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1. Introduction 
 
The use of an appropriate terrestrial reference frame in order to describe the position of points on the earth, as 
well as its temporal variation, is a problem of both theoretical and practical importance. This is the zero order 
optimal design problem in the terminology of Grafarend (1974), extended from the space to the space-time do-
main. 
A terrestrial reference frame consists of a particular point O , its origin and a triad of orthonormal vec-
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or in component form 
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The motion of any earth point in inertial space described by the function , where )(tIx t  denotes time, 
should be determined by observations. The corresponding motion , with respect to a terrestrial 
frame, depends in addition on the more or less arbitrary choice of  the terrestrial frame, i.e. of the func-
tions  and . If the earth was rigid (or in applications where rigidity is a valid approximation) 
there are choices of  and , such that the terrestrial coordinates  are con-
stant. For a deformable earth, where deformations are known to be small, it is reasonable to establish a 
terrestrial frame in a way that the temporal variations of  appear to be "as small 
as possible", i.e., such that the largest part of the inertial motions  is absorbed by the rotation and 
position of the terrestrial frame. The optimal choice of the terrestrial frame depends directly on the 
specific optimality criterion, which gives concrete mathematical meaning to the loose expression "as 
small as possible". 
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The solution of the problem requires, apart from the choice of the optimality criterion, the knowledge 
of the motion  with respect to the inertial frame, of every point of the earth. Operationally, this is 
possible only for points on the surface of the earth, while the motion of internal points has to be de-
duced from theoretical arguments.  
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The general form of an optimality criterion is 
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where F  is an appropriate known function and integration is carried out over the earth E  and the time 
interval  for which observational data are available. ],[ 0 Ftt
A more modest problem is the maintenance of a reference frame for a set of discrete points , 

, which are the positions of observation stations distributed all over the world and engaged in 
a collective analysis of the acquired data. 
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Formerly, the problem of frame definition was solved in a discrete way, corresponding to discrete data 
, collected in repeated campaigns over short time intervals, which could efficiently 

considered as "instantaneous" data corresponding to a single epoch . The most popular approach 
starts with a more or less arbitrary frame definition at the initial epoch  and then fits the coordinates 
of each epoch  to those already for the previous epoch , by applying the optimality criterion 
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and introducing the notation , )( 1

0
−= ktxx )( ktxx= , , the optimality criterion  can 

be incorporated in a linearized adjustment model 
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vxAl += δ , where linearization is based on the ap-
proximate values , by introducing a set of inner constraints )( 1
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−= ktxx 0xE =δ , where the rows of  

form a basis for the null space 
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Nowadays, observation stations are engaged in continuous data collection, operating as permanent sta-
tions within the framework of international organizations, such as the International GPS Service (IGS) 
and provide the means for the establishment of an official International Terrestrial Reference System 
(ITRS) with the care of the International Earth Rotation Service (IERS). 

Remark:  
The term reference frame used here corresponds to the term ITRS used by IERS, which pre-
serves the term International Terrestrial Reference Frame (ITRF) to the set of stations engaged 
in the realization of the ITRS. 

With the availability of continuously available data the stepwise approach of the past is no more desir-
able or practical from the implementation point of view. Instead, we propose to visualize the data 
(which are discrete but with a very high rate of repetition) as continuous and to seek a time-continuous 
solution to the reference frame choice problem. Such a solution may be eventually discretized or im-
plemented in a discrete approximation. Furthermore, the optimality criterion to be introduced for the 
frame choice in the discrete point network, must coincide with (or at least attempt to imitate) the opti-
mality criterion introduced for the whole earth on the basis of theoretical considerations. 
We will distinguish between two types of networks, which we call for the sake of convenience VLBI- 
and GPS-type networks. In VLBI-type networks where observations are translation-invariant, the posi-
tion of the geocenter  cannot be determined and the origin of the frame  must be also introduced. 
Thus we must determine both functions and . In GPS-type networks observations are linked 
to the geocenter through the use of satellite orbits, in which case 
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In Dermanis (1995) we introduced a methodology for the solution to the space-time datum problem, 
which considered also scale transformations. Here we will restrict ourselves to rigid transformations, 
since scale is provided for both VLBI- and GPS-type networks, within the framework of a non-
relativistic approach, through the assumption that mean of the readings of a set of reference clocks 
does not accelerate or decelerate with respect to Newtonian time. Distance (and thus scale) is entering 
the problem only implicitly through the observation of time intervals. On the other hand we will gen-
eralize the approach by looking into alternative optimality criteria and also by introducing "masses" or 
"weights" , for each station , which may reflect either a measure of the quality of station data, or 
the degree of participation of the station to the optimality criterion, in relation to the part of earth 
masses closest to the particular point. 

