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Strain in the Earth —
a Geodetic Perspective

W. Ian Reilly

Abstract

Recognition of the existence of horizontal displacement on faults in the Earth’s crust became accepted
only about a century ago, and with it came the theory of elastic rebound as the cause of earthquakes.
This suggested the use of repeated geodetic measurements between widely distributed points on the
Earth’s surface to determine the accumulation or dissipation of elastic strain energy in the brittle crust.
Such measurements can be modelled in terms of continuum mechanics, based on a three-dimensional
vector field of particle velocity.  The gradient of this vector field yields a set of invariants, or ”estimable
quantities”, that characterise the rate of strain in the deforming medium. The use of the tensor calculus
in formulating such continuum models concentrates attention on the underlying physical processes
rather than on arbitrary coordinate systems.  It also facilitates the use of higher-order spatial deriva-
tives to describe the characteristics of heterogeneous strain — the bending of lines and the warping of
surfaces — as well as providing for mathematically compact development of various interpolation
schemes, including multi-dimensional polynomial expansions and least-squares collocation.
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Introduction

Omne tulit punctum qui miscuit utile dulci,
Lectorem delectando pariterque monendo.

(Full marks to him who combines profit with pleasure,
delighting the reader while instructing him — Horace, Ars Poetica)

There must be very few aspects of mathematical geodesy that have not been the subject of one of
Professor Erik Grafarend’s multifarious and erudite essays.  His development with Burkhard Schaffrin
of the concept of ”estimable quantities” (Grafarend & Schaffrin 1974, 1976) continues to illuminate our
understanding of what information can and cannot be extracted from a geodetic network.  His work on
the converse problem, the optimal design of geodetic networks, continues to be applied to deforming
networks (e.g. Grafarend, 1986; Xu & Grafarend, 1995), and extended to the statistical analysis of the
second-rank tensors that quantify strain and stress in the Earth (Xu & Grafarend, 1996a,b).

Much of the geodetic evidence of Earth deformation has come from pre-existing networks, and historic
measurements, bereft of the advantage of advanced design.  The present essay is concerned with an
elementary continuum-mechanical interpretation of such measurements, extracting the strain invariants
— the ”estimable quantities” for the deforming medium.  It acknowledges both the elucidative contri-
bution of mathematical theory, and the dedication and professionalism of generations of surveyors who
went into forest and desert and mountain and made better measurements than we could reasonably
have demanded of them.

Origins

”In no country, perhaps, where the English language is spoken, have earthquakes, or, to speak more correctly, the
subterranean causes to which such movements are due, been so active in producing changes of geological interest as
in New Zealand.”
(Lyell, 1872, vol. II: p. 82)
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When Sir Charles Lyell wrote these words (with a fine chauvinistic flourish) in the Tenth Edition of his
celebrated text The Principles of Geology, vertical displacement of the Earth’s crust on faults was
well known, and had been for many years: in 1802 Playfair had written

”The greatest part of the facts relative to the fracture and dislocation of the strata, belongs to the history of
veins…The frequency of these [slips], and their great extent, are well known wherever mines have been wrought.”
(Playfair, 1802, p 204)

In 1888 in North Canterbury, New Zealand, horizontal offsets of between 1.5 and 2.6 m were observed
on the fault break that accompanied the earthquake of magnitude 7 that knocked the top off the Christ-
church Cathedral spire.  The Government geologist’s report (McKay, 1890) was duly published and
forgotten.  This was but one example among many, from one small corner of the globe.  Then, in 1906,
the magnitude 8.3 earthquake that razed the city of San Francisco not only convinced the scientific
world of the reality of horizontal displacement on faults — the San Andreas in this case — but also
gave rise to Reid’s theory of elastic rebound.

