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1. Introduction 
 
Two different methods have traditionally been used separately or together for determination of the 
geoid, namely 1) the astrogeodetic levelling method and 2) the gravimetric method. The former is based 
on the use of astrogeodetic deflections of the vertical as observables, which can be interpreted as hori-
zontal gradients of the geoid undulation field, while the latter is based on the use mean gravity anoma-
lies of surface blocks which should cover the whole surface of the Earth.  
The advent of the artificial satellites has presented us with new methods to model the geoid. One of 
them is based on the use of ellipsoidal heights determined from GPS-observations. Namely, when con-
fronting the ellipsoidal heigth H* with the orthometric height H known from the precise levelling, the 
geoid undulation N is obtained simply by taking the difference N = H*-H. This method leads to an 
extremely accurate determination of the geoid, provided naturally that sufficient number of accurate 
levelling points are available. 
Details of the geoid can extensively be explored also by means of deep seismic sounding (DSS). This 
is possible because the data obtained from DSS can be used to construct a 3d-velocity structure model 
for the crust in the area to be studied. The velocity model can further be converted to a 3d-density 
model using the empirical relationship that holds between seismic velocities and crustal mass densi-
ties. Undulations of the geoid can then be estimated from the 3d-density model as shown by Wang, 
1998 (also in Kakkuri and Wang, 1998). 
 
 
2. Deep seismic sounding method 
 
Deep seismic sounding and ocean drilling have revealed that the Earth’s crust is not homogeneous but 
has a layered structure in the continental as well as in the oceanic areas. The vertical structure of thick 
continental crust is, however, more complicated than that of oceanic crust, and, in addition, in the con-
tinents the structure of ancient shield areas differ from that of younger basins. A three-layered crustal 
structure is observed  in most parts of the shield areas, characterized by P-wave velocities of 6.0 - 6.5, 
6.5 - 6.9 and 7.0 - 7.3 km/s, respectively. More complicated structures exist in quite a few places, 
mostly in the vicinity of the transition zones from continental crust to oceanic crust. The generalized 
structure of the basins is four-layered, a thick sediment cover being in the top and three igneous layers 
below. 
Oceanic crust is only 5 - 10 km thick. Its top part consists of a layer of sediments that increases in 
thickness away from the oceanic ridges. The igneous oceanic basement consists of a thin (~0.5 km) 
upper layer of superposed basaltic lava flows underlain by a complex of basaltic intrusions, the 
sheeted dike complex. Below this the oceanic crust consists of gabbroic rocks (Lowrie, 1997). 
The velocity at which compressional seismic P-waves travel through homogeneous materials can be 
expressed in the form 
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where ρ  is the density, k  is the bulk modulus and  is the shear modulus of the material. It can be 
seen that the velocity of P-waves depends on the elastic constants and the density of the material. 
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Thus, when the elastic parameters are known, the density can be calculated from the observed veloc-
ity. Unfortunately, as the elastic parameters are poorly known for materials inside the Earth, Eq. 1 is 
not applicable as such. For practical applications, it can be replaced by a linear relation known as 
Birch’s law 
 
 v a( m bp = +) ρ  (2) 
 
where  depends on the mean atomic weight a m  only, and  is a constant. For plutonic and meta-
morphic rocks, which are the main types of rocks in the shield areas, the mean atomic weight plays an 
insignificant role and can be safely neglected from the density-velocity relation (Gebrande, 1982). The 
following linear relations represent the shield areas (Chroston and Brooks 1989, Lebedev et al. 1977): 

b

 
 For upper crust ( v  6.0, 6.5 km/s) p = vp = − ±2 538 0 568 0 256. . .ρ km/s (2a) 
 For mid-crust ( v  6.5, 6.9 km/s) p = vp = − ±3 184 2 580 0 122. . .ρ  km/s (2b) 
 For lower crust ( v  6.8, 7.3 km/s) p = vp = − ±2 717 1 250 0 120. . .ρ km/s (2c) 
 
Using the above relations we can estimate the velocity-density relations as follows: 
 

