DGAP Notes

Dirk Stallmann

8. Januar 2008 DGAP Version 3.2.0

Inhaltsverzeichnis

1	Einl	eitung		1
2	Mat	hematische I	Modelle	2
	2.1	Photogram	ammetrisches Abbildungsmodell	2
		2.1.1 Äuf	ßere Orientierung	. 2
		2.1.2 Inne	ere Orientierung	. 3
		2.1.3 Kol	llinearitätsgleichung	. 4
	2.2	Projektiv	re Transformation	5
		2.2.1 Dire	ekte Lösung	. 6
		2.2.2 Itera	rative Lösung	. 6
		2.2.3 Bes	stimmung der Orientierungsparameter	
	2.3	Affine Tr	ransformation	. 8
3	Aus	gleichung ve	ermittelnder Beobachtungen	9
	3.1	Ausgleich	hungsalgorithmus	. 9
	3.2	Standarda	labweichungen der Beobachtungen	. 11
	3.3	Direkte E	Beobachtung der unbekannten Parameter	. 12
	3.4	Standarda	labweichungen der ausgeglichenen Parameter	. 13
4	Kan	neras		14
	4.1	Analogka	ameras	. 14
	4.2	Digitalka	ameras	. 14
	4.3	Zeilenkar	meras	. 15
5	Obj	ektkoordina	iten	17
	5.1	Koordina	atensysteme	. 17
	5.2	Erdkrüm	mungskorrektur	. 21
	5.3	Objektpu	unkte	. 21
		5.3.1 Pass	sspunkte	. 21
		5.3.2 Neu	u- und Verknüpfungspunkte	. 21
		5.3.3 Kor	ntrollpunkte	22

INHALTSVERZEICHNIS

6	Para	metrisi	erung der Rotationsmatrix	23
	6.1	Dreh	winkel/Euler-Winkel	24
	6.2	Ham	nilton-Quaternion	25
7	Nähe	erungsv	vertberechnung	26
	7.1	Zent	ralprojektion	26
	7.2	DLT	, 	27
	7.3	Affii	ne Transformation	28
8	Refr	aktion		29
9	Zusä	itzliche	Parameter	30
	9.1	Mod	lell der inneren Orientierung	31
	9.2	Mod	lell der radialen Verzeichnung	31
	9.3	Mod	lell der tangentialen Verzeichnung	31
	9.4	Mod	lell der Verzerrungen in der Abbildungsfläche	31
	9.5	Mod	lell Unebenheit der Abbildungsfläche	32
	9.6	Mod	lelle nach Brown	32
		9.6.1	Modell nach Brown Gl. 22	32
		9.6.2	Modell nach Brown Gl. 23	33
		9.6.3	GAP-Modell	33
		9.6.4	Australis-Modell	33
	9.7	Poly	nom-Modelle	34
		9.7.1	Orthogonales Polynom nach Ebner	34
		9.7.2	Orthogonales Polynom nach Grün	34
	9.8	Diffe	erentialquotienten für die innere Orientierung	35
	9.9	Sign	ifikanztest	36
10	Dire	kte Beo	bachtung der äußeren Orientierung	37
	10.1	GPS	-gestützte Aerotriangulation	37
	10.2	Dire	kte Georeferenzierung	38
	10.3	Erwo	eitertes photogrammetrisches Abbildungsmodell	40
		10.3.1	Positionskorrektur	40
		10.3.2	Lagekorrektur	40
	10.4	Dire	kte Georeferenzierung für Zeilenscanner	42

11	Genauigkeit 44			
	11.1	Innere Genauigkeit	44	
	11.2	Äußere Genauigkeit	44	
	11.3	Verbesserungen in den Passpunkten	46	
12	Korrel	ationen	47	
13	Progra	mmein- und ausgabe	48	
	13.1	Konfigurations-/Projekt-Datei	49	
	13.2	Parameter-/Optionen-Datei	50	
	13.3	Least-Squares Parameter-/Optionen-Datei	52	
	13.4	Netzwerkdesign-Parameter-/Optionen-Datei	54	
	13.5	Kamera-Datei	55	
	13.6	Bilddefinitionsdatei	58	
	13.7	Bildkoordinaten-Datei	59	
	13.8	Orientierungsparameter-Datei	61	
	13.9	Objektkoordinaten-Datei	64	
	13.10	Control-Support-Datei	65	
	13.11	Zusatzparameter-Datei	66	
	13.12	Positionskorrektur-Datei	69	
	13.13	Lagekorrektur-Datei	70	
	13.14	IMU-Fehlausrichtung-Datei	71	
	13.15	Orientierungsdatensatz-Datei	72	
	13.16	Orientierungsdatensatz-Parameter/Optionen-Datei	73	
	13.17	Programmaufruf	73	
	13.18	Programmausgabe	75	
	13.19	Objektpunktanalyse-Daten	75	
14	Installa	ation	76	
	14.1	Verzeichnisstruktur	76	
	14.2	LAPACK/BLAS-Bibliotheken	76	
Lit	Literaturverzeichnis 78			
A	Beispie		82	