Geodetic evidence

It was soon realised that if earthquakes, and fault breaks, resulted from the sudden release of accumu-
lated elastic strain in the crust, then the accumulation of strain between earthquakes might be manifest
in the distortion of geodetic networks.  Spurred by the Kwanto earthquake of 1923 in Japan, Terada &
Miyabe (1929) derived and mapped the parameters of shear, rotation and dilatation from displacement
vectors for each triangle of repeated surveys, and this type of study has since been continued.  In New
Zealand, H. W. Wellman, who had been a co-discoverer of the South Island’s Alpine Fault, with its ca.
450 km dextral offset since the Cretaceous, determined the rate and orientation of shear strain from
repeated triangulation in Marlborough (Wellman, 1955).  This area, in the northern part of the South
Island, together with the Alpine Fault itself, is now recognised as part of the obliquely convergent mar-
gin between the Pacific and the Australian lithospheric plates that passes through New Zealand.

The Marlborough region was further studied by H. M. Bibby, who developed a method of simultaneous
reduction of repeated geodetic surveys, coincident in part or in whole, together with determination of
deformation parameters (Bibby 1973, 1976, 1981).  He found pervasive shear strain occurring over
time spans of several decades in the absence of overt fault movement.  This pioneering work has re-
mained the basis for all subsequent analyses of geodetic data to determine earth deformation in New
Zealand, and has had influence elsewhere.

What the geodetic evidence, then as now, leaves unresolved is the partitioning of observed shear strain
between elastic (recoverable) and non-elastic (permanent) deformation.  Does a low level of brittle
failure indicate that strain energy is being dissipated in non-elastic creep, or simply that the observation
period falls between major earthquakes, and that elastic strain is accumulating steadily?  Information
from more than purely geodetic measurements is needed even to discuss, much less resolve, such
questions.

Continuum mechanics

A geodetic network is a discrete measuring system.  The Earth’s crust is riven by faults — discrete
fractures.  What, then, is the justification for describing deformation in terms of continuum mechanics?
In essence, it is a question of scale.  Even if deformation occurs by slip on a sequence of faults that
separate rigid blocks, it can be treated as continuous if the fault separation is a sufficiently small frac-
tion of the station spacing of the geodetic network.  In the absence of obvious fault movement within
the observing period, the continuum model is the most general and unbiased, and can always be su-
perimposed on a discrete faulting model.

The problem of describing the deformation of the Earth’s crust has much in common with fluid dy-
namics, and can use the methods of vector and tensor analysis made familiar in geodesy by Hotine
(1969).  There are two principal differences, however.  The first is one of scale: the relative velocity

between two lithospheric plates may be of the order of 50 mm/yr, or 1.5×10-9 m s-1, compared, say,
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with the velocity of sound at sea level of about 300 m s-1: a ratio of 2×1011.  The second is one of the
experimental environment: the experimenter in fluid dynamics is at no loss for a fixed frame of refer-
ence provided by the apparatus around, over, and through which his fluids flow; but the student of earth
deformation can depend on no such reliable framework — it is as if he were floating on a broad river,
with neither shore nor bottom discernible.  This is no disadvantage if his object is to study the intrinsic
deformation of the crust, and to rely on direct, local and differential, physical measurements: distinctions
between Lagrangian and Eulerian coordinates can be cast aside, and tedious arguments about da-
tums become irrelevant.

A primary advantage of using the methods of the tensor calculus in continuum mechanics resides in the
immediate identification of vector and tensor quantities with objective physical fields, such as the parti-
cle velocity field of the deforming medium, independently of arbitrary coordinate systems.  A second
advantage is the ease with which covariant differentiation of such spatially variable velocity fields
opens the way to the calculation of higher-order invariants — the ”estimable quantities” of continuum
mechanics — and the clarity with which these can be seen to be independent of particular coordinate
systems.

Deformation in three dimensions

If the velocity of a material particle P is represented by the vector ur, then the deformation in the vi-
cinity of P is given by the gradient of the velocity vector, and represented by the covariant derivative of

ur , viz. ur
s .  The tensor ur

s  has in general nine independent coefficients; it can be decomposed into

symmetric and antisymmetric parts

ur
s    =   σσ r

s    +   ττ r
s (1)

The symmetric tensor σσ r
s , the strain rate tensor of six independent terms, describes the intrinsic de-

formation of the medium.  An idealised test apparatus would comprise a regular tetrahedron embedded
in the medium, where any one of its six sides could shorten or lengthen independently of the other five.
The use of such an apparatus is unlikely, although a geodetic approximation could be attained by a suit-
able array of benchmarks on the floor and flanks of a deep valley, interconnected by distance meas-
urements.

