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Abstract

In the formulation of the scalar free boundary value problem we solve for the gravity potential
in the external space outside the earth’s surface and for the vertical position of the boundary
surface. After linearization the reduced boundary condition refers to the Telluroid s � p, and the
new difference quantity δw, the disturbing potential, is introduced. To represent the unknown
disturbing potential in the global basis of spherical harmonics a harmonic analysis has to be
applied to the given boundary data. In this context the boundary data have to be (downward)
continued from s to a reference surface which shows a rotational symmetry with respect to the
earth’s mean rotational axis. In general a sphere K or the surface E of an ellipsoid of revolution
is selected.

After the analytical continuation of the evaluation operator Es the boundary condition can
be split in two parts. The main component is covered by the isotropic term which corresponds
to the Stokes–problem. The residual part consists of the ellipsoidal and topographical compo-
nents which are functionals of δw. Therefore an iterative solution strategy is appropriate. First
numerical evaluations indicate that this iterative process converges for boundary data continued
to an ellipsoid, but diverges if the boundary data is continued to a sphere.

Introduction

Geodetic boundary value problems represent idealized situations in geodetic data analysis. Nei-
ther the geodetic observations are continuous, nor they are given on the whole surface of the
earth. Nevertheless the formulation in the framework of boundary value problems has two im-
portant aspects: First, in studying idealized problems in an ”ideal” form, mathematical tools
can be used which never can applied to real situations, providing deep results concerning the
mathematical analysis, which can be generalized to more difficult situations. Second, for spe-
cial data distributions analytical solutions can be derived which directly can be applied in data
evaluation.

In recent years the challenge in the field of the geodetic boundary value problem has been
directed to formulations approaching more and more the real data situation in Geodesy. The
surface of the earth is now considered as a non–spherical surface, influenced by topography and
ellipticity. Mixed boundary value problems have been investigated as well as problems induced
by satellite and airborne data which will be available in near future. In this review paper we
will restrict to ”classical” boundary value problems on the background of geodetic data given
on the earth’s surface; also over–determined problems will not be considered here.

To determine both the external gravity potential W and the geometry of the earth’s surface
S, various boundary value problems (bvp) can be formulated. They depend on the utilized ob-
servables L and whether the boundary is supposed to be known or unknown. If the geometry of
S is already determined by the classical terrestrial techniques or by methods of satellite geodesy,
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then the fixed boundary value problem (Klees, 1992, 1995) is under consideration. Otherwise
the resulting bvp is of free type. In Grafarend et al. (1985) the vectorial free bvp is discussed
which differs in many respects from the scalar free bvp, first of all tackled by Sacerdote and
Sansò (1986). The relation between the unknowns W , S and the observables L is given by
boundary conditions. Generally, they are of non–linear structure. In the following we want to
focus on the scalar free bvp.

The scalar free boundary value problem

In the formulation of the scalar free bvp the horizontal position of each point P on the boundary
S � P is assumed to be given. So we have to introduce beside the external gravity potential
W the vertical position P as a geometrical unknown. To solve for both unknowns two types of
observables have to be given on the boundary surface in continuous form. We can assume, that
the gravity potential W (P ) as well as gravity values Γ(P ) = |grad W (P )| on S � P are given as
boundary data. Assuming that the earth is rigid, rotating with the constant angular velocity ω
and giving rise to the non–harmonic centrifugal potential Z, we can formulate the non–linear
scalar free bvp: Suppose the boundary data W (P ) and Γ(P ) to be given on S � P . The
unknown gravity potential W (x) has to fulfill the extended Laplace equation in the mass free
space Ωa outside S, and the gravitational potential V tends to zero if the geocentric distance
r = |x| tends to infinity (radiation condition):

Lap W (x) = 2ω2 , x ∈ Ωa

V (x) ∼ 1
r + O

(
1
r3

)
, r → ∞

W (P ) = V (P ) + Z(P ) , P ∈ S

Γ(P ) = |grad W (P )| , P ∈ S .

