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Abstract

Two gravimetric models of the geoid over Western Australia have been constructed using mod-
ified forms of Stokes’s formula. The input data are synthetic gravity anomalies which have
been generated by an artificial extension of the EGM96 global geopotential model to spherical
harmonic degree and order 2700. This provides self-consistent sets of gravity anomalies and
geoid heights, which are used as control on the effectiveness of a deterministically modified
Stokes’s kernel in relation to the common remove-restore technique with the spherical Stokes’s
kernel. The improved fit of the geoid model that uses a modification to allow for the neglect
of the truncation error term and adapt its filtering properties indicates that the widely used
remove-compute-restore approach is less appropriate for gravimetric geoid computation in the
high-frequency band over Western Australia.

1 Introduction

In 1849, G. G. Stokes published a solution to the geodetic boundary value problem, which re-
quires a global integration of gravity anomalies over the whole Earth to compute the separation
(N) between the geoid and reference ellipsoid (Stokes, 1849). However, the incomplete global
coverage and availability of accurate gravity measurements has precluded an exact determina-
tion of the geoid using Stokes’s formula. Instead, an approximate solution is used in practice,
where only gravity data in and close to the computation area are used. This approach is also at-
tractive due to the increase in computational efficiency that is offered by working with a smaller
integration area.
In 1958, M. S. Molodensky (cited in Molodensky et al., 1962) proposed a modification to Stokes’s
formula to reduce the truncation error that results when gravity data are used over a limited
area. However, Molodensky’s modification did not receive a great deal of attention in practical
geoid computations at that time because of the contemporaneous availability of low-frequency
global gravity field information, derived from the analysis of the artificial Earth satellite orbits.
These global geopotential models, expressed in terms of fully normalised spherical harmonics,
are now routinely used in conjunction with terrestrial gravity data via a truncated form of
Stokes’s integral (eg. Vincent and Marsh, 1973; Sideris and She, 1995).
Assuming that the global geopotential model is a perfect fit to the low-degree terrestrial gravity
field, this combined approach reduces the magnitude of the truncation error. This is because
its Fourier series expansion begins at a higher degree, where the truncation coefficients are
smaller in magnitude and the geopotential coefficients are expected to converge (cf. Grafarend
and Engels, 1994). Another advantage of this combined solution is that it reduces the impact
of the spherical approximation inherent to the derivation of Stokes’s integral (eg. Heiskanen and
Moritz, 1967); the reason being that most of the geoid’s power is contained in the low-frequency
band.
A formal description of the combination of a global geopotential model with terrestrial gravity
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data has been proposed by Vańıc̆ek and Sjöberg (1991), which they refer to as the generalised
Stokes scheme for geoid computation. Importantly, this satisfies a solution to the geodetic bound-
ary value problem when formulated for a higher than second-degree reference model (Martinec
and Vańıc̆ek, 1997). In this generalised scheme, the low-frequency geoid undulations, computed
from a global geopotential model (NM ), are extended into the high frequencies by a global inte-
gration of complementary high-frequency terrestrial gravity anomalies (∆gM ). This is written
as

N = NM + κ

∫ 2π

0

∫ π

0
SM (cosψ) ∆gM sinψ dψ dα (1)

where κ = R/4πγ, R is the spherical Earth radius, γ is normal gravity evaluated on the surface
of the reference ellipsoid as required by Bruns’s formula (eg. Heiskanen and Moritz, 1967), ψ
and α are the coordinates of spherical distance and azimuth angle about the computation point,
respectively, and SM (cosψ) is the spheroidal form of Stokes’s kernel, which is implicit to the
generalised scheme, and has the series expansion

SM (cosψ) =
∞∑

n=M+1

2n+ 1
n− 1

Pn(cosψ) (2)

where Pn(cosψ) is the n-th degree Legendre polynomial.
In Eq. (1), the low-frequency component of the geoid undulation (NM ) can be computed from
the spherical harmonic coefficients that represent the global geopotential model according to

NM =
GM

rγ

M∑
n=2

(
a

r

)n n∑
m=0

(δCnm cosmλ+ Snm sinmλ)Pnm(cos θ) (3)

The corresponding high-frequency gravity anomalies (∆gM ) are evaluated by subtracting the
same spherical harmonic degrees of the same global geopotential model from the terrestrial
gravity anomalies (∆g) according to

