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Abstract

In this paper we dwell upon the possibility to determine the GPS phase ambiguities from
double difference triple frequency GPS phase and code data more or less instantaneously. We
take advantage of the well known fact, that the widelane ambiguity is easily fixed from such
observables. It is shown that this holds also for a third signal of carrier wavelength (λ3) in the
range 14.3 cm ≤ λ3 ≤ 30.0 cm. At the limits λ3 = 14.3 cm (2100.6 MHz) and λ3 = 30.0 cm
(997.1 MHz) the base ambiguities are easily fixed as soon as the widelane ambiguities have been
determined. For other choices of λ3 the method is less optimal.

Recently the US Department of Defence announced that GPS satellites launched after De-
cember 2004 will be equipped with three civil GPS signals, where L1 and L2 are the same as
today’s signals, and the third signal will operate in the frequency 1176.45 MHz (λ3=25.44 cm).
This design will allow rapid precise position over long baselines with significant ionospher biases.
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1 Introduction

Precise positioning with the Global Positioning System is related with reliable fixing of the signal
phase ambiguities. The success in real time positioning is dependent on the fast ambiguity
fixing. Various methods have been developed for fast and reliable ambiguity estimation over
short baselines, but for long baselines the needed time to fix ambiguities increases drastically
due to the influence of various systematic effects, in particular the ionosphere bias. However, one
well-known exception is the widelane ambiguity, which can be quickly determined also for long
baselines from a linear combination of phase and code data. Sjöberg (1996) and (1997, 1998,
1999) took advantage of this fact to solve for the base ambiguities. It turned out (Sjöberg,1998,
1999 and Almgren, 1998) that this method works very well for short baselines, but mainly the
ionosphere effect restricts its success for long baselines.

Recently the US Department of Defence (DoD) has announced, that it plans to introduce a
second civil frequency identical with the current L2 frequency, and later, after December 2004,
a third civil frequency at 1176.45 MHz (λ3=25.44 cm) is planned to operate on all new GPS
satellites.

The goal of this paper is to take advantage of all three signals for fast phase ambiguity
resolution for short as well as long baselines. First we speculate on the optimum choice of the
third frequency with respect to accurate and reliable ambiguity resolution. Second, we compare
the result with the proposed frequency.
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2 Ambiguity estimation for dual frequency data

Consider the following dual frequency phase and code observation equations for receiver-to-
satellite ranges (Sjöberg 1996, 1997, 1998)

l̃1 = φ̃1λ1 = u + λ1N1 − µ
f2
1

+ ε11

l̃2 = φ̃2λ2 = u + λ2N2 − µ
f2
2

+ ε12

l̃3 = R̃1 = u + µ
f2
1

+ ε21

l̃4 = R̃2 = u + µ
f2
2

+ ε22,




(1)

where l̃1 and l̃2 (with phase φ̃1 and φ̃2) are the phase observables scaled by their wavelengths
λ1 and λ2, and l̃3 and l̃4 are the code observables. ε11, ε12, ε21 and ε22 are random observation
errors. The unknowns are u = ρ + c∆δ, which is the sum of the satellite-to-receiver range (ρ)
and the product of velocity of light (c) and receiver and satellite clock bias difference (∆δ).
Furthermore µ is the ionosphere bias and N1 and N2 are the phase ambiguities on L1 and L2,
respectively, with the known frequencies f1 and f2. Usually we will consider these equations for
double differenced data, i.e. for pairs of receivers and satellites. Obviously eqn. (1) contains 4
independent equations and 4 unknowns, and, at least in principle, it can be directly solved for
N1 and N2. The problem is, however, that these estimates are too poor to be useful (Sjöberg
ibid.). On the contrary the widelane ambiguity can be accurately determined by

N̂w = N̂1 − N̂2 =
l̃1
λ1

− l̃2
λ2

− f1 − f2

f1 + f2

(
l̃3
λ1

+
l̃4
λ2

)
(2)

Subsequently N̂w is independent of baseline length, ionosphere bias (and the time variable
satellite-to-receiver range), and in most cases it can quickly be fixed to its correct integer value.

Having fixed Nw we may form an observation equation for the base ambiguity N1:

N1 = Nw + N̂2 − ε2, (3)

where N̂2 is the primary estimate of N2 from eqn. (1), and ε2 is its random error. Another
equation of N1 is given by

N1 = N̂1 − ε1, (4)

i.e. by its primary estimate N̂1 from eqn. (1) with error ε1. The errors ε1 and ε2 are very
significantly correlated. Denoting the covariance matrix between the above two equations Q the
least squares solution for N1 becomes

ˆ̂
N1 =

(
eT Q−1e

)−1
eT Q−1

(
N̂1

N̂2 + Nw

)
, (5)

where

eT = (1, 1).

It turns out (Sjöberg 1996 and 1998) that the base ambiguity is well determined by this method
for short baselines, where the ionosphere bias (µ) can be omitted from the model (1). This
conclusion is confirmed by the numerical analyses of Almgren (1998). On the other hand the
result is very pessimistic for long baselines, due to the fact that the ionosphere bias prevent the
nice error reduction of the joint solution as was the case for short baselines.

The above solution (5) could also be obtained more directly from the original equations (1)
after the substitution of the second equation by

l̃′2 = l̃2 + λ2Nw = u + λ2N1 − µ

f2
2

+ ε12. (6)

This means that we have reduced the number of unknowns to three by using the known widelane
ambiguity. The least squares solution of the revised eqn. (1) is the same as in (5).
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3 Ambiguity estimation for triple frequency data

Assuming that there are three independent GPS signals L1, L2 and L3 with carrier wavelengths
λ1, λ2 and λ3 and frequencies f1, f2 and f3, we can form 6 independent observation equations
similar to the system (1):

l̃1 = u + λ1N1 − µ
f2
1

+ ε11

l̃2 = u + λ2N2 − µ
f2
2

+ ε12

l̃3 = u + λ3N3 − µ
f2
3

+ ε13

l̃4 = u + µ
f2
1

+ ε21

l̃5 = u + µ
f2
2

+ ε22

l̃6 = u + µ
f2
3

+ ε23.




