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ABSTRACT 
 
The ellipsoidal corrections respectively for the spherical gravity disturbance (computed using the in-
verse Hotine formula) and the spherical gravity anomaly (computed using the inverse Stokes formula) 
are derived. The corrections consist of two parts: the simple analytical function part and the integral 
part. The input data are respectively the spherical gravity disturbances and the spherical gravity 
anomalies and the disturbing potentials, which are already available in some local areas and can be 
computed globally from the geopotential models such as EGM96. Further discussions on the integral 
part such as the singularity, the input data and the expansion into a series of spherical harmonics are 
included. 
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1. Introduction 
 
The satellite altimetry technique provides direct measurements of sea surface heights with respect to 
the reference ellipsoid, the geometrical reference surface of the Earth. Since 1973, a series of altimetry 
satellites such as SKYLAB, GEOS-3, SEASAT, GEOSAT, ERS-1 and TOPEX have been launched 
and have collected data over the oceans. Owing to instrument improvement, geophysical and envi-
ronmental correction improvement and radial orbit error reduction, the precision of satellite altimetry 
measurements has improved from the 3-metre to the 2-centimetre level. The resolution of satellite al-
timeter data along the tracks has also come down from 70 km to 20 km (see Zhang 1993). Tremendous 
amounts of satellite altimeter data with very high precision have been collected since the advent of the 
satellite altimetry. After subtracting the dynamic sea surface topography, satellite altimetry can pro-
vide an estimation of the geoidal height N in ocean areas with a level of precision of about 10 cm 
[Rummel and Haagmans (1990)]. These geoidal height data can be used to recover the gravity distur-
bances and gravity anomalies over the oceans. 
 
Papers reporting current results on recovering the gravity information from satellite altimeter data, and 
in some cases, a review of prior work, include those of Zhang and Blais (1995), Hwang and Parsons 
(1995), Olgiati et al. (1995), Sandwell and Smith (1996) and Kim (1996). The models employed for 
recovering the gravity information from the satellite altimeter data are mainly the spherical harmonic 
expansion of the disturbing potential, the Hotine/Stokes formulas and the inverse Hotine/Stokes for-
mulas. The gravity disturbances/anomalies obtained via these models might as be called the spherical 
gravity disturbances/anomalies since these models are valid under the spherical approximation. In 
these models, the input and output data are supposed to be given on a sphere, the mean sphere. Unfor-
tunately, the geoidal height N (disturbing potential T) from the altimetry and the gravity distur-
bance/anomaly δg/∆g to be computed from N refer to the geoid which is very close to the reference 
ellipsoid Se. They satisfy the following relations: 
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where rP is the radius of point P and 
Ph∂

∂
 is the derivative along the ellipsoidal normal direction of P. 

The maximum difference between Se and the mean sphere is about 100 m. So we can treat the data 
given on the geoid as the data on the reference ellipsoid. The relative error caused by doing so is about 
the order of 10 . However, the relative error of substituting the reference ellipsoid by the mean 
sphercial surface is about the order of . The effects of this error on the gravity anomaly and 
gravity disturbance, which are also called the effects of the Earth’s flattening, may reach about 0.3 
mGal. When the aim of the satellite altimetry is to recover the gravity information with accuracy less 
than 1 mGal, the effects of the Earth’s flattening should be considered. 
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In order to reduce the effects of the Earth’s flattening on the gravity anomaly, Wang (1999) proposed 
to add an ellipsoidal correction term to the spherical gravity anomaly recovered from the altimetry 
data via the inverse Stokes formula. The ellipsoidal correction is expressed by the integral formulas 
and in series of spherical harmonic expansions. In the integral formulas, an auxiliary function χ is 
needed for computing the ellipsoidal correction ∆g1 from the disturbing potential T, that is: 
 

1integral  globalintegral  global gT ∆ →χ →  
 
In this paper, we will derive new ellipsoidal correction formulas respectively to the spherical gravity 
disturbances and the spherical gravity anomalies. They consist of two parts: a simple analytical part 
and an integral part. The input data are respectively the spherical gravity disturbances and the spheri-
cal gravity anomalies and the disturbing potentials, which are already computed from altimetry data in 
some ocean areas with a high accuracy or are computed approximately from the Earth Models. 
 