im iP

 
2. Transformation from a preliminary reference frame to an optimal one 
 
The basic idea of our approach is to make use of the fact that the available observations can very well 
determine the shape of the network, but not the additional information of its orientation (and position) 
with respect to a reference frame, which is contained in a set of network coordinates x . At any single 
epoch t  there exist an infinite number of coordinates  which give rise to the same shape for the 
network. 
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If and  are two coordinate sets which both correspond to the "observed" shape at epoch )(tx′ )(tx t , 
there exists a rigid transformation between the two, defined point-wise by 
 

( ) )()()()( tttt ii bxθRx +=′ ,      (6) 
 
where R is a proper orthogonal matrix. This means that if a preliminary solution is available, we 
can switch to an optimal solution , by applying an optimization principle and determining the op-
timal six functions  and  which transform to the coordi-
nates  satisfying the optimality criterion. But such a solution is always available, because a refer-
ence frame must be introduced for the analysis of the data which lead to the coordinate estimates  
at every epoch 
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continuous derivatives up to a certain order. The reference frame for  may be introduced during 
the adjustment of the observations, by a set of minimal constraints, which define a frame without any 
influence on the shape of the network. 
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3. Optimal solutions of minimum energy and minimum length (geodesics) 
 
A particular optimality criterion is based on the instantaneous (relative to the terrestrial frame) kinetic 
energy of the earth ∫=

E
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2
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The discrete analog for a network of points , iP ni ,,1…= , each of which has optimal coordinates ix′  
and it is assigned a mass , takes the form im
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is the kinetic energy of the network. 
The minimization principle (9) is in fact equivalent to the minimization principle 
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which is leading to a solution  which is a geodesic curve (curve of minimum length ) in the 

network coordinate space 
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where  is the usual euclidean distance between the two positions of point . The minimi-
zation problem (10) is a standard problem of the calculus of variations. Its solution , described by 
means of the curvilinear coordinates  

|||| iiid xx ′′−′= iP
)(tx′

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)(
)(
)(

)(
st
s
s

s b
θ

u       (13) 

 
expressed as functions of arc length s , satisfies the Euler-Lagrange differential equations 
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The derivation of the explicit form of the Euler-Lagrange equations has been carried out in Dermanis 
(1995), for the special case , but they can be easily generalized to the present case of varying 
point masses . Additionally the geodesic differential equations, corresponding to the optimality cri-
terion (11) have been derived, yielding (as expected) identical results. 
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where  is the moment of inertia matrix of the network with respect to the initial reference frame xC
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xh  is its relative angular momentum vector of the network with respect to the initial reference frame 
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and  is a matrix defined by )(θΩΩ=
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and of the properties ( ) TQQ =−1
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We have also assumed that reference frame  has been chosen in a way that )(tx 0x= , where x  are the 
coordinates of the center of mass of the network, defined by  
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(It is always possible to switch from any reference frame  to a "centered" one  with )(0 tx )(tx 0x= , 
using 00 )()( xxx −= tt ii ).  

Of the seven equations (15), (16), (17), the last one can be solved for the factor s
s
�
��  (s been length and 

dots denoting differentiation with respect to time) which replaced in the first two, will yield a system 
of six non-linear differential equations for the six unknown functions  and 

 . The resulting equations are very complicated and they can be solved only by 
numerical methods. Furthermore any solution yields a frame definition where the "curve"  is the 
closest between its end points  and 
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)( 0tx′ )( Ftx′ , but not necessarily the shortest possible. To arrive at 

a truly optimal solution, which by the way is not unique, we must select the optimal among all initial 
(or boundary) values which are necessary for obtaining a specific solution of the relevant differential 
equations. 
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We will not pursue this matter any further, but we will follow a different approach motivated by the 
methods used in the theoretical study of earth rotations. 
 
4. Tisserand axes 
 

The rotation of the earth is governed by the differential equation ldt
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where  is the inertia matrix and  the relative angular momentum of the earth. Replacing 

 in the rotational equations 
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The choice of the terrestrial frame in the study of earth rotation is dictated by the need to simplify the 
analytical work involved in solving the Liouville equations. 
Two choices are under consideration (Munk & MacDonald, 1960, ch. 3.2, p. 10): the principal axes or 
figure axes, defined so that C  becomes diagonal, and the Tisserant axes for which the relative angular 
momentum vanishes, 0h =R . The first choice is more appropriate for the theory of rotation of a rigid 
earth but it has a serious shortcoming when an elastic earth model is used: as a consequence of rota-
tional elastic deformation the third (polar) axis of figure intersecting the earth at a point F , undergoes 
a diurnal rotation around the corresponding position  of the rigid earth model with a radius of 

, while  undergoes a rotation around the position O  of third Tisserand axis, with radius 
of only and a Chandler period of about 430 days (Moritz and Mueller, 1987, ch. 3.3.1). For 
this reason the Tisserand axes are the preferred ones for the description of the rotation of the deform-
able earth. Furthermore the Tisserand axes have the advantage that they minimize the relative to the 
terrestrial frame kinetic energy of the earth, i.e.,  T  (Moritz and Mueller, 1987, ch. 