The antisymmetric tensor ττ r
s , the rotation rate tensor of three independent terms, describes the mean

rotation of the small volume about P with respect to some external reference frame.  It can be repre-

sented by its equivalent rotation-rate vector Tr, defined by

Tr  =  − ½  εε rst asu ττ u
t  =  − ½  εε rst asu uu

t (2)

where εε rst is the alternating tensor, and asu the metric tensor in three dimensions.

Inverting (2) and substituting in (1), we have

ur
s    =   σσ r

s    +   arp εε pqs T
q (3)

Dilatation and shear

The symmetric strain rate tensor σσ r
s  can be subjected to a principal axis decomposition. Let

the principal axes be denoted by the set of orthogonal unit vectors ( ir, jr, kr ), ordered such that the

eigenvalues resulting from the decomposition of  σσ r
s  are ranked as
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σσ r
s  ir is   ≥  σσ r

s  jr js   ≥  σσ r
s  kr ks   (4)

These eigenvalues represent the rates of extensional strain in the principal directions; their sum defines
the rate of volumetric dilatation ΘΘ  by

3 ΘΘ   = ( σσ r
s  ir is   +  σσ r

s  jr js   +  σσ r
s  kr ks)

=   σσ r
s  δδ s

r  =  σσ r
r =    ur

s  δδ s
r  =    ur

r

(5)

where δδ s
r is the Kronecker (or substitution) tensor in three dimensions, and σσ r

r is the trace of the

symmetric tensor σσ r
s .

Subtraction of the effect of isotropic expansion or contraction from the strain rate tensor σσ r
s  leads to

the following tensor of five independent terms that represents the rate of shearing, or pure change of
shape

(σσ r
s  − ΘΘ  δδ r

s)  =   ( σσ u
t iu it − ΘΘ ) ir is   +  ( σσ u

t ju jt − ΘΘ ) jr js

+  ( σσ u
t ku kt − ΘΘ ) kr ks      (6)

where σσ r
s  has been expanded in terms of the principal directions.

One way of representing this tensor is to introduce two scalar magnitudes, γγ1 and γγ2, in addition to the

three independent terms that define the three principal axes, viz.

γγ 1   =   σσ u
t iu it − ΘΘ

γγ 2   =  − ( σσ u
t ku kt − ΘΘ  ) (7)

where γγ1 and γγ2 correspond to the greatest and least rates of extensional strain in the principal direc-

tions, respectively, and are defined so that both γγ1  ≥ 0 and γγ2  ≥ 0.

In terms of these parameters, the eigenvalues are now

σσ r
s  ir is  =    ΘΘ   +   γγ 1

σσ r
s  jr js  =    ΘΘ   + ( γγ 2  −  γγ 1 )

σσ r
s  kr ks  =    ΘΘ   −   γγ 2  (8)

and the deformation rate tensor can be expressed as

ur
s   =  ΘΘ  δδ r

s  + γγ 1 ( ir is  − jr js  ) + γγ 2 ( jr js  − kr ks  ) + arp εε pqs T
q (9)

The change of shape of the medium in the vicinity of a point P can be measured by the rate of change

in the angle between two distinct lines of material particles. Let lr, mr, nr, be an arbitrary right-handed

set of orthogonal unit vectors, of which lr, mr, represent two such lines of particles.  The rate of

change of the right angle between lr and mr is given by the difference in the rates of rotation of the

particles in these directions about the axis nr, viz.
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ur
s εε pqr nq ( ls  lp − ms  mp )  =  − ur

s  ( ms  lr + ls  mr ) (10)

In substituting for ur
s  from (9), the terms in ΘΘ  and Tq will vanish, and the resultant expression will

contain the scalar terms γγ1 and γγ2, and the three Euler angles that relate the ( lr, mr, nr ) triad to the

principal directions ( ir, jr, kr ).