(1)

To deal with small quantities, we have to introduce suitable approximations for the unknowns.
The potential W (r, β, λ) will be approximated through the analytical normal potential w(r, β, λ).
Here the gravity field of an equipotential reference ellipsoid (Somigliana–Pizzetti normal field)
is often introduced. This potential is analytically easy to handle and shows a symmetry with
respect to the earth’s mean rotational axis:

w(r, β) = v(r, β) + z(r, β)

v(r, β) =
µv

r

[
1 −

∑
k

(
a

r

)k

JkPk(sin β)

]
, with k ∈ {2, 4, 6, . . . , Nv} .

(2)

Alternatively we can combine the well known centrifugal potential

z(r, β) = Z(r, β) =
1
2
ω2r2 cos2 β =

1
2

µv

r
m

(
r

a

)3

cos2 β , (3)

containing the small constant m = ω2a3/µv, together with a truncated spherical harmonic
expansion of the gravity potential V (for example up to degree and order Nv = 20). In the
latter case the difference quantities become smaller, but the analytical amount of the whole
problem increases.

To approximate the boundary surface S a telluroid mapping S � P → s � p is defined. The
most natural choice amongst several possible mappings (Hirvonen, 1960; Grafarend, 1978; Heck,
1986) is Molodensky’s telluroid definition with the mapping equations:

B(p) = B(P )
L(p) = L(P )
w(p) − w(po) = W (P ) − W (Po) .

(4)
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The telluroid point p lies on the same ellipsoidal normal as P , parameterized through the
geographical latitude B(P ) and the geographical longitude L(P ). It is fixed along this ellipsoidal
normal n in such a way, that p has the same geopotential number in the normal field, as P in
the actual field. Po denotes a global height reference point, e.g. a tide gaugue, while po is the
corresponding point on the ellipsoid.

Now we are able to formulate difference quantities, which act as new unknowns: The difference
of the actual potential W (Q) and the normal potential w(Q) in the same point Q ∈ Ωa

δw = W (Q) − w(Q) (5)

is called the disturbing potential. And the second (geometrical) unknown, the height anomaly

∆h = h(P ) − h(p) (6)

is the difference between the ellipsoidal height of P and the ellipsoidal height of the telluroid
point p respectively. In the same way both boundary data are redefined: The potential anomaly

∆w = W (P ) − w(p) (7)

equals zero if the absolute potential Wo and wo are selected in the framework of a proper
datum definition (Heck and Rummel, 1990; Rummel and Ilk, 1995) in such a way that ∆wo =
W (Po) − w(po) = 0 holds. This fact becomes obvious if we compare equation (4). The scalar
gravity anomaly ∆γ is defined as follows:

∆γ = Γ(P ) − γ(p) . (8)

After these considerations we can reformulate the still non–linear problem: Suppose the bound-
ary data ∆w and ∆γ to be given on S. The unknown disturbing potential δw(x) has to fulfill
the Laplace equation in the mass free space Ωa outside S, and the disturbing potential δw tends
to zero if the geocentric distance r tends to infinity:

Lap δw(x) = 0 , x ∈ Ωa

δw(x) ∼ 1
r + O

(
1
r3

)
, r → ∞

∆w = W (P ) − w(p) = δw(P ) + w(P ) − w(p)
∆γ = Γ(P ) − γ(p) = |grad [δw(P ) + w(P )] | − γ(p) .

(9)

Linearization of the reduced boundary condition

In the formulation of the non–linear problem (9) the normal potential w, that occurs in the
boundary condition, must be calculated in p and in the boundary point P . Since the vertical
position of P is unknown, this formulation of the boundary conditions is unsuitable. Therefore
a Taylor series expansion for the disturbing potential δw and the normal potential is set up in
the known telluroid point p (Heck, 1988):

δw(P ) = δw(p) + (∂iδw · ni) ∆h + . . .

w(P ) = w(p) + (∂iw · ni)∆h + 1
2 (∂ijw · ni · nj) (∆h)2 + . . . .

