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Abstract
The concept of pseudodifferential operators (PDO) is introduced as a generalization of the usual
concepts of differential and integral operators. Based on the PDO concept in Euclidean spaces
the concept of a PDO on a manifold is developed. It is demonstrated that for PDOs on a
manifold the main part of the operator coincides with the usual planar approximation of the
operator.
The so-called Meissl scheme is identified as the direct consequence of the homomorphy of the
algebra of PDOs and the algebra of their symbols.

1 Introduction

Let f : Rn → R be a so-called function of moderate growth. The function f̂ , defined by

f̂(ω) := (2π)−
n
2

∫
Rn

f(x)e−ıω�xdx = F{f}(ω) (1)

is called the Fourier transform of the function f . The function f̂ is again a function of moderate
growth and the so called inverse Fourier transform can be applied to it:

F−1{f̂}(x) := (2π)−
n
2

∫
Rn

f̂(ω)eıω
�xdω (2)

The Fourier transform enjoys several useful properties:

•
F−1{F{f}} = f (3)

•
F{f ∗ g} = (2π)−

n
2 F{f}F{g} convolution theorem (4)

•
F{Dαf} = F{ ∂|α|f

∂xα1
1 · · · ∂xαn

n
} = (−1)|α|ωα1

1 · · ·ωαn
n F{f} (5)

differentation theorem

The differentation theorem (5) of the Fourier transform is the starting point for the definition
of the concept of pseudodifferential operators.
Let us consider the Laplacian in Rn :

−∆u = −
n∑

i=1

∂2u

∂x2
1

. (6)
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According to the differentiation theorem (5)

F{−∆u} =

(
n∑

i=1

ω2
i

)
F{u} (7)

holds. Applying the inverse Fourier transform to (7), one btains the following alternative repre-
sentation of the Laplacian:

−∆u = F−1

{(
n∑

i=1

ω2
i

)
F{u}

}
(8)

= (2π)−
n
2

∫
Rn

(
n∑

i=1

ω2
i

)
û(ω)eıω

�xdω (9)

This is the representation of the Laplacian, which is a differential operator, in the form of an
integral. Hence, the name pseudodifferential operator is motivated for the following type of
operators.

Definition 1 The mapping
pu := F−1{a(x, ω)F{u}} (10)

is called pseudodifferential operator and the function a is called its symbol.

Note that the concept of a pseudodifferential operator is much more general than the usual
concept of a differential operator: If a is a polynomial in ω then the pseudodifferential oper-
ator coincides with a classical differential operator. If a is a suitable transcendental function,
the corresponding PDO is a certain combination of a differential and a singular integral operator.

The symbol a also determines the order of the PDO.

Definition 2 The PDO p is called a PDO of order r if

|Dβ
xD

α
ωa(x, ω)| ≤ Cαβ(1 + |ω|)r−|α| (11)

holds.

Example 1 For the Laplacian −∆ the symbol is

symb{−∆} = |ω|2 (12)

Hence, it holds

|Dβ
xD

α
ω |ω|2| ≤ |Dα

ω |ω|2| ≤ |Dα
ω(1 + |ω|)2| ≤ C(1 + |ω|)2−|α| (13)

This means that the Laplacian is a PDO of order 2.

Generally speaking: PDOs of negative order are smoothing operators and PDOs of positive
order are de-smoothing operators. In most cases a PDO cannot be given by only one symbol
but by a sequence of symbols with decreasing order.

Definition 3 (extended)
A mapping

pu :=
∞∑

k=0

F−1{ak(x, ω)F{u}} (14)

with
|Dβ

xD
α
ωak(x, ω)| ≤ Ck,αβ(1 + |ω|)r+k−|α| (15)
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is called a PDO of order r.

The part
p0u := F−1{a0(x, ω)F{u}} (16)

is called the main part of p.

The main part represents the essential properties of p. In most cases the behaviour of p can be
deduced from the behaviour of p0.

2 PDOs on a manifold

The core of the definition of a PDO on a manifold is the fact that for a local patch the manifold
has approximatively the same properties as an Euklidean space. Hence, an operator p is called
a PDO on a manifold, if for every local coordinate patch it has the form (14).
Let us consider the concept in more detail. The manifold is denoted by Γ. Let Ui ⊂ Γ, i = 1, 2, . . .
be a sequence of open subsets of Γ with the property⋃

i

Ui = Γ (17)

These open subsets are called charts of Γ. For each chart Ui a mapping Φi : Ui → Rn is defined.
For each P ∈ Ui ⊂ Γ the real numbers Φ(P ) are called local coordinates of P .

Definition 4 A mapping p : C∞(Γ) → C∞(Γ) is called a PDO on the manifold Γ, if for every
local coordinate patch Ui, the mapping

Φi ◦ p ◦ Φ−1
i (18)

is of the form (14).