Because of the restriction of extensive geodetic measurements to the Earth’s surface, the vertical gra-

dient of the velocity vector is in general unobservable, i.e. if nr is a unit vector in the vertical direction,

the values of ur
s ns  are usually unattainable.  The ”estimable quantities” are therefore reduced to six,

and most of the discussion of the results of geodetic measurement of earth deformation is in terms of
two-dimensional deformation, either in plane or spherical approximation.

Deformation in two dimensions

Four of the above six estimable quantities appear in the two-dimensional form of the expression for the
velocity gradient of equation (9), viz.

uαα
ββ   =   σσ αα

ββ   +   ττ αα
ββ

=  ∆∆  δδ αα
ββ  +  γγ  ( jαα  jββ  − kαα  kββ  ) − εε αα ηη  aηη ββ  ΩΩ (11)

where the Greek subscripts & superscripts now denote two-dimensional surface vectors and tensors,
and we have introduced ∆∆  as the rate of areal dilatation, ΩΩ  as the scalar rate of mean rotation in the
two-dimensional surface, and γγ  as the magnitude of the rate of shear strain ( the tensor shear, in con-
trast to the engineering shear, 2 γγ ).  To these three invariants we can add one principal direction (

either jαα  or kαα  ) to fully specify the rate of deformation.  In the case of the intrinsic strain rate σσ αα
ββ

in two dimensions, the idealised test apparatus would comprise an equilateral triangle attached to the
surface, an arrangement that is closely approximated by triangulation and trilateration networks.

Again denoting by nr a unit vector in the vertical direction, the rate of areal dilatation ∆∆ , a linear invari-

ant of uαα
ββ , can be related to the volumetric dilatation ΘΘ  by the definition

∆∆   =  ½ uαα
ββ  δδ αα

ββ   =    ½ ur
s  ( δδ s

r − ns  nr )  =  ½ ( 3 ΘΘ  − ur
s  ns  nr ) (12)

Thus the rate of areal dilatation differs from the rate of volumetric dilatation by the magnitude of the
rate of vertical extensional strain.  If it can be assumed that the volumetric strain ΘΘ  is zero, i.e. that the
medium is incompressible, then the rate of areal dilatation ∆∆  can be taken as a measure of the vertical
extensional strain rate.

The scalar rotation rate ΩΩ , a second linear invariant of uαα
ββ , is related to the three-dimensional vector

Tq through the definition

ΩΩ   =   − ½ uαα
ββ  aαα ηη  εε

ηη ββ   =   − ½  εε rst asu uu
t nr  =  Tr nr (13)

The magnitude γγ  of the shear strain rate can be derived as the quadratic invariant

γγ2  =   ¼ uαα
ββ  uγγ

δδ  (aαα γγ  a
ββ δδ

   −  εε αα γγ  εε ββ δδ  ) (14)
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The unit vectors jαα  and kαα  give the principal directions of the symmetric tensor σσ αα
ββ  corresponding

to the directions of maximum and minimum extensional strain, respectively.  The eigenvalues are thus

σσ αα
ββ  jαα  jββ     =  uαα

ββ  jαα  jββ      =  ∆∆   ++   γγ

σσ αα
ββ  kαα  kββ    =  uαα

ββ  kαα  kββ   =  ∆∆   −−   γγ (15)

By analogy with (10), the rate of shear with respect to an arbitrary pair of orthogonal unit vectors lr,

mr, is

uαα
ββ  εε αα δδ  ( lββ  lδδ  − mββ  mδδ  )  =  − uαα

ββ  ( mββ  lαα  + lββ  mαα  )  =  2 γγ  sin 2 ϕϕ (16)

where ϕϕ  is the angle between lαα  and the principal direction iαα  in the direction of maximum relative
extension.

The advantage in calculating the shear strain rate is twofold:

• it can be derived from observations of changes in shape only, where no accurate length scale is
available (as for repeated triangulations);

• it is the quantity that most accurately reflects the continuous accumulation of elastic strain energy,
and thus presages brittle failure in elastic media.