3.1).  Both choices of figure and Tisserand axes, cannot determine a displacement but only the rotation 
from an initial arbitrary reference frame. In theory they are both considered to be geocentric.  
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The figure axes are uniquely defined for any body that has no axis of symmetry. They are therefore 
well defined for the real earth, but not for an ellipsoidal model-earth where only one direction (that of 
symmetry) coincides with one figure axes and the position of the other two must be arbitrarily chosen. 
On the contrary the Tisserant axes are not uniquely defined. Indeed if x  are coordinates with respect 
to a set of Tisserand axes and we consider a new set of axes defined by the transformation Sxx=~ , 
where  is a time-independent orthogonal matrix then S
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and the x~  axes are also Tisserand axes. To choose a particular set of Tisserand axes we must fix their 
position  at an initial epoch . )( 0tx 0t
 
For a discrete network of mass points we may define a set of "Tisserand" axes by setting the corre-
sponding relative momentum equal to zero 
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and try to find the transformation parameters ,  which convert coordinates  in an origi-
nally available reference frame into "Tisserand" coordinates 
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Therefore, the vanishing relative momentum becomes 
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Under the feasible assumption that 0x= , and the consequent 0x =dt

d , the last equation simplifies to  
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These are three equations in six unknowns, which is an underdetermined system. This reflects the fact 
that the Tisserant principle  can determine the orientation but not the position of the (geocentric) 
Tisserant axes with respect to the original working frame. For GPS-type networks where the original 
frame is already geocentric, we have 
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0b =)(t , by definition. For VLBI-type networks we will set again 
 to obtain the orientation of a Tisserand frame parallel to the geocentric Tisserant frame, with 

the same origin as the original frame. We need a separate optimization principle for the determination 
of an optimal origin of the network, since the position of the geocenter remains undeterminable from 
the available data. 

0b =)(t

With the choice , the three transformation parameters to "Tisserand" coordinates should be 
determined from the solution of the three differential equations 

0b =)(t )(tθ

0RhθΩRRCh =+−=′ x
T

xx dt
d , which 

under the additional assumption that 0|| ≠Ω  take the form 
 

xxdt
d hRCΩθ 11 −−= .     (33) 

 
These can be integrated to obtain a solution 
 

( ) ( )∫ −−+=
t

t
xx dtt

0

 )( )( )( )()()( 11
0 τττττ hCθRθΩθθ     (34) 

 
which depends on the chosen initial value  which determines one out of all the possible Tisserand 
frames. For example if   is chosen, the Tisserand axes will coincide with the original axes at 
the initial epoch, since 

)( 0tθ
0θ =)( 0t
( ) )()( )()()()()( 000000 tttttt xxIx0RxθRx ====′ . 

The explicit form of the differential equations (33) depends on the chosen parametrization of the rota-
tion matrix R  in terms of three parameters θ . 
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5. Equivalence of Tisserant axes to a space-time generalization of Meissl's inner constraints 
 
A different type of solution can be based on the extension of the well known concept of inner con-
straints, introduced by Meissl (1965, 1969). At any epoch t , when the network has coordinates  in 
an original reference frame, the set of all coordinates 

)(tx
( ) )()( )()( tttt bxθRx +=′ , resulting as the parame-

ters  and  take any possible value, form a manifold, i.e. a "curved" subspace  of the net-
work coordinate space 

)(tθ )(tb tM
X . In fact  is the set of all network coordinates which give rise to the same 

network shape as the one defined by . Obviously 
tM

)(tx tt M∈′ )(x  for any particular epoch t . The idea is 

now to impose on the curve  to be such that its velocity )(tx′ )(tdt
dx′  is perpendicular to the manifold 

, or more precisely to the "flat" space, which is tangent to the (cutved) manifold  at the point 
. Since the parameters  and comprise a set of curvilinear coordinates for , the tangent 

space is the set of all liner combinations of the vectors tangent to the coordinate curves, namely 

tM tM
)(tx′ )(tθ )(tb tM

1θ∂
′∂x , 

2θ∂
′∂x , 

3θ∂
′∂x , 

1b∂
′∂x , 

2b∂
′∂x , 

3b∂
′∂x . The orthogonality conditions 

kdt
d

θ∂
′∂⊥′ xx , 

kbdt
d

∂
′∂⊥′ xx  take the form 

( ) 0=∂
′∂′
k

T

dt
d

θ
xMx , ( ) 0=∂

′∂′
k

T

bdt
d xMx , , or in compact matrix notation 3,2,1=k

 