(10)

The Taylorstep ∆h = h(P )−h(p) runs along the ellipsoidal normal n due to the used telluroid
definition of Molodensky (4) and is equal to the height anomaly. The symbols ni and ∂i denote
the Cartesian coordinates of the ellipsoidal unit normal vector n and the partial derivatives with
respect to these coordinates, referring to an earth–fixed equatorial reference frame. The partial
derivatives of second order ∂ijw can be understood as the elements of the Marussi matrix M.
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Substituting δw(P ) and w(P ) in the boundary condition ∆w by its Taylor series (10) we get
the expanded boundary condition, where the terms on the right hand side refer to the telluroid
point p:

∆w = δw+ < grad w,n > ∆h + · · · . (11)

Assuming that ∆w = 0 holds, and neglecting the non–linear terms, we end up with a relationship
for the height anomaly (Brun’s formula):

∆h = − δw
<grad w,n> . (12)

Substitution of the vectorial gravity disturbance δγ(P ) = grad δw(P ) and the normal gravity
vector γ(P ) = grad w(P )

δγ(P ) = δγ(p) + (∂iδγ · ni)∆h + . . .

γ(P ) = γ(p) + (∂iγ · ni) ∆h + 1
2 (∂ijγ · ni · nj) (∆h)2 + . . .

(13)

in the boundary condition for the gravity anomaly ∆γ results in the linearized boundary condi-
tion:

∆γ = <
γ

γ
, grad δw > + <

γ

γ
,M n > ∆h + . . . . (14)

The right hand side of (14) is related to p ∈ s. Now the height anomaly ∆h can be eliminated in
(14) by use of (12). Neglecting the non–linear terms we end up with the linear reduced boundary
condition for the scalar free bvp (Heck, 1989):

∆γ = <
γ

γ
, grad δw > + <

γ

γ
,M n >

δw

< γ,n >
. (15)

In Heck and Seitz (1991, 1993, 1995) and Seitz et al. (1994) the effects of the non–linear terms
have been studied. If a Somigliana–Pizzetti field is used as normal potential the effects on the
vertical position due to the non–linear terms in the reduced boundary condition are less than
4mm in the vicinity of the earth’s surface. They are decreasing to 2mm if a truncated spherical
harmonic model (max degree 20) is used to model the normal gravitational potential.

Now the linearized scalar free bvp can be formulated where the boundary condition refers
to the telluroid s � p: Suppose the boundary data ∆γ to be given. The unknown disturbing
potential δw(x) has to fulfill the Laplace equation in the mass free space Ωa outside s, and
the disturbing potential δw tends to zero if the geocentric distance r tends to infinity – this
corresponds to the postulate of regularity at infinity:

Lap δw(x) = 0 , x ∈ Ωa

δw(x) ∼ 1
r + O

(
1
r3

)
, r → ∞

∆γ = <
γ
γ , grad δw > + <

γ
γ ,M n > δw

<γ,n> , on s .

(16)

The boundary condition (15) in the formulation (16) can be expressed in operator style (Heck,
1991):

∆γ = Bs{δw} = Es ◦ D{δw} . (17)

The boundary operator Bs maps the disturbing potential δw at the telluroid s onto the scalar
free gravity anomaly ∆γ. Bs is composed of the differential operator D and the evaluation
operator Es which are applied subsequently. The evaluation operator Es relates the differential
D{δw} to the boundary surface s. The linear operator D, applied to the spatial function δw,
can be represented by the identity operator I and the partial derivatives with respect to the
spherical coordinates r, β and λ:

D = doI + dr
∂
∂r + dβ

∂
∂β + dλ

∂
∂λ . (18)
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The coefficients do, dr, dβ and dλ of the differential operator are functionals of the normal field
w:

do = − < γ
γ ,M n > 1

<γ,n>

dr = γ1

γ

dβ = 1
r

γ2

γ

dλ = 1
r cos β

γ3

γ ≡ 0 , for w(r, β) .