 Shear strain rate alone can be depicted as a line symbol of magnitude γγ , with the direction (though not

the sense) of either the maximum relative extension jαα , the maximum relative contraction kαα , or even
of one or other of the directions of maximum shear which bisect the right angle between the directions

jαα  and kαα .  Alternatively, the magnitude γγ  of the shear strain rate can be plotted and contoured as a
scalar variable without reference to the directions of the principal axes.

 Heterogeneous strain in two dimensions: bending

 If the rate of strain is constant over some region, the strain is said to be homogeneous, and the gradi-
ent of the deformation rate tensor is then zero

 uαα
ββ γγ   =  0 (17)

 On the other hand, if the rate of strain varies within the region, the strain is heterogeneous.

 If the observed strain is heterogeneous, this will be made obvious in plotting different values of the rate
of dilatation, or different values of the magnitude of the shear strain rate and its associated direction

across the region.  The question arises, however, as to whether one or more functions of uαα
ββ γγ  might

be used to display the character of the heterogeneous strain.

 From an inspection of equation (11), it is apparent that the gradients of the two linear invariants, ∆∆  and
ΩΩ , will yield vectors that point towards regions of greater or lesser rates of dilatation or rotation.

However, as even the gradient of the intrinsic strain rate tensor σσ αα
ββ γγ  has six independent parame-

ters, there is a large number of derived functions available.

 One characteristic of homogeneous strain is that any line of material particles that was originally
straight remains straight after straining.  Under heterogeneous strain, such a line of particles would in
general become curved.  This suggests that the rate of bending, or of change of curvature, is a quan-
tity that not only reflects an observed characteristic of many geological structures, but also could be
used to describe one aspect of heterogeneous strain.
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 Introducing an arbitrary pair of orthogonal unit vectors, l αα  and mαα , we may express the velocity of a

line of particles in the direction of l αα  resolved into components along the line and normal to it

 uαα
ββ  l ββ   =  e l αα    ++    r mαα (18)

 where e is the rate of extensional strain in the direction lαα , and r is the rate of rotation of the line of
particles in the same direction.  Hence

 r( l αα  )  =  uαα
ββ  l ββ  mαα (19)

 We define the rate of bending ρρ ( l αα  ) of the line of particles in the direction l αα  as the gradient of the
rate of rotation in that same direction, viz.

 ρρ ( l αα  )   =   rγγ ( l αα  ) l γγ    =   uαα
ββ γγ  l ββ  mαα  l γγ (20)

 If we have the values of uαα
ββ γγ , then we can derive the directions of extreme or zero bending at a

point.  Since (20) is a cubic function of direction, there will be either one or three axes of maximum
bending, and one or three axes of zero bending, which is a little more complicated than the intuitive
concept of the bending of a linear structure, such as a beam.

 There are in all three distinct contractions of uαα
ββ γγ  with the orthogonal unit vectors l αα  and mαα  of the

form given in (20), as well as analogous forms in three dimensions (Reilly, 1986), but the bending rate in
two dimensions is probably the most accessible.

 Tilting and warping of surfaces

 The vertical component of the velocity of a material point P is denoted by

 hs   =   ur
s  nr (21)

 where nr is a unit vector in the direction of the vertical.  The tilt rate vector in three dimensions is de-

fined as the gradient of the vertical velocity

 hs   =   ur
s  nr =   σσ r

s  nr   +   np εε pqs Tq (22)

 The tilt rate in the direction of an arbitrary horizontal unit vector l r is

 hs l s   =   σσ r
s  nr l s  +   np l s εε pqs Tq (23)

 showing that the tilt rate is a combination of the intrinsic shear strain rate in the vertical plane contain-

ing l r, and the extrinsic mean rotation rate about a horizontal axis normal to lr.  These components
cannot be separated on the basis of horizontal tilt measurements alone, as where the tilt rate is found by
such geodetic measurements as repeated spirit levelling, or repeated GPS observations.

