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GLONASS Carrier Phases

Alfred Leick

ABSTRACT

Processing of GLONASS carrier phase observations differs from that of GPS. These differences are
briefly reviewed. Presently GLONASS does not contain selective availability (SA). Simply graphing
between-satellite differences reveals parts of SA that is implemented on GPS satellite signals.
The single difference and double difference carrier phase solutions are analyzed in terms of their
suitability for baseline determination with GLONASS carrier phases. The single difference and double
difference receiver bias terms for phases, labeled SDRB and DDRB respectively, are introduced. The
DDRB is numerically verified from observations.
The double difference fixed solution depends on the initial receiver (rover) coordinates. The single
difference solution does not have such a dependency. For a test data set the coordinates estimated from
both solutions agree within one millimeter even though the initial coordinates were in error by 1.7 m.
The double difference ambiguities were fixed using the LAMBDA technique. Using both GPS and
GLONASS carrier phases, the ambiguities could be fixed correctly at all epochs, including the first
one, with L1 phases only.

INTRODUCTION

There is a strong interest for including GLONASS satellites in any GPS positioning solution. It is well
known that additional satellites and frequencies strengthen the solution. The benefits of additional
GLONASS satellites are especially noticeable when attempting OTF (On-The-Fly) ambiguity
resolution. The fact that GLONASS satellites transmit at different frequencies has attracted much
attention, primarily by individuals interested in precise positioning, for example Raby and Dale
(1993), Leick et al. (1995), Rossbach and Hein (1996), Hall et al. (1997), and Kozlov and Thachenk
(1997).
We will revisit the topic of ambiguity fixing with GLONASS carrier phases and pay attention to
frequency-dependent receiver errors. A well-known strength of double differencing GPS carrier phase
observations is that the receiver channel bias cancels. This bias is the same for each satellite observed
at the same receiver, but differs between receivers. In case of a hybrid GPS/GLONASS receiver the
biases for GPS and GLONASS differ. They do not cancel when double differencing the phase
observations from satellites of both systems. In fact, the GLONASS channel biases might even exhibit
a small variation as a function of temperature and cable length (Dodsen et al. 1999). These variations
are not discussed in this paper.
There are several other aspects of the GLONASS system that have been discussed widely in the
literature. For example Bykhanov (1999) discusses the GLONASS time system. The differences
between the PZ-90 and WGS-84 reference coordinate system have been studied for many years.
Russian scientists reported some of their work in Bazlov et al. (1999). Many questions regarding the
implications of the different timing and coordinate reference systems for GLONASS and GPS will be
answered by the international IGEX campaign (Pascal, 1999). Finally the GLONASS broadcast
ephemeris parameterization differs from that of GPS (Stewart and Tsakiri, 1998).

The data sets for this contribution were observed with R100 receivers manufactured by 3S Navigation
of Irvine, California, in connection with a general study to asses GLONASS observations (Leick et al.
1998). The pseudoranges and carrier phases were recorded for GPS (L1 only) and GLONASS (L1 &
L2). The receivers were located on the roof of the 3S Navigation offices at Irvine.



262

Data set A consists of several 1-2 week long observation series made with the same receiver at a
recording interval of 5 minutes. The Data set was used primarily to compute UREs for GLONASS.
The results are reported elsewhere.
Data set B was recorded on June 12, 1998 using a 10 s recording interval. Two receivers operated
independently, i.e. they were not connected to an atomic clock.
We follow the RINEX conventions for naming the satellites. For example, G15 and R15 denote the
GPS satellite PRN 15 and GLONASS satellite with almanac number 15 respectively.