(19)

In (19), the components of the normal gravity vector γ(p) are denoted by γi and refer to the
local orthonormal system {p;gi}. The basis vector g1 is parallel to the geocentric position vector
x(p), g2 points to the north and g3 completes this right handed system. A survey about the
linearization of boundary value problems is given in Heck (1997).

Series expansion of the differential operator

To obtain an analytical representation of the coefficients of the differential operator D, the
normal potential w has to be described analytically. Therefore we introduce the following
approximation wa for the normal potential w:

wa(r, β) =
µv

r

[
1 − J2

(
a

r

)2

P2(sin β) − J4

(
a

r

)4

P4(sin β) +
1
2
m

(
r

a

)3

cos2 β

]
. (20)

Under this approximation the coefficients do, dr, dβ and dλ are represented in the following
analytical way. This new second order approximation of the differential operator D is
reached after extensive analytical manipulations. For details see Seitz (1997).

do = −2
r

{
1 − 3J2P2 + 3

2m cos2 β

− 1
4e2 sin2 β

[
2e2 cos2 β − 12J2

(
2 − 3 sin2 β

)
+ 13m cos2 β

]
+ 3

2
h
a

(
4J2P2 + 3m cos2 β

) − 9
4J2

2

(
1 − 10 sin2 β + 13 sin4 β

)
−3

4J2m cos4 β + 3
2m2

(
1 − 3 sin2 β + 2 sin4 β

) − 10J4P4 + O(e6)
}

dr = −1 + 1
2 sin2 β cos2 β (3J2 + m)2 + O(e6)

dβ = −1
r sin β cos β

{
3J2 + m

+ 3
(

1
2e2 sin2 β − h

a

)
(2J2 − m) + 9J2

2 P2

+3
2J2m

(
1 + sin2 β

)
+ m2 cos2 β − 5

2J4

(
3 − 7 sin2 β

)
+ O(e6)

}
dλ = O(e6), [≡ 0, if w = w(r, β)] .

(21)

The absolute error of the neglected terms in the boundary condition is less than 1 · 10−10ms−2

if a Somigliana–Pizzetti normal field is used as reference field. If a truncated spherical harmonic
expansion (Nv = 20) is used as normal gravitational potential v, the absolute error increases to
5 · 10−8ms−2.

The coefficient do can be split off into a dominant term, caused by the isotropic part µv/r of
the normal potential, and the so–called ellipsoidal terms. The anisotropy of v and the influence
of the centrifugal potential z contribute to the ellipsoidal term δdo:

do = −2
r + δdo . (22)

The same decomposition can be applied for the radial term

dr = −1 + δdr . (23)
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Figure 1: Ellipsoidal terms [10−8ms−2] in the reduced boundary condition of the scalar free bvp.
V : OSU91a1f, w: GRS80.

The linear boundary condition (15), (17) can now be written as

∆γ = Es

{
−2

r δw − ∂δw
∂r

}
+ Es ◦ δD {δw} . (24)

The linear differential operator D is here decomposed in an isotropic part and the ellipsoidal
increments:

D = −2
r I − ∂

∂r + δdoI + δdr
∂
∂r + dβ

∂
∂β + dλ

∂
∂λ

= −2
r I − ∂

∂r + δD .
(25)

If only the isotropic term µv/r is considered and – pay attention to this fact – the centrifugal
potential is omitted, one deals with the isotropic or radial approximation of the differential
operator D. This leads to the fundamental equation of Physical Geodesy (Heiskanen and Moritz,
1967):

∆γ = −2
r δw − ∂δw

∂r . (26)

In this rough approximation of the boundary condition the ellipsoidal terms δdo, δdr, dβ and dλ

are neglected. The ellipsoidal terms in the linear reduced boundary condition of the scalar free
bvp are given with (25) through the expression:

Es ◦ δD {δw} = Es

{
δdoδw + δdr

∂δw

∂r
+ dβ

∂δw

∂β
+ dλ

∂δw

∂λ

}
. (27)

With the spherical harmonic model OSU91a1f from the Ohio State University (Rapp et al.,
1991) representing the actual gravitational field of the earth and the Geodetic Reference System
1980 (GRS80) as reference field, the total ellipsoidal terms (27) are illustrated in figure 1. The
maximum values are in the range of ±600 · 10−8ms−2.