 It is usually more convenient to define the tilt rate as a two-dimensional vector hαα  in the horizontal

plane: this accounts for the remaining two of the six ”estimable quantities” generally attainable by geo-
detic measurements on the Earth’s surface.  An accessible measure of the intrinsic strain rate is then

given by its gradient hαα ββ  (cf. Hein & Kistermann 1981).  If l αα  is a unit surface vector coincident
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with the space vector l r of (23) above, the rate of change of surface curvature in the direction of

l αα  is

 hαα ββ  l αα  l ββ    =   ur
st nr l s l t (24)

 By comparison with equation (20), the expression on the right-hand-side of (24) is seen to be equivalent

to the rate of bending in the vertical plane of the line of particles in the direction l r.

 The tensor hαα ββ  is symmetric; its decomposition is analogous to that for two-dimensional strain in (11),

viz.

 hαα ββ    =   H aαα ββ  +  D ( jαα  jββ  − kαα  kββ  ) (25)

 where the rate of change of mean curvature of the surface is

 H   =   ½ hαα ββ  aαα ββ (26)

 and the rate of change of torsion D of the surface is found from

 D2  =   ¼ hαα ββ  hγγ δδ  (aαα γγ
 a

ββ δδ
   −  εε αα γγ  εε ββ δδ  ) (27)

 The maximum and minimum values of the rate of change of curvature (or of bending in the vertical
plane) are given by the eigenvalues of the symmetric tensor hαα ββ , viz.

 hαα ββ  jαα  jββ    =  H  +  D

 hαα ββ  kαα  kββ =  H  −−   D (28)

 Determination of strain from geodetic observations

 Following the general principle introduced by Bibby (1973, 1976, 1981), the displacements of geodetic
bench-marks can be modelled so as to permit a unified solution of geodetic measurements made at dif-
ferent epochs.  The results comprise

• a set of coordinates for each bench-mark at some reference epoch;

• a set of parameters defining the velocity field, either continuous or discrete in time and space.

Amongst the continuum models used or proposed for interpolating velocities and rates of deformation,
Grafarend (1986) has noted that the geodetic network is an actualisation of a finite element model, and
coupled this with a local spline interpolation.  Spline interpolation is also the basis of an application by
Haines & Holt (1993) of a finite element model to the spherical surface of the Earth.  Two further
models — polynomial expansion and least-squares collocation — will be briefly mentioned here.

Polynomial approximation

The velocity vector at a point P can be expressed as a Taylor’s series expansion about a suitable origin
P0

uαα    =   bαα   +  bαα
ββ  yββ   +  bαα

ββ γγ  yββ  yγγ  /2!  +  bαα
ββ γγ δδ  yββ  yγγ  yδδ  /3!  +… (29)

where

yββ   is a position vector, with gradient yββ
γγ   =  δδ ββ

γγ  ( in a Euclidean space), and

bαα ,  bαα
ββ , bαα

ββ γγ , bαα
ββ γγ δδ , …, are constant coefficients to be determined.
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The deformation rate tensor is found by covariant differentiation of (29) as

uαα
ηη    =   bαα

ηη   +  bαα
ββ ηη  yββ   +  bαα

ββ γγ ηη  yββ  yγγ  /2!+… (30)

With adequate error determination, the series expansion can be truncated to exclude insignificant
terms.  Low-order expansions are of value in smoothing the results from noisy data.  Application to

extensive regions (such as the order of 105 km2 in Reilly, 1990) can be criticised as forcing a pattern
on complex data, a universal hazard of polynomial approximation methods.

Least-squares collocation

The interpolation of a vector field of displacements or velocities of material points would seem to be an
ideal subject for least-squares collocation.  Deakin et al. (1994) have applied the method to interpolat-
ing the displacements of the three-dimensional coordinates of points of a geodetic network in Victoria,
Australia.  In this they used a triplet of covariance functions, one for each coordinate direction.  In a
study of the prediction of horizontal strain in Japan, El-Fiky && Kato (1999) assumed the covariance
between point displacements to be ”homogeneous and isotropic”, but used a separate covariance func-
tion for each of the E-W and N-S components of the observed displacement vectors.