Abbildungsverzeichnis

2.1	Äußere Orientierung	3
2.2	Innere Orientierung	4
3.1	Status der Standardabweichungen	13
4.1	Rahmenkamera	14
4.2	Digitalkamera	15
4.3	Ideale Zeilenkamera	16
4.4	Reale Zeilenkamera	16
5.1	Datumstransformationen	19
5.2	Lokales Tangentialsystem	20
5.3	Reihenfolge der Koordinatentransformationen	20
10.1	Direkte Georeferenzierung für Zeilenscanner	42

Tabellenverzeichnis

3.1	Ausgleichungsmodell	9
3.2	Ausgleichungsalgorithmus	10
13.1	Schlüsselworte der Projektdatei	50
13.2	Parameter-/Optionen	51
13.3	Least-Squares-Parameter-/Optionen	53
13.4	Schlüsselwörter für Längeneinheiten	53
13.5	Schlüsselwörter für Winkeleinheiten	54
13.6	Schlüsselwörter für die Methoden zur Lösung und Inversion des Normalgleichungssystems	54
13.7	Schlüsselwörter für die Methode zur Bildung der partiellen Ableitungen der Zusatzparameter	54
13.8	Netzwerkdesign-Parameter-/Optionen	55
13.9	Schlüsselwörter für den Kameratyp	56
13.10	Rahmenkamera-Parameter	56
13.11	Digitalkamera-Parameter	57
13.12	Zeilenkamera	57
13.13	Kalibrierte Zeilenkamera	58
13.14	Schlüsselwörter für das Abbildungsmodell	59
13.15	Bilddefinition	59
13.16	Bild-/Pixelkoordinaten	61
13.17	Orientierungs-/Transformationsparameter	63
13.18	Schlüsselwörter für die Parametrisierung der Drehmatrix	64
13.19	Vorzeichen von Kamerakonstante und Bildkoordinaten bei PATB äquivalenter Ein-/Ausgabe	64
13.20	Objektkoordinaten	65
13.21	Control-Support	66
13.22	Schlüsselwörter für den Objektpunkttyp	66
13.23	Zusatzparameter	68
13.24	Schlüsselwörter und Reihenfolge der Parameter für die Zusatzparameter-Modelle	68

13.25	Positionskorrektur	70
13.26	Lagekorrektur	70
13.27	IMU-Fehlausrichtung	72
13.28	Orientierungsdatensatz	72
13.29	Schlüsselwörter für die Parametrisierung der Drehmatrix	73
13.30	Orientierungsdatensatz-Parameter/Optionen	73
13.31	Optionen beim Programmaufruf	75
14.1	Hauptverzeichnis-Struktur	76
	-	

Listings

13.1	Projektdatei test.cfg	50
13.2	Parameter-/Optionen-Datei test.pr	51
13.3	Least-Squares Parameter-/Optionen-Datei test.lsp	54
13.4	Beispiel test.pnp	55
13.5	Beispiel test.ca	56
13.6	Beispiel test.im	59
13.7	Beispiel test.ic	61
13.8	Beispiel test.eo	64
13.9	Beispiel test.oc	65
13.10	Beispiel test.cs	66
13.11	Beispiel test.ap	68
13.12	Beispiel test2.ap	69
13.13	DGAP-Hilfstext	73

Einleitung

Das Programm DGAP¹ implementiert das photogrammetrische Verfahren der Blockausgleichung nach der Bündelmethode. Die Bündelmethode ist ein Verfahren zur gemeinsamen Bestimmung der Orientierungsparameter und der Objektpunktkoordinaten. Das Verfahren wird auch Bündelblockausgleichung oder kürzer Bündelausgleichung genannt.

Die Grundlagen des Verfahrens sind in vielen Lehrbüchern und Monographien beschrieben. Kraus (2004), Kraus (1996) und Mikhail u. a. (2001) behandeln alle wesentlichen Bereiche der modernen Photogrammetrie. Luhmann (2000) und Atkinson (2001) konzentrieren sich auf die Nahbereichsphotogrammetrie und Machine Vision. Karara (1989) beschränkt sich auf die nicht-topographische Nahbereichsphotogrammetrie. Slama u. a. (1980) und McGlone u. a. (2004) geben sehr umfassend den damaligen und heutigen Stand der Photogrammetrie wieder.