In the geodetic literature since Jekeli (1981), Cruz (1986) or Pavlis(1988) the ellipsoidal correc-
tion terms εγ and εh are customary. They are applied to the boundary data. The corrected
gravity anomalies are now related to the isotropic approximation of the boundary condition
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(24). The correction terms εγ and εh (Jekeli, 1981; there was a misprint in the sign for εh) are
proportional to the coefficients δdo and dβ of the differential operator:

εγ = δdo δw = 1
r

[
6J2

(
a
r

)2
P2(sin β) − 3ω2r3

µv cos2 β
]
δw

εh = dβ
∂δw
∂β = −1

re2 sinβ cos β ∂δw
∂β .

(28)

The ellipsoidal term Es{δdoδw} has a very smooth behaviour which can be seen in figure 2.
The ellipsoidal term Es{dβ

∂δw
∂β } is depicted in figure 3.

The usually applied correction terms εγ and εh are a first order approximation. The term εγ

describes the influence of the difference between the isotropic field and the exact normal field in
the boundary condition. One can assess that |εγ | ≤ 230 · 10−8ms−2 holds in the vicinity of the
earth’s surface. In the first order approximation the term εh corrects for the fact, that the partial
derivative with respect to the geocentric distance r instead of the derivative in direction to the
ellipsoidal normal is applied to the disturbing potential δw in the boundary condition. The
terms εγ and εh (28) are often further simplified by taking advantage of the relations (Heiskanen
and Moritz, 1967, p78):

J2 = 1
3

(
e2 − m

)
+ · · ·

m = e2

2 + · · · ,
(29)

which are first order approximations. It should be noticed that these relations (29) are only
valid when a normal field of Somigliana–Pizzetti–type is used! With these assumptions the
representation

εγ ≈ −1
re2

(
2 − 3 sin2 β

)
δw

εh ≈ −1
re2 sinβ cos β ∂δw

∂β

(30)

results that is mostly referred to in geodetic literature in the context of ellipsoidal corrections
(Lelgemann, 1970; Pellinen, 1982; Martinec, 1995).

Figure 2: Ellipsoidal term Es{δdoδw} [10−8ms−2] ∼ εγ (Jekeli, 1981; Cruz, 1986). V : OSU91a1f,
w: GRS80.
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Figure 3: Ellipsoidal term Es{dβ
∂δw
∂β } [10−8ms−2] ∼ εh (Jekeli, 1981; Cruz, 1986). V : OSU91a1f,

w: GRS80.

Formulation of an isotropic problem

The object of our efforts is the determination of the harmonic coefficients C
δw
nm, S

δw
nm which repre-

sent the disturbing potential δw. This task can be performed for example by harmonic analysis
of boundary data that meets an isotropic boundary condition on a surface, axi–symmetric with
respect to the earth’s mean rotational axis. The simplest choice of such a surface is a sphere of
radius a. On a sphere K � k the corresponding boundary condition reads:

∆γk = Bk{δw} = Ek ◦ Di{δw} := ∆γ − ∆k . (31)

The linear differential operator Di consists of the identity operator I and the partial derivative
with respect to the geocentric distance r. The differential Di{δw} is restricted to the surface of
the sphere by applying the evaluation operator Ek. The resulting spherical bvp

Lap δw(x) = 0 , x ∈ Ωa

δw(x) ∼ 1
r + O

(
1
r3

)
, r → ∞

∆γk := ∆γ − ∆k = − 2
aEk {δw} − Ek

{
∂δw
∂r

} (32)

is formally the third boundary value problem on a sphere. The boundary data we have to deal
with is the original boundary data ∆γ (computed with the full normal field) reduced by the
ellipsoidal and topographic correction term ∆k.