In neither of these examples is it clear that the difference between the covariance function for different
components is of any real significance in the interpolation process.  Moreover, the assignation of differ-
ent covariance functions to different components of the displacement field amounts to defining a co-
variance function for the vector field that is anisotropic with respect to the azimuth of the parallel
components of the two vectors, with axes of anisotropy coinciding with arbitrarily chosen coordinate
directions.  In short, there seems to be no good reason to go beyond a simple function that is isotropic
both with respect to the relative orientation of pairs of points, and also with respect to the orientation of
any arbitrary pair of parallel vector components, and where the correlation between orthogonal vector
components is zero.

Let a material particle P have a position denoted by the vector xi, and to be moving with a velocity

ui (P)  =  d xi (P) / d t.  Let a similar particle Q have a position xi (Q) and velocity ui (Q).  Assuming
a Euclidean space, we denote the vector PQ by

pi  =  r mi   = xi (Q)  –  xi (P) (31)

where r is the length of the vector pi ,

mi is the unit vector in the direction of pi, such that mi mi  =  1.

As an example of a covariance tensor Cjk between the vectors uj (P) and uk (Q) based on a simple
Gaussian function, that is simultaneously homogeneous, and isotropic in both the senses discussed
above, we can write

Cjk { uj (P), uk (Q)}  =  C0 ajk exp( – r2 / 2d2 ) (32)

where C0 is a constant of dimension (velocity)2,

d is a constant of dimension length,

ajk is the metric tensor in three dimensions.

If f j,  g j are two arbitrary unit vectors, then the covariance between two velocity components is the

scalar quantity
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Cjk { uj (P) f j, u
k (Q) g k  } f j g k

=  C0 ajk f j g k  exp( – r2 / 2d2 )

 =  C0 cos θθ  exp( – r2 / 2d2 ) (33)

where θθ  is the angle between  f j and g j .

The argument can be extended to calculate the covariance between the velocity vector u k (Q) at Q

and the deformation rate tensor u jl (P) at P by taking the covariant derivative of (32) with respect to

xj (P)

Cjk
l { uj

l (P), uk (Q)}  =    C0 ajk ml
 ( r / d2 ) exp( – r2 / 2d2 ) (34)

If fj,  gj ,  hj are three arbitrary unit vectors, then the scalar covariance between arbitrary components

of the velocity and of the deformation rate tensor

Cjk
l { uj

l (P) fj, u
k (Q) gk  hl } fj gk  hl

=    C0 ajk fj gk  hl ml
 ( r / d2 ) exp( – r2 / 2d2 )

 =    C0 cos θθ  cos ψψ  ( r / d2 ) exp( – r2 / 2d2 ) (35)

where ψψ  is the angle between hl and the direction ml of the line PQ.  This provides a basis for

interpolating the deformation rate tensor uj
l at P from observed velocities at a series of N points ( Q1,

Q2.…QN).

Given that the line PQ between two points on the Earth’s surface will generally be nearly horizontal,

then for vertical derivatives of u j, the angle ψψ  will be close to a right angle, and the scalar covariance
in this case will tend to zero.  This is just another way of stating that the vertical gradient of the velocity
field is not determinable from observations of the velocity vector distributed over the surface, and that
only six of the nine components of the deformation rate tensor can in general be found from such ob-
servations.

Conclusions

Repeated geodetic observations yield estimates of the particle velocity field of the deforming Earth,
sampled at the network of observing points.  Evaluation of such observations in terms of the spatial
gradient of a continuous velocity field leads to the determination of such invariants as the rates of dila-
tation, rotation, and shear.  These are the ”estimable quantities” that best characterise the state of
strain in the Earth, and for which purpose are more suited than the velocity field itself. The methods of
the tensor calculus are particularly apt for the clear and unambiguous derivation of such invariants, as
for many other manipulations of vector fields, and thus are very much in the spirit of the rigorous ap-
proach to geodetic problems that has been demonstrated by Erik Grafarend and his co-workers over
many years.

I am grateful to Dr Hugh Bibby for his comments on the draft of this manuscript.
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