∆gM = ∆g − GM

r2

M∑
n=2

(
a

r

)n
(n− 1)

n∑
m=0

(δCnm cosmλ+ Snm sinmλ)Pnm(cos θ) (4)

In Eqs. (3) and (4), GM is the product of the Newtonian gravitational constant and mass of
the solid Earth, oceans and atmosphere, a is the equatorial radius of the geocentric reference
ellipsoid, (r, θ, λ) are the geocentric polar coordinates of each computation point, δCnm and
Snm are the fully normalised geopotential coefficients of degree n and order m, which have been
reduced by the even zonal harmonics of the reference ellipsoid, and Pnm(cos θ) are the fully
normalised associated Legendre functions. It is assumed that the zero and first degree harmonic
terms are inadmissible (eg. Heiskanen and Moritz, 1967).
The degree of spheroid (M) used for the generalised Stokes scheme can be chosen as the max-
imum degree of global geopotential model available, which is usually Mmax = 360. However,
there are more important considerations than simply taking the maximum degree of expansion
available (eg. Featherstone, 1992). Firstly, the Mmax = 360 models are constructed from both
satellite-derived and terrestrial gravity data. Therefore, in many regional geoid computations,
the same terrestrial gravity data are used twice in Eq. (1). Clearly, this introduces the corre-
lation of errors between these data, which are rarely accounted for nor even acknowledged by
most authors.
Another consideration is the leakage of low-frequency errors from the terrestrial gravity data into
the combined solution for the geoid, much of which can be filtered out by the spheroidal kernel in
Eq. (2) (Vańıc̆ek and Featherstone, 1998). This is considered to be a desirable scenario, because
the low-frequency geopotential coefficients are currently the best source of this information,
whereas terrestrial gravity anomalies are subject to low-frequency errors. Therefore, choosing
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the degree of spheroid at, say, M = 20 (Vańıc̆ek and Kleusberg, 1987), which is probably the
limit of the reliable resolution of the satellite-derived geopotential coefficients (notwithstanding
resonant terms), avoids the correlations and reduces the leakage of terrestrial gravity anomaly
errors.

2 Reduction of the Approximation Error

When high-frequency terrestrial gravity anomalies are used over a limited area, the generalised
Stokes scheme becomes subject to a truncation error. Accordingly, there is an adjustment of
Eq. (1) that involves limiting the integration domain to a spherical cap, bound by the spherical
distance ψ0 (0 < ψ0 < π), which yields the approximation

N̂ � NM + κ

∫ 2π

0

∫ ψ0

0
SM (cosψ) ∆gM sinψ dψ dα (5)

with a corresponding truncation error of

δN = κ

∫ 2π

0

∫ π

ψ0

SM (cosψ) ∆gM sinψ dψ dα (6)

such that N = N̂+δN . This truncation error can be expressed as a series expansion (eg. Vańıc̆ek
and Featherstone, 1998) by

δN = 2πκ
∞∑

n=M+1

QMn (ψo) ∆gn (7)

where the truncation coefficients

QMn (ψo) =
∫ π

ψo

SM (cosψ)Pn(cosψ) sinψ dψ (8)

can be evaluated using the algorithms of Paul (1973), and the n-th degree surface spherical
harmonic of the gravity anomaly can be evaluated from the global geopotential model

∆gn =
GM

r2

(
a

r

)n
(n− 1)

n∑
m=0

(δCnm cosmλ+ Snm sinmλ)Pnm(cos θ) (9)

Therefore, the truncation error terms can be computed in the region M ≤ n ≤Mmax. If this is
done, the truncation error then reduces to

δN = 2πκ
∞∑

n=Mmax+1

QMn (ψo) ∆gn (10)

However, if ∆gM �= 0 (2 ≤ n ≤ M), the start of the series expansions in Eqs. (7) and (10)
no longer hold, then there is a leakage of any low-frequency errors in the gravity data into the
low-frequency geoid solution (when the integration is performed over a limited area; Vańıc̆ek
and Featherstone, 1998). This is a direct consequence of the approximation of the generalised
Stokes integral (Eq. 5), or any other gravity field convolution integral. Since ∆gn only depend
on the physical properties of the Earth, it remains necessary to seek a modification of Stokes’s
integral that reduces the magnitude of the truncation error.
However, the common remove-compute-restore technique for the combined solution for the geoid
(eg. Torge, 1991) makes no attempt to modify the integration kernel and thus reduce the trun-
cation error or adapt its filtering properties. Instead, this scheme uses the spherical kernel as
originally introduced by Stokes, which is

