1T1(1) + ∑
=

m

3j
jA  , thus yielding A2T2(1)

Step m: Rotate Am to ∑
−

=

1m

1j

)1(
jjTA  , thus yielding AmTm(1)

Step m+1 : Rotate A1T1(1) to ∑
=

m

2j

)1(
jjTA , thus yielding A1T1(2)

The procedure terminates when the combined effect of some steps does not raise g above a certain
threshold value. The procedure will converge and g will be maximized if, and only if, all the matrix
products

Ti’Ai’Ai+1

are symmetric and positive semi-definite . Proof of the theorem is reported in Ten Berge 1977, page
269. Let us now consider the problem of computation of the scaling constants ci. Let it be ∑ tr Ai’Ai =
m for which scaling constants c1....cm are wanted to maximize

h(c1....cm) = ∑i<j cicj tr Ai’Aj (2.2)

with the constraint

∑ci2 tr Ai’Ai =  � tr Ai’Ai = m (2.3)

that satisfies the condition of maximizing (2.2) and minimizing the least squares function

∑i<j tr (ciAi - cjAj)’ (ciAi - cjAj).

If we consider the particular rescaled matrix Ai* as

Ai* = (tr A’i Ai)-1/2 Ai
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it follows that tr Ai*’ Ai* = 1 , for i= 1...m. We look for m scalars di (i= 1..m), able to maximize

h* (d1...dm) = ∑i<j di dj tr Ai*’ Aj*, (2.4)

with the constraint

∑ di2 tr Ai*’ Ai* =∑ di2 =∑ ci2 tr Ai’ Ai =∑ tr Ai’ Ai = m (2.5)

Now let the mxm matrix Y be written as
















=

mm

m1

2m1m

2111

A'trA

....

A'trA

....A'trAA'trA

............

....A'trAA'trA

Y

and YD = diag (Y), and F = YD-1/2 Y YD-1/2.

Putting di in a vector d, than condition (2.4) can be written as

h*(d) = 1/2 d’ (F - I) d (2.6)

which must be maximized subject to

d’d = m.

Considering the singular value decomposition of matrix F, (F= PLP’), and letting z = P’ d  it follows
that

h*(d) = 1/2 d’ (F - I) d = 1/2 d’ (PLP’ - I) d =

= 1/2 (z’Lz - m) ≤ 1/2 (l1 z’z - m) = 1/2 m (l1 - 1)

where l1 is the greatest eigenvalue of matrix L. Condition (2.6) is maximized when d = m1/2 p1. In this
case

h*(m1/2p1) = 1/2 m p1’ (F-I)p1 = 1/2 m p1’ (PLP’ - I) p1=

= 1/2 m( e1’L e1 - p1’p1) = 1/2 m (l1-1).

From this result and the constraint (2.5) it follows that

ci = ( m / tr Ai’ Ai)1/2 pi      ( Ten Berge (1977)).

Up to now the so-called unweighted least squares solutions have been taken into account. This is ap-
propriate when the residuals have equal variance and hence should be weighted equally. If one wishes
to weight the residuals differently, a weighted least squares criterion is more appropriate.
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3. Weighted procrustes analysis

Two different ways of weighting the residuals are usually applied in the procrustean literature: across
columns or across rows. The corresponding least squares criteria are then:

tr( AT - B)’ Wn2 ( AT - B) (3.1)

tr(AT - B) Wp2 ( AT - B)’ (3.2)

where Wn and Wp are diagonal weight matrices containing information about the dispersion of the
residuals.
To find an orthogonal matrix T minimizing (3.1) is easy, since it is equivalent to minimize (3.1) replacing
B by Wn B and A by Wn A, respectively (Lissitz et al. 1976). The second problem is more difficult to
solve. A very interesting algorithm was introduced by Koschat and Swayne (1991). The algorithm is
based on the possibility of considering the general problem like a specific one for which it is simple to
find a valid solution. If matrix A is characterized by orthogonal column vectors characterized by the
same euclidean lenght l, the problem is to find an orthogonal matrix T that minimizes (3.2), that is

tr (B - AT)Wp2 (B-AT)’ = tr(B Wp2 B’) - 2tr(ATWp2B’) + tr (Wp2T’ A’AT)

 = tr(B Wp2 B’) - 2tr (Wp2B’AT) + l2 tr (Wp2)

or equivalently, that maximizes

tr (Wp2 B’ AT),

which is very similar to the solution of the classical unweighted least-squares problem, previously re-

ported. Writing the singular value decomposition of Wp2B’A as U L V’ the solution can be found as

T = VU’ (3.3)

In case the column vectors of A are not orthogonal with respect to each other, a connection with the
case reported above can be made in the following way. Once the nxp matrices A and B are given, and
the (n+p)xp matrices A* and B* are defined as









= 0A

A
*A 








= 0B

B
*B

one has to fix matrix A° so that

A*’ A* = l2 Ip, for some l . (3.4)

Of course the matrix A* satisfies the condition (3.4) if and only if A° satisfies

A°’A° = l2 Ip - A’A.