Table 1. Density-velocity relations  
for  plutonic and metamorphic rocks. 
 

vp  
(km/s) 

ρ   
(g/cm³) 

6.0 2.58 ± 0.11 
6.4 2.80 ± 0.11 
6.8 3.06 ± 0.05 
7.3 3.15 ± 0.05 

 
The velocities of seismic waves are generally found to be greater in igneous and crystalline rocks than 
in sedimentary ones (Parasnis, 1972). In the sedimentary rocks they tend to increase with depth of burial 
and geological age, and the application of Birch’s law to sedimentary rocks is therefore questionable. 
Density data from drilling holes should be used instead of DSS-data in that case. 
 
 
3. Mathematical modelling 
 
Gravitational potential of a body can be written in the spherical coordinate system as follows (e.g. He-
iskanen & Moritz 1967) 
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where ψ  is the angle between the vector OQ  of the point Q r( ' , ' , ' )θ λ  and the vector OP of the 
point P r( , , )θ λ  as shown in Fig. 1, ρ θ λ( ' , ' , )r ′  is the density of a mass element at point 
Q r( ' , ' )' ,θ λ , and G is the Newtonian gravitational constant. In addition, 
 
 cos cos cos ' sin sin ' cos( ' )ψ θ θ θ θ λ λ= + −  (4) 
The potential field of the crust can be constructed by slicing the crust into small spherical elements 
that take the form of a spherical prism and are filled with homogeneous masses, Fig. 2. The potential 
field of the whole crust is then the summation of potentials of the spherical prisms. 
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Fig. 1: The shaded area represents the
whole crust from the surface down to The
Moho. 

  
 
 
 
In order to evaluate Eq. 3 on the geoid, it is convenie
The expansion is to be performed separately for a cas
sphere, i.e. for r R r' > = , and separately for a mass
for r R r'< = . 
The former, r R r' > = , is the case for most parts of
Eq. 3 is given as follows: 
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Fig. 2: A finite element of a mass body in a
spherical prism form. 
nt to expand it into series of spherical harmonics. 
e in which a mass element is above the reference 
 element located below the reference sphere, i.e. 

 the continental topographic masses. In this case 
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The latter, r R r' < = , is the case where masses are located below the geoid as in most parts of the 
Earth’s crust. For derivation of the useful formulas, Eq. 3 is at first re-written as follows: 
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and then developed into series as follows (Wang 1998): 
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In order to investigate the contribution of the crust on the geoid, the geoidal undulation N caused by 
density anomalies in the crust is to be calculated. This is obtained from the well-known Bruns formula 
N T= γ , where T is the disturbing potential on the geoid and γ  is the normal gravity. The disturbing 
potential is the difference of the actual potential of the crust from the normal potential field. In order to 
calculate the normal potential field, the crust is to be divided into three homogeneous layers of equal 
thickness, Fig. 3. The depth of such a layer is the volume weighted mean depth of the corresponding 
layer of the actual crust, and its density is equal with the mean density of the actual layer. 
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Fig.3: Mass models used for estimating the geoidal undulations from the crust. Straight 
lines show the boundaries of the normal (reference) mass model and curved lines those of 
the seismic (empirical) mass model. Positive and negative signs show the areas of mass sur-
plus and mass deficiency, respectively. 
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4. Discussion 
 
The deep seismic sounding method described was tested in Finland by Wang (1998) for estimating the 
contribution of the crust on the Fennoscandian gravimetric geoid. The work was the first contribution 
towards the solution of the problems related to this method.  Influence of the layered structure of the 
crust on the geoid was found to be mainly due to the variation of the geometric shape of crustal layers. 
Variation of density inside the layers played a secondary role but was not insignificant. Accuracy ob-
tained was found to be sufficient for the geophysical interpretation of the undulations of the Fennoscan-
dian gravimetric geoid.  
In the same way, the layered structure of the whole continental crust can be determined with the DSS 
for geophysical interpretation of the anomalies of the continental gravity field. To carry this out and to 
solve the problems related to the DSS method is a challenge to the geodesists and geophysicists in the 
next millenium. 
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