 
2. Formulas for the ellipsoidal corrections to the spherical gravity disturbance and the spheri-

cal gravity anomaly 
 
In this section, we will  
 
(a) establish an integral equation, which shows the relation between the geoidal heights and the grav-

ity disturbances on the reference ellipsoid;  
(b) solve the integral equation to get the formula for the ellipsoidal correction to the inverse Hotine’s 

formula (the spherical gravity disturbance);  
(c) derive the formula for the ellipsoidal correction to the inverse Stokes formula (the spherical grav-

ity anomaly) from the result of (b); 
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Establishment of the integral equation 
 
It is easy to prove that for an arbitrarily point P0 given inside Se, the function 
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According to Green’s second identity (Heiskanen and Moritz, 1962), we obtain that for an arbitrary 
function V that is harmonic and regular outside Se and continuously differentiable on and outside Se, 
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Let V in (2.3) be the disturbing potential T and Va defined by (A1-1) in the Appendixes respectively. 
Then from (1.1), (1.2), (1.3), (A1-2) and (A1-9), we obtain 
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For a given P on Se, we obtain from (2.4) and (2.5) that 
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According to (2.1) and the properties of the single-layer potential, we obtain by letting P0→P in (2.6) 
and neglecting the quantities of the order of O(e4) that 
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The kernel functions M(Q,P) and F(Q,P)  are singular when Q→P. Their singularities for Q→P will be 
discussed in the Section 3.1.  
 
The equation (2.7) is the integral equation from which the inverse Hotine formula and its ellipsoidal 
correction will be obtained. 
 
 
2.2. Inverse Hotine’ formula and its ellipsoidal correction 
 
Denoting the projection of the surface element dS  onto the unit sphere  by d , we have eQ σ Qσ
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where Qβ  is the angle between the radius vector of Q and the surface normal of the surface Se at point 

Q. With R the mean radius of the ellipsoid ( 3 2baR = ) and e the first eccentricity of the reference 
ellipsoid, and θ  and θ  respectively the geocentric co-latitudes of  the points P and Q on SP Q e, we 
have 

 )]e(O)
3
2(sine

2
11[Rr 4

P
22

P +−θ+=  (2.11a) 

 )]e(O)
3
2(sine

2
11[Rr 4

Q
22

Q +−θ+=  (2.11b) 

 )]e(O)
3
4sin(sine

4
11[

2
sinR2l 4

P
2

Q
22QP

QP +−θ+θ+
ψ

=  (2.11c) 

 )]e(O)
3
2(sine1[Rsecr 4

Q
222

Q
2
Q +−θ+=β  (2.11d) 

 
Furthermore, from Molodensky et al. (1962), we have 
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It then follows from (2.8) and (2.9) that 
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Noting (A2-4) in the Appendix and (2.15), it follows that 
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The formula (2.18) is the inverse Hotine formula, from which the spherical gravity disturbance is 
computed, and (2.19) is the ellipsoidal correction for the inverse Hotine formula. 
 
 
2.2.  Inverse Stokes’ formula and its ellipsoidal correction 
 
According to (1.4) and noting (2.12c), (2.18) and (2.19), we have that 
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The formula (2.22) is the inverse Stokes formula, from which the spherical gravity anomaly is com-
puted, and (2.23) is the ellipsoidal correction for the inverse Stokes formula.  
 
 
3. Practical considerations for the integrals in the formulas 
 
In the above section, we obtained the closed formulas (2.19) and (2.23) of the ellipsoidal corrections 
δg1 and ∆g1 respectively to the inverse Hotine formula (2.18) (the spherical gravity disturbance δg0) 
and the inverse Stokes formula (2.22) (the spherical gravity anomaly ∆g0) from the basic integral 
equation (2.7). The formula (2.19) (formula (2.23)) is expressed as a sum of a simple analytical func-
tion and an integral about δ  (∆g0g 0 and T). Obviously, the first part of δg1 (∆g1) is easy to compute 
from δg0 (∆g0 and T). In the following, we will discuss the integral parts (2.19b) and (2.23b). 
 
 
3.1. Singularities  
 
The integrals in the formulas (2.7), (2.18), (2.19b), (2.22) and (2.23b) are singular because their kernel 
functions M(Q, P), F(Q, P) and M )( QPψ , ),,(f PQQP θθψ  are singular when Q→P or 0QP →ψ . 
 
The singularity of the integral in the inverse Stokes (or Hotine) formula (2.22) (or (2.18)) has been 
discussed in many references such as Heiskanen and Moritz (1967) and Zhang (1993). Here we dis-
cuss the singularities of the integrals in (2.7), (2.19b) and (2.23b). 
 
According to (2.13), we know that the integral in the left side of (2.7) and the integrals in the inverse 
Stokes formula (2.18) and the inverse Stokes formula (2.22) have the same form. So the integral in the 
left side of (2.7) can be treated with the same method used in processing the inverse Stokes (Hotine) 
formula. 
 