SA FROM BETWEEN SATELLITE DIFFERENCES

Between satellite differences (BSD) do not depend on receiver clock errors. Their variation over time
reveals, among other things, the satellite clock errors. Because there is no selective availability (SA)
implemented on GLONASS satellites, the GLO-GPS differences will be affected by the SA dither on
GPS. Figure 1 shows several L1 BSD carrier phases with respect to the GLONASS satellite R17. The
dither of the GPS clocks is clearly visible from the dashed lines. The GLO-GLO pairs follow a more
or less flat line around zero (solid lines).
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Figure 1: Between Satellite Differences (2 hours from Data set A on DOY 068)

ESTIMATING BASELINES FROM SINGLE DIFFERENCES

An advantage of the single difference formulation is that the signals from GPS and GLONASS
satellites are not differenced explicitly. In the context of single difference solutions, the terminology
fixed solution refers to the fact that GPS/GPS and GLO/GLO double difference ambiguities have been
constrained to integers. For such fixed solutions the adjusted single difference ambiguities are still
non-integers.
The mathematical model for carrier phase as applied to short baselines is written as
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The superscripts q SGPS= 1� and s SGLO= 1�  identify the satellites. The symbols d km GPS, ,1  and d km GLO, ,1

denote single difference receiver biases (SDRB) for the respective systems. The model assumes only
one bias term per satellite system, i.e. it does not include frequency dependent terms for GLONASS
that may result from temperature variation and other sources.
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We combine the single difference ambiguity and the SDRB into a new parameter ξ  as follows
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The unknown receiver (rover) coordinates, the parameters ξ , and the receiver clock differences dt km

can now be estimated every epoch using Kalman filtering. The outcome of the ith epoch is the
estimated parameter vector denoted by X i ( )+  and its covariance matrix Pi ( )+ . The parameter vector

includes the epoch estimates ξ km GPS
q
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s
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Next, we transform the single difference estimates to double differences. Let p  or r  denote the GPS
or GLONASS base satellite respectively, then the transformation is given by
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The matrix D  has ( )S SGPS GLO+ −2 rows and ( )S SGPS GLO+  columns. The matrix Ci  is a submatrix of
Pi ( )+ . Equation (6) follows from variance-covariance propagation. The symbol Σ i  denotes the
covariance matrix of the double difference ambiguities at epoch  i .
The transformation (5) generates only GPS/GPS or GLO/GLO pairs of double differences. These do
not depend on the SDRB; the respective ambiguities are conceptually integers. It is now possible to
attempt to determine the integer double differences ambiguities using a technique such as LAMBDA

(Teunissen (1993). The input is the real-valued double difference ambiguities, ϕ ϕkm GPS
pq

km GLO
rs

, ,,� �  of

(5), and the covariance matrix, Σ , of (6). The outcome is a set of integers Ψ Ψkm GPS
pq

km GLO
rs

, ,,� �. As a last

step the epoch Kalman filter solution can be constrained to these integer values. The result is a single
difference epoch solution with fixed double difference ambiguities.
The various steps discussed above are repeated for each epoch. Let’s denote the updated ξ −parameters

by 
�
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q
, ,1  and 
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s
, ,1 . These are the values obtained after the double difference ambiguities have

been constrained to integers. The fractional part for the GPS/GLO differences
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is the estimated double difference receiver bias (DDRB). This bias is expected to be constant with
time and estimates the difference d dkm GPS km GLO, , , ,1 1− .
For the sake of completeness let it be stated that the transformation (5) can also be directly
implemented in (1) and (2).

Numerical Results: We used L1 pseudoranges and carrier phases of Data Sets B to investigate (7) as
a function of time. All ambiguities could be correctly fixed for all epochs, including even the first one.
Here we do not address the conditions under which it is possible to fix ambiguities at single epochs or
for short intervals. Teunissen et al. (1998) provide an interesting contribution regarding the reliability
of ambiguity resolution in such cases.
Figure 2 shows the DDRB differences (7) for the GPS-GPS and GPS-GLO the float solutions, i.e. the
double difference ambiguity constraints are not yet imposed. The differences are taken with respect to
satellite G5. It is readily seen that, after convergence of the Kalman filter, the GPS-GPS differences
are located around zero. A variation of the order of a couple of hundredths of a cycle is seen, although
the theoretical value is zero since all GPS satellites transmit on the same frequency.
The mixed GPS-GLO differences are offset by about 0.35 cycles and differ among each other by
several hundredths of a cycle as well. Since this variation is of the same size as the one observed for
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the GPS-GPS differences, it seems that this data set does not allow one to make the definitive
statement about the dependency of the SDRB on the various GLONASS frequencies.
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Figure 2: DDRB differences with Float Double Difference Ambiguities (Data set B)