S(cosψ) =
∞∑
n=2

2n+ 1
n− 1

Pn(cosψ) (11)
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Moreover, the remove-compute-restore approach generally uses the maximum degree (usually
Mmax = 360) of a global geopotential model to compute the residual gravity anomalies (Eq. 4).
Accordingly, there is a disparity between the degree of the geopotential model and Stokes’s
kernel. The combined solution for the geoid in the remove-compute-restore scheme is thus
written as

N̂1 � NMmax + κ

∫ 2π

0

∫ ψ0

0
S(cosψ) ∆gMmax sinψ dψ dα (12)

where the terms NMmax and ∆gMmax are computed from the maximum available degree and
order of a global geopotential model. In this combined solution for the geoid, little attempt
has been made to reduce the truncation error or adapt the filtering properties of the spherical
Stokes’s kernel (Eq. 11). Admittedly, the truncation error has been reduced a great deal in
the region (2 ≤ n ≤ Mmax), if and only if the global geopotential model is a good fit to the
terrestrial gravity anomalies over the area of interest. Conversely, this is at the expense of
allowing any errors in the terrestrial gravity anomalies to propagate, virtually unattenuated,
into the combined solution (Vańıc̆ek and Featherstone, 1998).
Accordingly, it remains preferable to apply a modification to the truncated form of the gen-
eralised Stokes integral (Eq. 5) or the truncated form of the spherical Stokes integral in the
remove-compute-restore scheme (Eq. 12) to further reduce the errors associated with these ap-
proximations. Since Molodensky’s pioneering work, several other authors have proposed mod-
ifications to Stokes’s (1849) integral. These have been based on different criteria and can be
broadly classified as deterministic modifications (eg. Molodensky et al. 1962; Wong and Gore
1969; Meissl 1971; Heck and Grüninger 1987; Vańıc̆ek and Kleusberg 1987; Vańıc̆ek and Sjöberg
1991; Featherstone et al. 1998) and stochastic modifications (eg. Wenzel 1982; Sjöberg 1991;
Vańıc̆ek and Sjöberg 1991). The stochastic modifications, whilst offering an optimal combina-
tion (in a least-squares sense) of the data types together with a minimisation of the truncation
error, require reliable error estimates of the input data. However, the error characteristics of
the terrestrial gravity data are generally unknown, which renders the stochastic modifications
of limited practical use. Therefore, the deterministic kernel modifications will have to be relied
upon in the interim.
The deterministic kernel modifications can be further divided into two categories: modifications
that reduce the truncation error according to some prescribed norm, and modifications that
improve the rate of convergence of the series expansion of the truncation error. The modification
scheme proposed by Featherstone et al. (1998) uses a combination of these, where the rate
of convergence of the series expansion of an already-reduced truncation error is accelerated
through a combination of the approaches proposed by Vańıc̆ek and Kleusberg (1987) and Meissl
(1971). Essentially, this modification sets the Vańıc̆ek and Kleusberg (1987) kernel to zero at the
truncation radius (ψ0). Alternatively, the truncation radius can be chosen such that it coincides
with a zero point of the Vańıc̆ek and Kleusberg (1987) kernel. This kernel modification can be
written as

SML (cosψ) = SM (cosψ) − SM (cosψ0) −
L∑
k=2

2k + 1
2

tk(ψ0) [Pk(cosψ) − Pk(cosψ0)] (13)

where the modification coefficients tk(ψ0) are computed from the solution of the following linear
system of L− 1 equations

L∑
k=2

2k + 1
2

tk(ψ0) enk(ψ0) = QMn (ψ0) (14)

with
enk(ψ0) =

∫ π

ψ0

Pn(cosψ)Pk(cosψ) sinψ dψ (15)
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which can be evaluated using the recursive algorithms of Paul (1973). The degree of this kernel
modification (L) can be chosen to be greater than, equal to or less than the degree of the
geopotential model (M) in the generalised Stokes formula (Eq. 5). However, if L > M , additional
terms arise that account for this disparate combination and should be computed or their omission
acknowledged.
The combined solution for the geoid considered in this study attempts to reach a compromise of
the above two schemes, based on considerations of the data availability, their expected reliability
and a reduction of the truncation error through the above deterministic modification of the
generalised Stokes kernel. This compromise approach was used to compute the recent Australian
gravimetric geoid model, AUSGeoid98 (Johnston and Featherstone, 1998). Mathematically, this
is formalised as