In order to satisfy a positive-definite right hand-side of this equation, a sufficiently large l must be fixed.
In this case an infinite number of solutions for A° are possible. Koschat and Swayne (1991) suggested
the use of the Cholesky decomposition
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A°’ = chol (l2 Ip - A’A)

where l2 is set equal 1,1 times the largest eigenvalue of A’A. The pxp matrix B° can be chosen arbi-
trarily. The algorithm reported by Koschat and Swayne (1991), allows definition of a sequence ( Ti,
Bi*), and is of the form: for i = 2..., define the (n+p)xp matrix Bi* as









=

−1i
0i TA

B
*B

and the corresponding weighted procrustes residuals

tr ( Bi* - A*T) Wp2 (Bi* - A*T)’ (3.5)

As A* is characterized by orthogonal columns of equal lenght, matrix Ti (i= 1,2,3…) reported in for-

mula (3.5), can be computed at each iteration by formula (3.3). The solution method of this problem
can be successfully applied in image analysis and in photogrammetry where, if matrices A and B con-
tain the centred coordinates of corresponding control points on two different images or in two different
reference systems of coordinate, it is desired to test whether the object described by A  can be trans-
formed into the object described by B through rotation and dilation along specified directions.
The problem may be formulated as a regression problem

B= AX + E

under the constraint

X = TK

where T’T = TT’ = I and K is diagonal with positive values. The solution can be obtained by minimiz-
ing

tr (B- ATK)(B- ATK)’ = tr (BK-1 - AT)K2 (BK-1- AT)’ (3.6)

If K is known this problem corresponds to the problem of minimizing (3.2). The algorithm just de-
scribed can be successfully applied to find T. For a given T, the diagonal values in K are given as
(Koschat and Swayne, 1991)

 (B’)i (AT)i
Kii= ----------------

(AT)’i (AT)i

where (B’)i and (AT)i denote the i-th column vectors of the matrices B and AT. If K and T are un-
known, an iterative algorithm can be used. This permits determination of a sequence (Ki, Ti) whose
limit is the solution (K,T). Koschat and Swayne (1991) recommend to start by choosing K1 to be the
identity matrix.

4. Procrustes analysis and geodetic applications

Geodetic data analysis often requires the application of rescaling, rotation and translation procedures of
different data matrix configurations.
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It seems therefore very strange that up to now procrustes analysis has not been widely applied in the
geodetic literature. With this technique linearization problems of non linear equations systems and it-
erative procedures of computation could be avoided, in general, with significant computational time
saving and less analytical difficulties.

To the author's knowledge only a single geodetic application of the procrustes technique was done in
the 1980s for the construction of an ideal variance-covariance matrix (criterion matrix) of a control net
point coordinates.

In that case the solution of the “classical procrustes problem” by Schönemann (1966) was applied to
compute an unknown rotation matrix T able to guarantee a least squares matching of the matrices AT
and B, where A is a variance covariance eigenvector matrix of a control net point coordinate vector
and B is an ideal pseudo eigenvector matrix for the same vector. This last matrix was created a priori
by 2D rotations of the “essential” eigenvector component pairs of the net point coordinates in such a
way to orient them to the greatest possible extent along a direction orthogonal to that of the movement
predicted by the deformation model. See for instance Crosilla (1983a, 1985) for the basic methodology
and Crosilla (1983b) for further numerical developments of this technique.

The procedure known in the literature as a generalization of the orthogonal procrustes problem, given
by Schönemann and Carroll (1970), could be applied with success for the transformation problems
solutions of point coordinates between different reference systems.
In geodesy it is a common practice to transform by similarity 3D coordinates related to WGS 84 refer-
ence ellipsoid into 3D coordinates of a local reference system. For this purpose it is necessary to know
in advance the approximate values of the unknown transformation parameters. Sometimes it is not
easy to fix some of these values, like, for instance, in close range photogrammetry where often rotation
angles between the model and the absolute reference systems are difficult to identify in advance.

In these cases procrustes methods are powerful because they do not require the knowledge of a priori
unknown parameters values; from the computational point of view they just require some products of
matrices containing point coordinates in different reference frames and the eigenvalue-eigenvector
decomposition of a  3x3 matrix.

Some first numerical results of coordinate transformations with procrustes seem really satisfactory
when compared with the results obtained with the classical methods and are worth of more deep in-
vestigations. A paper in progress will report these results and some further considerations.

Promising results are also expected by using generalized procrustes analysis, by Gower (1975) and Ten
Berge (1977), for the computation of the International Terrestrial Reference System. As is well known
the ITRS is based on the idea that each individual set of coordinates obtained by space geodesy meas-
urements is related to a particular reference system. According to the procrustes approach, to combine
all these coordinates into a unique  frame, it is necessary to transform each solution by a 7 parameter
similarity to an unknown common system satisfying the (2.1) Gower (1975) least squares function,
previously reported.

In the author's opinion the same model could be expanded to compute the International Terrestrial
Reference Frame (ITRF96) recently introduced by Sillard, Altamini and Boucher (1998) where a 14-
parameter similarity is proposed to transform station positions and velocities into a combined system of
reference.

Finally, a recent book by Dryden and Mardia (1998), presents very interesting applications of pro-
crustes techniques and related statistics for the definition of objects' size-and-shape and the study of
their variations. These examples are very interesting and worth applying to the deformation analysis of
geodetic networks carried out by the comparison of two or more network adjustment results, relating to
measurements made at different times.
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Conclusions

Procrustes analysis seems to be a very promising technique in geodetic applications where transforma-
tion problems between systems of reference often have to be solved.
With respect to the classical transformation methods of solution, procrustes procedures take advantage
of the symmetrical property of two matrices obtained by simple products of the original ones containing
the point coordinate values to be matched. Spectral decomposition of these matrix products makes it
possible to then compute the transformation parameters without any approximate value of the unknown
parameters and with less computational time.
Very stimulating applications might be possible for the International Terrestrial Reference System and
Frame computations and for the analysis of a deformation network by repeated measurements made at
different times.
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