Similarly according to (2.14), the integral in the left side of (2.7) and the integrals in (2.19b) and 
(2.23b) have the same form. So in the following, we only discuss the method to treat the singularity of 
the integral in (2.19b). 
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Obviously, we only need to consider the integral in the innermost spherical cap area σ0 with the center 
at the computation point P and the radius 0ψ , which is so small that the spherical cap area can be 
treated as a plane. That is we discuss the following integral 
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We see that the effect of the innermost spherical cap area on the integral (2.19b) depends, to a first 
approximation, on  and δ . The value of  can be obtained from the map of . 
It is the inclination of North-South profile through P. 

)P(g0δ )P(g0
x )P(g0

xδ 0gδ

 
 
3.2.  Input data 
 
In (2.19b) and (2.23b), the input data are respectively , and  and T. These data are available 
only in some ocean areas. Here we give a little modification on the input data. 

0gδ 0g∆

 
According to (2.16) and (2.21), we have 
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In addition, the disturbing potential T(P) on the reference ellipsoid can be expressed as  
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where  is the gravity disturbance which can be computed approximately from the global geopoten-
tial models, ∆  and T

gδ
g 0 are respectively the gravity anomaly and the spherical disturbing potential 

which are already available globally with the resolutions of less than 1 degree and the accuracy of a 
few metres and locally with higher resolutions and higher accuracy. 
 
 
3.3.  Spherical harmonic expansions of the integrals 
 
In the following, we will expand  and  into series of spherical harmonics so that they 
can be computed from the global geopotential models.  
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According to Chapter 2-14 of Heiskanen and Moritz (1967), under the spherical approximation, we 
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where Tn(θ, λ) is Laplace’s surface harmonics of the disturbing potential T: 
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According to (A3-4) and (A3-5), 
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Thus we express  and  by a series of spherical harmonics. The input data 

are the spherical harmonic coefficients of the disturbing potential. 
)P(g1

2δ )P(g1
2∆

{ nmnm d,c }
 
 
5. Conclusions 
 
This paper gives the ellipsoidal corrections δ  and  for the inverse Hotine formula, the 
spherical gravity disturbance , and the inverse Stokes formula, the spherical gravity anomaly 

, respectively. 

)P(g1 )P(g1∆
)P(g0δ

)P(g0∆
 
• By adding the ellipsoidal corrections to their spherical solutions, the error of the gravity distur-

bance and the gravity anomaly decrease from O(e2) to O(e4), which is sufficient for most practical 
purposes. 

 
•  is expressed as a sum of a simple analytical function of δ (P) and an integral in terms 

of . In the practical computation of the integral, the input data δ  can be substituted by the 
gravity disturbance , which can be approximately computed from the global geopotential mod-
els. The integral part of  can also be computed directly from the global geopotential mod-
els via the formula (3.25). 
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•  is expressed as a sum of a simple analytical function of ∆ (P) and T(P) and an integral 

in terms of  and T. In the practical evaluation of the integral, the input data  and T(P) can 
be substituted respectively by the gravity anomaly  and the spherical disturbing potential T

)P(g1∆ 0g
0g∆ 0g∆

g∆ 0, 
which are already available globally with resolutions better than 1 degree and accuracy within a 
few metres, and locally with higher resolutions and higher accuracy. The integral part of  
can also be computed directly from the global geopotential models via the formula (3.25). 

)P(g1∆

 
• Comparing to the ellipsoidal correction to gravity anomaly given in Wang (1999),  is 

simpler not only in the formulation but also in the auxiliary data ∆  (or ), in comparison to 
the auxiliary data χ used in Wang (1999).  
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Appendix 
 
1. Denote respectively the ellipsoidal coordinates and the spherical coordinates of a point P by (uP, 

βp, λP) and (rP, θP, λP). According to Chapter 1-20 of Heiskanen and Moritz (1967), we know that 
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is harmonic and regular outside Se and continuously differentiable on and outside Se, and for Q on 
Se, 
 Va(Q)=1 (A1-2) 
 
From Chapter 2-7, 2-8 and 2-9 of Heiskanen and Moritz (1967), we have 
 

 
P

1P
0 u

Etani)
E
ui(Q −−=  (A1-3) 

 )P(
u
V

sinEu
Eu)P(

h
V

P

a

P
222

P

22
P

P

a

∂
∂

β+
+

−=
∂
∂

 (A1-4) 

and 

 )]'e(O'e
3
11['e)])

b
E((O)

b
E(

3
11[

b
E

b
Etan 42421 +−=+−=−  (A1-5) 

 
So for Q on Se, 
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Since 
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Equation (A-6) can be rewritten as 
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2. From the spherical triangle of Figure 1, we have 
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3. According to Chapter 2-14 of Heiskanen and Moritz (1967), under the spherical approximation, 

we have 
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where Tn(θ, λ) is Laplace’s surface harmonics of the disturbing potential T: 
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From (A11) of Wang (1999) (Note: there is a printing error in that formula) and (A3-3), we know 
that 
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Similarly letting  
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