Example 2 Let Γ be a closed, orientable, smooth surface in R3. On Γ the following single-layer
potential operator is defined:

(pu)(x) :=
∫
Γ

u(y)
|x− y|dy (19)

In the neighbourhood of an arbitrary x0 ∈ Γ local coordinates are introduced in the following way:

First a tangential plane T is attached to Γ in x0. Secondly, T is equipped with a cartesian
coordinate system, having its origin in x0.
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Let P ∈ Γ be and P ′ ∈ T its orthogonal projection onto the tangential plane. Let ξ1, ξ2 be the
Cartesian coordinates of P ′ and ξ3 the distance between P and P ′. Then the local coordinates
of P ∈ Γ are defined by

Φ(P ) = (ξ1, ξ2, ξ3) = ξ (20)

Consequently, we have

(Φ ◦ p ◦ φ−1)u(ξ) =
∫
R3

u(Φ−1(η))
|Φ−1(ξ) − Φ−1(η)| |det(Φ

−1)′|dη (21)

For Φ−1 the following Taylor expansion is valid

Φ−1(η) = Φ−1(0) + (Φ−1)′(0) (22)

= 0 +


 1 0 0

0 1 0
0 0 0


 η (23)

= (η1, η2, 0) (24)

Hence,

(Φ ◦ p ◦ Φ−1)u ≈
∫
R2

u(η1, η2)√
(ξ1 − η1)2 + (ξ2 − η2)2

dη (25)

=
1
|ξ| ∗ u (26)

=
1
2π

F−1{ 1
|ω|F{u}} (27)

This means that p is a PDO with the main part

p0u :=
∫
R2

u(η)
|ξ − η|dy =

1
2π

F−1{ 1
|ω|F{u}} (28)

3 Planar approximation

One typical technique in Physical Geodesy is the local approximation of globally defined integral
operators. For this purpose the mean sphere S of the Earth is approximated by a tangential
plane T . Consequently, the integral operator p defined on the sphere S has to be approximated
by an integral operator p0 on the tangential plane T . Usually, this is done by the following
technique:

• In the point x0 a Cartesian coordinate system is attached to the tangentialplane T , so that
its ξ3- axis coincides with the outer normal vector n of the sphere S in x0

• A one-to-one relationship between S and T is established by orthogonal projection.

• The (ξ1, ξ2) coordinates of the projection are used as local coordinates on S.

It is easy to see that the mapping Φ−1 is given by

Φ−1(ξ1, ξ2) =



ξ1
ξ2√
R2 − ξ21 − ξ22 −R


 (29)

Let
(pu)(P ) :=

∫
S
K(ψ)u(Q)dS(Q) (30)
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be an invariant operator on S with ψ as the spherical distance between P and Q. Let the
projections of the points P and Q be denoted by P ′ and Q′, and let ξ and η denote their
coordinates.
Obviously,

ψ = 2arcsin(
l

2R
) , l =

√
|P ′ −Q′|2 + (ξ3 − η3)2 (31)

holds and the representation of the invariant operator p in local coordinates is

pu =
∫
R2
K(2 arcsin(

√
|P ′ −Q′|2

4R2
+

(ξ3 − η3)2

4R2
))u(Q′)|det(Φ−1)′|dQ′ (32)

Since h := ξ3−η3

2R is a small quantity, a Taylor expansion of K at the place h = 0 can be made.
The replacement of K by the first term of its expansion is called planar approximation p0 of p :

(p0u)(ξ) =
∫
R2
K(2 arcsin(

|ξ − η|
2R

)u(η)dη (33)

= K(2 arcsin(
•

2R
)) ∗ u (34)

= F−1{K̂ · û} (35)

Now, the similarities between the main part of a PDO on a manifold and the planar approxima-
tion are obvious: The relation (29) defines the local coordinates, the representation Φ ◦ p ◦ Φ−1

is given by (32) and the first term of the Taylor expansion gives the main part (33) of the
corresponding PDO on the sphere S.
Usually, the planar approximation is understood intuitively. Its identification with the main part
of the corresponding PDO gives an additional justification for this approximation: it already
represents all essential properties of the original operator.

4 Meissl’s Scheme

One of the most exiting things about PDOs is the homorphity of the algebra of PDOs with the
algebra of its symbols. In detail this homomorphity is expressed by the following two relations

Theorem 1

symb(p+ q) = symb(p) + symb(q) (36)
symb(p ◦ q) = symb(p) · symb(q) (37)

In a maner of speaking, this means that one could work with the symbols instead of the operators
themselves. Since the symbols are real function and the operators are mostly singular integral
operators the handling of the former is much easier than the handling of the latter.

Example 3 Let p be a PDO with the symbol a(ω)

pu = F−1{a(ω)F{u}} (38)

and I the identity operator which also can be written as

Iu = F−1{1 · F{u}} (39)

The determination of the inverse p−1 of p means that the following PDO-equation has to be
solved:

p ◦ p−1 = I (40)
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The corresponding symbol equation is

a(ω) · symb(p−1) = 1 (41)

which can be solved for symb(p−1) and giving the following representation of the inverse operator

p−1u = F−1{ 1
a(ω)

F{u}} (42)

The homomorphy means that a concatenation of several operators can be described by the
multiplication of their symbols. For operators with geodetic relevance this relationship was
already found earlier and independently of the context of PDO . It is called Meissl Scheme after
its discoverer P. Meissl.