0
x

θ
xxM

θ
x

=
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

′∂
=
′

⎟
⎠
⎞

⎜
⎝
⎛
∂
′∂ ∑

=

n

i

i
T

i
i

T

dt
d

m
dt
d

1
, 0

x
b
xxM

b
x

=
′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

′∂
=
′

⎟
⎠
⎞

⎜
⎝
⎛
∂
′∂ ∑

=

n

i

i
T

i
i

T

dt
d

m
dt
d

1
  (35) 

 

Replacing ΩRxRθ
x T

i
i ][ ×=∂
′∂ , Ib

x
=∂
′∂ i , and  dt

d ix′  from (30), implementing the usual assumption that 

0x= , 0x =dt
d , we arrive at 

 

0hθRCRΩ =⎟
⎠
⎞

⎜
⎝
⎛ − x

T
x

T
dt
d , 0b

=
dt
d .    (36) 

 
The first one of (36) is equivalent to (33) and therefore the inner constraint or Meissl frame is a Tis-
serant frame! The second of (36) yields constant=b  and provides a solution to the origin determination 
for VLBI-type networks: If we chosse 0b= , this means that, in relation to the assumption 0x= , the 
network origin should remain at the "center of mass" of the network. 
Any solution of (36) satisfies the geodesic or minimum energy equations (15), (16) and (17). Thus the 
Tisserand or Meissl frame solution  is a geodesic and even more it is a geodesic of minimum pos-
sible length among all geodesics, a property which follows from the fact that  and 

. 

)(tx′

0
)( 0 tt M⊥′x

FtFt M⊥′ )(x

In order to see how the present solution is related to Meissl's concept of inner constraints, we must use 

ΩbxΩRxθ
x

])[(])[( ×−′=×=∂
′∂

ii
i , Ib

x
=∂
′∂ i , 0x=  and 0x =dt

d , in order to rewrite the orthogonality conditions 

(35) in the form  
 

0
x

x =×∑
i

i
ii dt

d
m ][ , 0

x
=∑

i

i

dt
d .    (37) 

 
Assume that the solution  has been determined at some epoch  and we want to determine the 

solution at a slightly later epoch , i.e. 

)( 0tx′ 0t

ttt ∆+= 0 ttdt
dtttt ∆′+′≈∆+′=′  )()()()( 000 xxxx , using  as 00 )( xx ′=′ t
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a starting approximate value. If  is replaced by , ix′ 0
ix dt

d ix′  is approximated by tt
iii

∆
−

=∆
∆ 0xxx , and we 

choose , equations (37) are converted  to the well known inner constraints: 1=im
 

0xx =∆×∑
i

ii ][ 0 , 0x =∆∑
i

i .     (38) 

 
6. An illustrative example 
 
A particular choice of rotation parameters is 
 

)()()(),,()( 112233321 θθθθθθ RRRRθR ==    (39) 
 
yielding 
 

 TTT RiRRiRRRRRω ][])[()()(][ 11112233
1

1 ×−=×−=
∂
∂

=× θθθ
θ

 (40) 

 

 TTT RRiRRRRiRRRRω )(])[()(])[()(][ 112111122233
2

2 θθθθθ
θ

×−−=×−=
∂
∂

=×  (41) 

 

 TTT RRRiRRRRRRiRRRω )()(])[()()()(])[(][ 1122322111122333
3

3 θθθθθθθ
θ

×−−−=×−=
∂
∂

=×  (42) 

 
1223311 )()( iRRRiω θθ−=−=       (43) 

 
2332112 )()( iRiRRω θθ −=−−=       (44) 

 
3322113 )()( iiRRRω −=−−−= θθ       (45) 

 
We may set 
 

][][ 321321 ωωωRΩRqqqQ TT −=−≡= ,    (46) k
T

k ωRq −=
 

11 iq =        (47) 
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⎥
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θ
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θ

θθ
θθθθ iRRq   (49) 

 
zz hCθQ 1−=�       (50) 

or setting 
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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2

1
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     (52) 

 
1321 sin c=+ θθθ ��        (53) 

 
232121 cossincos c=− θθθθθ ��       (54) 

 
332121 coscossin c=+ θθθθθ ��       (55) 

 
Inversion of the matrix Q gives 
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θ
θ

θ
θ
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θθθ
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and the differential equations become 
 

cQhCQθ 111 −−− == zz
�       (57) 

 
or explicitly 
 

32122111 tancostansin ccc θθθθθ −+=�      (58) 
 

31212 sincos cc θθθ +=�        (59) 
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