(7)

From these observables we may estimate the following widelane ambiguities

Nw12 = N1 − N2 =
l̃1
λ1

− l̃2
λ2

− f1 − f2

f1 + f2

(
l̃4
λ1

+
l̃5
λ2

)
(8)

and

Nw13 = N1 − N3 =
l̃1
λ1

− l̃3
λ3

− f1 − f3

f1 + f3

(
l̃4
λ1

+
l̃6
λ3

)
. (9)

For f3 chosen rather close to f1 the small factors (f1 − f2)/(f1 + f2) and (f1 − f3)/(f1 + f3)
efficiently reduce the noise of the code observables l̃4, l̃5 and l̃6. This explains the resulting low
noise in the widelane ambiguity.

Let us now insert eqs. (8) and (9) into the second and third equations of (7). This yields
the revised system of equations (in matrix form and altered order).




1 1 0
1 ν2 0
1 α2 0
1 −1 1
1 −ν2 ν
1 −α2 α





 u

µ/f2
1

λ1N1


 =




l̃4 − ε21

l̃5 − ε22

l̃6 − ε23

l̃1 − ε11

l̃2 + λ2Nw12 − ε12

l̃3 + λ3Nw13 − ε13




, (10)

where

ν = f1/f2 = λ2/λ1

and

α = f1/f3 = λ3/λ1.

The system (10) is over determined with 3 redundancies. However, the first 3 observations,
from the pseudoranges, have much lower accuracy than the last three ones of phase observables.
(The ratio of the standard errors is of the order 100/1.) Subsequently, the code observables adds
very little to the least squares solution of the system (10). Neglecting these equations we are
left with the system

AX = L − ε,
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where

A =


 1 −1 1

1 −ν2 ν
1 −α2 α


 X =


 u

µ/f2
1

λ1N1


 (11)

and L − ε is the vector of the last three equations of (10). The system (10) corresponds to the
normal equations

AT AX = AT L (12)

with the unique solution

X̂ =
(
AT A

)−1
AT L (13)

and the covariance matrix of X̂

QX̂X̂ = σ2
0

(
AT A

)−1
, (14)

where σ2
0 is the variance of unit weight. In this study we are particularly interested in the

standard error of the estimated base ambiguity N1, which is included in (14). More precisely it
reads

σN̂1
=

σ0

λ1

(
AT A

)− 1
2

33
. (15)

¿From the matrix A given by (11) one easily obtains

σN̂1
=

σ0

λ1

√
c

d
, (16)

where

c = 2
(
1 + ν4 + α4 − α2 − ν2 − α2ν2

)
and

d = 3
(
1 + ν4 + α4

) (
1 + α2 + ν2

)
+ 2 (1 + ν + α)

(
1 + α2 + ν2

)(
1 + α3 + ν3

)
− (1 + ν + α)2

(
1 + α4 + ν4

)
− 3

(
1 + α3 + ν3

)2 −
(
1 + α2 + ν2

)3
.

For modern geodetic GPS receivers the carrier phase observable noise (σ0) can be set to 3
mm. The L1 carrier wavelength (λ1) is 19.0 cm and ν = f1/f2 = λ2/λ1 = 24.4/19.0 = 1.28421.
Also f1 = 1575.42 MHz and f2 = 1227.60 MHz. For these constants σN̂1

is given as a function
of α(= f1/f3 = λ3/λ1) in Fig 1 (dashed curve). It shows that the standard error increases
dramatically for α = 1(f1 = f3) and α = ν(f2 = f3). For, say, α < 0.8 and α > 1.5σN̂1

is well
below unity. The figure shows also (solid line) the standard error of the widelane ambiguity
determined from the L1 and L3 signals given by the (approximate) formula

σN̂w13
=

σR

λ1

|1 − α|
1 + α

(
1 +

1
α

)
(17)

with αR set to 30.0 cm. This curve has a minimum (0) for α = 1. For α close to 0.75 and 1.58
both σN̂1

and σN̂w13
are close to 0.6 as presented in Table 1. Obviously, the optimum choice of

α can be found for these values.
The L3 signal proposed by DoD of 1146.45 MHz (λ3=25.44 cm) to some extent fulfills the

above demands. For this frequency α becomes 1.339, yielding the standard errors of Nw13 and
N1 less than 0.5 and about 2.5, respectively. (Cf. Fig. 1.)
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Table 1: Optimum choices of L3 and corresponding standard errors of N1 and Nw13

α λ3(cm) f3 σN̂1
σN̂w13

0.75 14.3 2100.6 MHz 0.56 0.53
1.58 30.0 997.1 MHz 0.59 0.58

Figure 1: The figure shows the standard errors of the base ambiguity N1 (dashed line) and the
widelane ambiguity Nw13 (solid line) as functions of α. Constants: σR = 30.0 cm, σ0 = 3 mm,
λ1 = 19.0 cm.

4 Conclusions

We conclude that our method to resolve GPS phase ambiguities from double difference phase
and code data with three GPS signals will be optimal for a third signal of frequency of about
997 MHz or 2101 MHz, at which frequencies both the widelane and base phase ambiguities are
quickly resolved. Obviously this method solves the problem caused by the ionosphere bias for
long baselines. The L3 frequency (1146.5 MHz) proposed by DoD will be a good tool in solving
this problem.
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