5 Construction of the Meissl scheme from the PDOs

The operators which are involved in the Meissl scheme are

• the upward continuation operator,

• the normal derivative operator,

• the gravity anomaly operator and the

• Stokes operator

For each of them the main part and its symbol has to be found. The upward continuation
operator on the spehere is given by Poisson’s integral

Uu := u(r, ϑ, λ) =
R2 − r2

4π

∫
σ

u(ϑ′, λ′)

(R2 − 2Rr cosψ + r2)
3
2

sinϑ′dσ(ϑ′, λ′) (43)

Its planar approximation, according to section 3, is the PDO

U0u = u(x, h) =
1
2π

∫
R2

u(x′)

(|x − x′|2 + h2)
3
2

dx′ (44)

having the symbol e−hω.
The normal derivative operator is derived from Greens representation theorem

Theorem 2 (Greens representation theorem)
Let u be a harmonic function and n be the normal vector of S. For every x in S holds

u(x) = − 1
2π

∫
S

(
1

|x − y|
∂u

∂n
− u

∂

∂n
1

|x − y|
)
dσ(y) (45)

Denoting the single layer potential by s and the double layer potential by d

su =
1
2π

∫
S

1
|x − y|udσ (46)

du =
1
2π

∫
S

∂

∂n
1

|x− y|udσ (47)

the equation (45) can be rewritten as

Iu = −s(∂u
∂n

) + du (48)
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which can be solved for the normal derivative

nu :=
∂

∂n
u = −s−1(I − d)u (49)

The planar approximations of s and d are

s0u =
∫
R2

u

|x − y|dy (50)

d0u = 0, (51)

which leads to
n0u = −s−1

0 u. (52)

Since the symbol of s0 equals

symb(s0) = 4π
1
|ω| (53)

the main part of the normal derivative operator is given by

n0u =
1
4π

F−1{|ω|F{u}} (54)

and its symbol is

symb(n0) =
1
4π

|ω| (55)

In spherical approximation the gravity anomaly operator g is given by

gu := − ∂

∂n
u− 2

R
u = −(n+

2
R
I)u (56)

Obviously, its main part is
g0u = −n0u = s−1

0 u (57)

The Stokes operator is given by

Stu :=
1

4πγR

∫
S
S(ψ)udS (58)

with S(ψ) being the Stokes function and γ being the normal gravity. The main part of St equals
the planar approximation

St0u =
1

2πγ

∫
R2

1
|x− y|u(y)dy = − 1

2πγ
s0u (59)

having the symbol

symb(St0) =
1

2πγ
1
|ω| (60)

The following table summarizes the results
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Name main part symbol

upward continuation U U0u = 1
2π

∫
R2

u(x′)

(|x−x′|2+h2)
3
2
dx′ e−h|ω|

normal derivation n n0u = 1
4πF−1{|ω|F{u}} 1

4π |ω|

gravity anomaly g g0u = −n0u − 1
4π |ω|

Stokes St St0u = 1
2πγ

∫
R2

1
|x−y|u(y)dy 1

2πγ
1
|ω|

With the help of these four operators different geodetic quantities as

• disturbing potential T

• geoid undulations N

• gravity anomalies ∆g

• vertical gravity gradients Γ

can be connected at ground level as well as at a certain height H. The following picture shows
the commutative diagram of the previously mentioned quantities.

U0U0U0U0

n0s−1
0

1
γ

�
�

n0s−1
0

1
γ

�����

��

���

ΓH

Γ0

∆gH

∆g0

NH

N0

TH

T0

h = H

h = 0

If this relationship is transformed into the frequency domain a relationship between the spectra
of the used quantities is obtained.

244



e−H|ω|e−H|ω|e−H|ω|e−H|ω|

|ω|4πγ|ω|1
γ

�
�

|ω|4πγ|ω|1
γ

�����

��

���

ΓH

Γ0

∆gH

∆g0

NH

N0

TH

T0

h = H

h = 0

This commutative diagram of the spectra is frequently called Meissl scheme.

6 Summary

The concept of a PDO is a usefull notion since it comprises both differential and integral op-
erators under one term. The techniques, which were discussed here do not necessarily rely on
PDOs, but the usage of the concept of PDOs simplifies the work much in the same way as matrix
notation simplifies arithmetic calculations.
The use of singular integral operators in Physical Geodesy dates back to [4] and [2],[3] . In this
papers the name PDO is never mentioned but the typical techniques are already used.
The introduction of PDOs into Geodesy was done by the famous article [6] and it is nowadays
frequently used for the treatment of geodetic boundary value problems [5] and in connection
with wavelets on the sphere [1].
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