N̂2 � NMmax + κ

∫ 2π

0

∫ ψ0

0
SML (cosψ) ∆gMmax sinψ dψ dα (16)

where all terms have been defined earlier.
This utilises the maximum available expansion of the global geopotential model in conjunction
with a low-degree deterministic kernel modification. This approach aims at reducing the trun-
cation error so that it can be ignored, whilst relying more on the low-degree satellite solution
by filtering a proportion of the low-frequency errors from the terrestrial gravity data. Empirical
studies by Featherstone (1992) indicate that the modified kernels become numerically unstable
for large L and small ψ0, which enforces a low degree of kernel modification when a small inte-
gration radius is used. For simplicity, the degree of kernel modification is chosen equal to the
degree of spheroid used in the generalised scheme (ie. L = M = 20). The integration radius was
chosen to be ψ0 = 1◦, since this value was empirically selected for AUSGeoid98 (Johnston and
Featherstone, 1998).
It is argued that this offers a geoid solution that is superior to the current remove-compute-
restore approach because of its further reduction of the truncation error and adaption of the
filtering properties of the kernel. However, it is also important to acknowledge the deficiencies
of this attempted compromise, which are the reliance on the high-frequencies in the global
geopotential model (which can contain 80% noise; eg. Lemoine et al., 1998) and the correlations
between the terrestrial gravity anomalies in the region 20 ≤M ≤ 360.

3 Tests with a synthetic gravity field in Western Australia

In order to compare the validity of the compromise in Eq. (16) and the remove-compute-restore
technique (Eq. 12), a synthetic gravity field has been used. The expectation is that by using
an error-free, self-consistent set of geoid heights and gravity anomalies, the effectiveness of each
combined solution for the geoid can be determined. The approach is as follows: the synthetic
gravity anomalies are reduced by the complete expansion of the global geopotential model, these
used to compute the geoid according to Eqs. (12) and (16), then these results compared with
the synthetic geoid heights. The approach that yields the closest fit to the synthetic geoid is
assumed to deliver the better data combination.
In addition, the use of a synthetic gravity field avoids the assumptions and approximations
introduced by the treatment of the topography and its density variations. This test is considered
preferable to the ‘conventional’ comparison of gravimetric geoid solutions with the discrete
geometrical control afforded by ellipsoidal heights and geodetic levelling. This is because the
synthetic field has been generated so that it is uncontaminated by errors in these control data.

3.1 Construction of the synthetic field

The EGM96 global geopotential model (Lemoine et al., 1998), complete to Mmax = 360, has
been artificially extended into the higher frequencies to construct the synthetic gravity field over
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Western Australia. This is similar to the approach of Tziavos (1996), who used a Mmax = 360
geopotential model to generate self-consistent geoid heights and gravity anomalies to test fast
Fourier transform (FFT) based techniques. However, the latter only allowed an evaluation in
this frequency band and thus prevented a determination of the performance in the higher fre-
quencies and an assessment of the effect of neglecting the truncation error. In order to construct
the synthetic gravity field in the higher frequencies, EGM96 has been artificially extended to
spherical harmonic degree and order 2700 by artifically creating geopotential coefficients in the
region 361 ≤ n ≤ 2700 (cf. Holmes et al., 1998). This upper limit was chosen to be commensu-
rate with a spatial resolution of 4’ by 4’ and is also the point beyond which the fully normalised
associated Legendre polynomials start to become numerically unstable.
The fully normalised EGM96 coefficients in the region 361 ≤ n ≤ 2700 were generated by
recycling the EGM96 coefficients from the orders in degree 360. To ensure that the degree
variance of the synthetic gravity field continued to follow a Kaula-type rule in this extended
region, a the artifical coefficients (C∗

nm and S∗
nm) were scaled by (b/r)n−360, where b is the semi-

minor axis length of the reference ellipsoid. From Eq. (3), the synthetic geoid heights are given
by