Figure 3 shows the estimated DDRB differences (7) for the fixed solution, i.e. the double difference
GPS-GPS and GLO-GLO integer ambiguities have been fixed. The initial variation prior to
convergence of the Kalman filter is not present in this figure because the double difference
ambiguities could be fixed at all epochs. Because all double difference ambiguities could be fixed, the
figure shows identical graphs for each GLONASS satellite. The DDRB differences seem to vary by a
couple of hundredths of a cycle over time. The cause for this variation must still be investigated.
Figure 3 seems to suggest that is it permissible to constrain the DDRB differences (7) to a constant.
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Figure 3: DDRB differences between GPS and GLONASS with fixed GPS/GPS and GLO/GLO
Double Difference Integer Ambiguities.

Figure 4 shows the estimated length of the baseline for the float solutions, and the respective plus and
minus standard deviations. The straight line at 1.751 m is the length estimated from the fixed solution.
It is readily seen that the float and fixed solutions converge and that the fixed solution provides the
correct position even at the first epoch. The standard deviations for the double difference ambiguities
(not shown in the figure) are in the range of millimeter, whereas those for the single difference
ambiguities (same fixed solution) and the receiver clock difference are about 1 cycle and 0.001 µs
respectively. Successfully fixing the double difference ambiguities does not imply that the single
difference ambiguities can be fixed as well (due to the correlation between ξ  and dt km ).

The receiver clocks drifted about 440 µs. If we exclude the GLONASS observations, several epochs
are needed to fix the ambiguities correctly.
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Figure 4: Epoch Position Solutions for Data set B

DRAWBACKS OF DOUBLE DIFFERENCING

Conventional double differencing for GLONASS observations gives
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The double differences depend on the receiver clock error and the frequencies. Figure 5 displays this
dependency; the O-C values were computed using known coordinates for the stations and then
translated to zero at the first epoch. The dependency on the frequency can readily be seen from the
figure; the reference satellite is G5 (1575.42 MHz). The GPS-GPS differences graphically coincide
with the horizontal axis and are not visible in this figure.
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Figure 5: Double difference O-C values for known baseline (Data set B)

Scaling the carrier phases to distance, or to a mean GLONASS frequency, or to f r
1  or f s

1  for the
( , )r s pair eliminates the receiver clock term but introduces a linear combination of single difference
ambiguities whose coefficients are non-integer. The transformed double difference
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contains an integer term ~
N km

rs  and a small term η rs . The symbol N km
r

, ,1 0  represents an integer

approximation of the single difference ambiguity N km
r

,1 which can be derived from pseudoranges. The

size of the small η-term depends on the quality of the initial estimate of N km
r

, ,1 0 , and constitutes a
model error when neglected in the fixed solution. This limitation does not apply to the float solution.
Figure 6 shows the double difference residuals G5 - GLO for the batch least-squares implementation
of (9) using Data set B. The double difference ambiguities GPS/GPS and GLO/GLO are fixed. The top
set of lines is based on approximate coordinates which were in error by about 1.7 m, thus dN km

r
,1  is

correspondingly large. Using approximate coordinates that are even less accurate, one would
eventually recognize a frequency dependency within this band of lines. The accurate coordinates were
used for the bottom set of lines, thus dN km

r
,1  is correspondingly small. The model error (10) causes the

shift between both sets of lines. The model error falsifies the position estimate even when the
ambiguities are formerly fixed. The bottom set of lines can be directly compared with Figure 3 for the
single difference solution. Again, the DDRB differences could be modeled by a constant.
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Figure 6: DDRB from Double difference Solution

SUMMARY

The model error that occurs in GLONASS double difference fixed solutions does conceptually not
occur with GPS observations.
When processing GLONASS carrier phase observations, caution should be exercised. Ambiguity
search might identify the wrong integers and, as such, introduce a bias in the fixed solution. For
double differencing to work correctly one must have good a priori knowledge of single difference
ambiguities which, in turn, are derived from pseudoranges. Since the accuracy of pseudoranges are
potentially effected by multipath, one might be inclined to favor the single difference formulation and
fix the propagated double difference ambiguities.
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