In a similar way we can formulate the boundary condition on the surface of an ellipsoid of
revolution E � e:

∆γe = Be {δw} = Ee ◦ Di{δw} := ∆γ − ∆e . (33)

The terms ∆k or ∆e correct for the anisotropy of the normal field and the difference between
the telluroid s and the surface of a sphere or an ellipsoid respectively. In the following we will
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restrict ourselves to the isotropic boundary value problem on the surface of an ellipsoid:

Lap δw(x) = 0 , x ∈ Ωa

δw(x) ∼ 1
r + O

(
1
r3

)
, r → ∞

∆γe := ∆γ − ∆e = −Ee

{
2
r δw

}
− Ee

{
∂δw
∂r

}
.

(34)

The unknown disturbing potential δw still has to fulfill the requirements (16). The reduced
boundary data ∆γe on the surface of an ellipsoid E � e has to fulfill the isotropic boundary
condition on E. It is obvious, that the ellipsoidal and topographic correction terms ∆e are
functionals of δw which we solve for. Therefore an iterative procedure is required.

Analytical continuation of the boundary condition onto an ellipsoid of revolution

To come up with a representation of the boundary condition on the surface of an ellipsoid (33)
we have to analytically continue the boundary condition from the telluroid onto E. This is done
by a formal Taylor series expansion of the evaluation operator Es. To that end we select the
Taylorstep in radial direction:

r(p) − r(e) = h

(
1 +

1
2
e4 sin2 β cos2 β

)
+ a · O(e8) . (35)

If (35) is divided by a we have the representation

r(p) − r(e)
a

=
h

a

(
1 +

1
2
e4 sin2 β cos2 β

)
+ O(e8) , (36)

where the expression h/a is of the order of e2. The formal Taylor expansion of Es or Ee between
the telluroid point p ∈ s and the corresponding point e ∈ E on the surface of the ellipsoid can
be performed with the Taylorpoint situated either on E or s:

If we set up the Taylor expansion for Ee, which we need for a formulation like (34), in p ∈ s
we get from (36) the representation

Ee = Es +
∞∑

n=1

an

n!

(
r(e) − r(p)

a

)n

Es ◦ ∂n

∂rn
. (37)

Rearranging (37) with respect to the zero order term Es and substituting this representation
from (24) we have the new representation of the boundary condition

∆γ = Bs{δw} = Ee

{
−2

r
δw − ∂δw

∂r

}
︸ ︷︷ ︸

isotropic term

+∆e .
(38)

The whole ellipsoidal and topographical components are included in the term

∆e = cse
r0β1

Es

{
∂δw

∂β

}
+

8∑
i=0

cse
riβ0

Es

{
∂iδw

∂ri

}
. (39)

The partial derivatives of the disturbing potential have to be computed at the telluroid. The
coefficients cse

riβj
have been derived in Seitz (1997).
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Table 1. Error [10−5ms−2] in the analytical approximation of ∆k depending on the order of
the Taylor series. V : OSU91a1f, w: GRS80, wa(J0, J2, J4,m).

max. order Extreme values of the
of ∂i

∂ri approximation error

8 −0.001 0.001
7 −0.008 0.010
6 −0.053 0.073
5 −0.326 0.463
4 −1.922 2.562
3 −9.865 11.974
2 −41.280 45.350
1 −133.227 129.352

Table 2. Error [10−5ms−2] in the analytical approximation of ∆e depending on the order of
the Taylor series. V : OSU91a1f, w: GRS80, wa(J0, J2, J4,m).

max. order Extreme values of the
of ∂i

∂ri approximation error

8 −0.001 0.001
7 −0.001 0.001
6 −0.001 0.001
5 −0.001 0.001
4 −0.005 0.005
3 −0.127 0.153
2 −2.523 1.435
1 −16.819 28.744

As an alternative to this procedure, related to the question raised by Sansò and Sona (1995),
Sansò (1995) about the correct choice of the Taylorpoint we also expanded the ellipsoidal and
topographical terms with the Taylorpoint in e ∈ E. Here we get directly the representation of
the evaluation operator Es which we have to substitute from (24)

Es = Ee +
∞∑

n=1

an

n!