Nsyn =
GM

rγ

360∑
n=2

(
a

r

)n n∑
m=0

(δCEGM96
nm cosmλ+ S

EGM96
nm sinmλ)Pnm(cos θ)+

GM

rγ

2700∑
n=361

(
a

r

)n n∑
m=0

(C∗
nm cosmλ+ S

∗
nm sinmλ)Pnm(cos θ) . (17)

From Eq. (4), the synthetic gravity anomalies are given by

∆gsyn =
GM

r2

360∑
n=2

(
a

r

)n
(n− 1)

n∑
m=0

(δCEGM96
nm cosmλ+ S

EGM96
nm sinmλ)Pnm(cos θ)+

GM

r2

2700∑
n=361

(
a

r

)n
(n− 1)

n∑
m=0

(C∗
nm cosmλ+ S

∗
nm sinmλ)Pnm(cos θ) . (18)

This synthetic field was relatively easy to implement in the existing computer programs for
Eqs. (3) and (4). However, its computation becomes quite time consuming for the high degree
components. As such, it is likely that the very high-frequency components of a synthetic gravity
field will have to be constructed using alternative means, which are currently under investigation.

3.2 Geoid computation via the 1D-FFT technique

In the mid 1980s, the fast Fourier transform (FFT) technique began to find wide-spread use
in gravimetric geoid computation because of its efficient evaluation of convolution integrals
when compared to quadrature-based numerical integration. For many years, the planar, two-
dimensional FFT was used (eg. Schwarz et al., 1990). Strang van Hees (1990) then introduced
the spherical, two-dimensional FFT. However, both of these FFT approaches are subject to ap-
proximation errors, the most notable of which is the simplification of Stokes’s kernel. Therefore,
Forsberg and Sideris (1993) proposed the spherical, multi-band FFT, which reduces the impact
of the simplified kernel. Haagmans et al. (1993) then refined this approach to give the spherical,
one-dimensional FFT, which requires no simplification of Stokes’s kernel. For this reason, the
1D-FFT has been used in this investigation so that the exact kernels in Eqs. (11) and (13) can
be used without the need for a simplification of the kernel.
Another consideration is that remove-compute-restore determinations of the geoid over a region
using the FFT often convolve the whole rectangular grid of gravity anomalies with the spherical
Stokes kernel (eg. Sideris and She, 1995). Therefore, this implementation is tested in this study,
where in Eq. (12) the spherical integration radius (ψ0) is replaced by the whole gravity data
rectangle. Conversely, quadrature-based geoid determinations using numerical integration of
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gravity anomalies over a spherical integration radius about each computation point. Therefore,
each approach results in a different truncation error due to the neglect of the residual gravity
anomalies in the remote zones outside each integration domain.
In order to make the 1D-FFT approach closely mimic quadrature-based numerical integration
over a spherical cap, two adaptions of the 1D-FFT approach have been made (Featherstone
and Sideris, 1998). The first is the limitation of the integration to a spherical cap by setting
the kernel to zero outside the truncation radius (ψ0) before transformation to the frequency
domain. The modified kernel (Eq. 13) was implemented by evaluating it before transformation
to the frequency domain. Comparisons with quadrature-based numerical integration software
(Featherstone, 1992) were used to verify these adaptions. This approach was used for the
computation of AUSGeoid98 (Johnston and Featherstone, 1998), since it allows an efficient
evaluation of Eq. (16).

3.3 Comparison of Geoid Results with the Synthetic Model

Equations (17) and (18) were used to construct two, self-consistent 4’ by 4’ grids of geoid heights
and gravity anomalies, respectively, over the region −11◦ ≤ φ ≤ −37◦ and 112◦ ≤ λ ≤ 131◦,
which covers almost all of the state of Western Australia. These are shown in Figures 1a and
1b and their statistical properties summarised in Table 1. Table 1 also shows the statistical
properties of the high-frequency synthetic gravity field, where the Mmax = 360 expansion of
EGM96 has been subtracted (cf. Eq. 4).

max. min. mean st. dev. rms
total synth. geoid heights 2 ≤ n ≤ 2700 54.979 -40.905 -4.603 22.660 23.123
resid. synth. geoid heights 361 ≤ n ≤ 2700 1.060 -1.061 0.000 0.208 0.208
synth. gravity anomalies 2 ≤ n ≤ 2700 130.459 -188.572 -7.544 34.497 35.312
synth. gravity anomalies 361 ≤ n ≤ 2700 112.531 -122.314 -0.008 21.085 21.085

Table 1. Statistical properties of the synthetic geoid heights (metres) and gravity anomalies
(mGal).