(
r(p) − r(e)

a

)n

Ee ◦ ∂n

∂rn
. (40)

The resulting ellipsoidal and topographical terms

∆e =
4∑

i=0

ces
riβ1

Ee

{
∂i+1δw

∂ri∂β

}
+

8∑
i=0

ces
riβ0

Ee

{
∂iδw

∂ri

}
. (41)

are now related to the surface of the ellipsoid. It is obvious that the coefficients ces
riβj

are
different from cse

riβj
, also in there signs. The upper limits of the Taylor series in the alternative

developments (38), (39) and (40), (41), respectively, have been chosen such that the same
absolute error level of ±1 · 10−8ms−2 is achieved, which was verified by numerical calculations
on the basis of OSU91a1f in Seitz (1997). The ellipsoidal and topographical terms ∆e are in
the range of ±20 · 10−5ms−2 as can be seen in figure 4. The effect of neglecting the ellipsoidal
and topographical terms – using the boundary data ∆γ without applying a correction for the
anisotropy of the normal potential and for the geometrical distance between the telluroid and
the ellipsoid – on the vertical position of equipotential surfaces in the vicinity of the earth’s
surface is plotted in figure 5. The total effect can amount up to nearly 2m.
In a similar way the evaluation operator Es is continued in Seitz (1997) onto a sphere. The
resulting approximation errors for ∆k and ∆e are listed in the tables 1 and 2 respectively. They
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are also given for different maximum orders of the partial derivative in radial direction. To
achieve a maximum error of ±1 · 10−8ms−2 in case of the continuation to a sphere one has to
perform the Taylor expansion up to the order k = 8. The Taylor expansion for the evaluation
operator can be truncated after the 5th order in case of the ellipsoidal boundary.

A flow chart of the whole process starting from the non–linear boundary condition, the
linearization, the different levels of approximation for the differential operator and the analytical
continuation of the boundary condition onto the surface of an ellipsoid is given in table 3.

Figure 4: Ellipsoidal and topographical terms ∆e [10−5ms−2]. V : OSU91a1f, w: GRS80.

Figure 5: Effect [m] due to ∆e on the vertical position of equipotential surfaces. V : OSU91a1f,
w: GRS80.
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Table 3. Flow chart for the analytical evaluation of the boundary condition for the scalar free
bvp.

Non–linear boundary condition BS{δw}
��

�
�
�Linearization

� �

Linear boundary condition Bs{δw}
�

Non–linear terms

�
�

�
�

Series expansion of the linear
differential operator D

�

2nd order approximation

�

�

1st order approximation

�

�

Isotropic approximation

�

�
�

�
�

Analytical continuation of the
linear boundary condition

�

Ellipsoidal and topographical
terms ∆e(δw) or ∆k(δw)

�

Boundary condition on the
ellipsoid E � e or sphere K � k

An iterative solution

As already mentioned the ellipsoidal and topographical correction terms ((39) or (41)) are func-
tionals of the unknown disturbing potential which we solve for. If we try to solve the bvp by a
harmonic analysis of the reduced boundary data (33) on the surface of an ellipsoid we have to
set up an iterative procedure. First numerical tests indicated that the whole procedure diverges
if we continue the data onto a sphere. It converges when we use a surface of an ellipsoid, on
which we perform the harmonic analysis. Further results will be given in Seitz and Heck (1999).
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