The synthetic geoid heights (Eq. 17) were used as control on the tests and the synthetic high-
frequency gravity anomalies (Eq. 18; 361 ≤ n ≤ 2700) input to the 1D-FFT geoid computation
software’s implementations of Eqs. (12) and (16). An integration radius of ψ0 = 1◦ was used
in Eq. (16), since this was the value used in the computation of AUSGeoid98 (Johnston and
Featherstone, 1998). No cap radius was specified in Eq. (12) so that the entire gravity data area
was used for every geoid computation point. This approach was taken since it replicates the
most common FFT-based implementation of the remove-compute-restore technique (eg. Sideris
adn She, 1995). The results of the two 1D-FFT geoid computations were compared with the
control grid of synthetic geoid heights over the region −12◦ ≤ φ ≤ −36◦ and 114◦ ≤ λ ≤ 129◦.
This smaller area was chosen so as to eliminate the edge effect associated with the ψ0 = 1◦

integration radius. It should be pointed out that this edge effect affects the whole computation
area when the cap-radius is unlimited. Nevertheless, the comparisons are conducted over the
same area. Table 2 shows a statistical summary of the differences between the control grid of
synthetic geoid heights and the results from the 1D-FFT implementations of Eqs. (12) and (16).
Figures 1c and 1d show images of these differences, respectively.

max. min. mean st. dev. rms
remove-compute-restore Eq. 12 (ψ0=1◦, S(cosψ)) 0.058 -0.041 0.008 0.011 0.013
compromise approach Eq. 16 (ψ0=π, S20

20(cosψ)) 0.035 -0.035 0.000 0.008 0.008

Table 2. The statistics of the differences between the synthetic control geoid heights
and the geoid heights computed from Eqs. (12) and (16) (units in metres).
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Figure 1. (a) The synthetic geoid heights (m) for 2 ≤ n ≤ 2700, (b) The synthetic gravity
anomalies (mGal) for 2 ≤ n ≤ 2700, (c) The difference (m) between synthetic geoid heights
and geoid heights computed from the remove-compute-restore technique (Eq. 12), (d) The

difference (m) between synthetic geoid heights and geoid heights computed from the
compromise approach (Eq. 16); [Mercator’s projection].
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4 Discussion, Conclusion and Recommendation

Prior to any discussion, it is essential to point out that the comparisons in Table 2 and between
Figures 1c and 1d only consider the effect on the geoid of the neglect of the truncation error
and the adaption of the filtering properties by the modified kernel in the high-frequency band
(361 ≤ n ≤ 2700). This is because the EGM96 global geopotential model has been used both
to construct the synthetic gravity field and produce the residual gravity anomalies in Eq. (4).
Accordingly, the filtering and propagation of low-frequency gravity data errors cannot be tested.
Future work will introduce low-frequency synthetic data errors in order to study the filtering
effects of the kernels in these bands (cf. Vańıc̆ek and Featherstone, 1998). Also, using only the
high-frequency components has dispensed with the correlations between the data which occur
in practice, when using a high-degree, combined global geopotential model.
Nevertheless, the following can be concluded from this band-width-limited study: The improve-
ment offered by the compromised approach in Eq. (16) over the remove-compute-restore ap-
proach (Eq. 12) is clearly shown in Table 2. The compromised approach delivers a closer fit to
the control grid of geoid heights than does the remove-compute-restore approach. Therefore,
the use of the L = 20 deterministically modified integration kernel (Eq. 13) over a spherical cap
ψ0 = 1◦ offers an improvement over the remove-compute-restore technique using the whole com-
putation area. This indicates that the use of a theoretically more appropriate data combination
yields better results than simply using more data in the combined solution for the geoid. This
is principally because the truncation error has been reduced in size by the kernel modification,
thus permitting its neglect, and the filtering properties of the modified kernel lead to a more
accurate recovery of the high-frequency geoid undulations. However, due to the considerations
described earlier, further work is necessary to quantify their relative effect in other frequency
bands so as to replicate the situation in practical geoid computations.
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