Darüber hinaus gibt es eine große Anzahl von Aufsätzen in Zeitschriften und Proceedings: Brown (1976), Granshaw (1980), Grün (1986) und Cooper und Cross (1988). Triggs u. a. (2000) behandelt die Bündelausgleichung aus Sicht der Computer Vision. Dabei werden viele Aspekte erwähnt, u.a. Ausgleichungsrechnung, Parametrisierung, Behandlung großer Matrizen und Netzdesign. Außerdem werden auch die Verbindungen zu Online-Verfahren und Bildzuordnung hergestellt.

¹= "Dirks General Analytical Positioning". Die Namensähnlichkeit mit dem Bündelprogramm "General Analytical Positioning" (GAP) von Horst A. Beyer (Beyer, 1992) und der Batch-Version "Scott's GAP" (SGAP) von Scott O. Mason (Mason, 1994) am Institut für Geodäsie und Photogrammetrie der Eidgenössischen Technischen Hochschule Zürich ist nicht zufällig. Die Entwicklung von DGAP begann als vereinfachte Neuimplementation von GAP in der Programmiersprache C++. Der mathematische Ansatz, die Ein- und Ausgabe und viele Optionen und Parameter sind von GAP entlehnt.

Mathematische Modelle

Als mathematische Grundlage der Bündelausgleichung wird das "photogrammetrische Abbildungsmodell" verwendet. Das Abbildungsmodell basiert auf der Zentralprojektion. In besonderen Fällen werden auch die projektive Transformation und die einfachere Affintransformation verwendet. Alle drei Modelle sind eng miteinander verwandt. Die Zentralprojektion und die Affintransformation können als besondere Fälle der projektiven Transformation aufgefasst werden.

2.1 Photogrammetrisches Abbildungsmodell

Der Zusammenhang zwischen den Koordinaten des Objektpunktes P und Koordinaten des Bildpunktes P' wird allgemein durch eine Zentralprojektion definiert, die auch als ein Spezialfall der räumlichen Ähnlichkeitstransformation verstanden werden kann:

$$\vec{X} = \vec{X}_o + \lambda \mathbf{R}\vec{p} \tag{2.1}$$

wobei

X = (X, Y, Z)	Koordinaten des Objektpunktes P,
$\vec{X}_o = (X_o, Y_o, Z_o)$	Translationsvektor mit den Koordinaten des Projektionszentrums O,
λ	Maßstabsfaktor,
$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$	räumliche Rotationsmatrix,
$\vec{p} = (\bar{x}, \bar{y}, \bar{z})$	Koordinaten des Bildpunktes P', reduzierte Bildkoordinaten bezogen auf das Projektionszentrum.

Diese Darstellung entspricht der Parameterdarstellung einer Geraden im Raum, durch den Endpunkt von \vec{X}_o mit der Richtung von $\mathbf{R}\vec{p}$. D.h. der Objektpunkt P, der Bildpunkt P' und das Projektionszentrum O liegen auf einer Geraden.

2.1.1 Äußere Orientierung

Objektseitig wird die Lage der Abbildungs-/Sensorfläche durch die Koordinaten des Projektionszentrums (*projection centre coordinates*) \vec{X}_o und die Rotationsmatrix (*rotation matrix*) **R** bestimmt. In der Photogrammetrie werden diese Parameter als Elemente der äußeren Orientierung (*exterior orientation*) bezeichnet.

Abbildung 2.1: Äußere Orientierung

Die neun Elemente der Rotationsmatrix enthalten die Richtungskosinus-Werte. Die Rotationsmatrix ist eine orthogonale Matrix. Somit bestehen zwischen den neun Elementen verschiedene Beziehungen, die Orthogonalitätsbedingungen. Meistens werden die Elemente von **R** nicht selbst bestimmt sondern besondere Gruppen von Parametern r_i verwendet, die als Rotationsparameter (*rotation parameters*) bezeichnet werden (siehe 6):

$$\mathbf{R} = \mathbf{R}(r_1, r_2, r_3, \dots, r_9).$$

Die Rotationsmatrix kann durch mindestens drei unabhängige Parameter definiert werden. Werden mehr als drei Parameter verwendet, bestehen Abhängigkeiten zwischen den Parametern. Eine in der Photogrammetrie übliche Parametrisierung (6.1) verwendet die drei unabhängigen Drehwinkel ω , ϕ und κ um die drei Koordinatenachsen:

$$\mathbf{R}(\boldsymbol{\omega},\boldsymbol{\phi},\boldsymbol{\kappa}) = \mathbf{R}_{z}(\boldsymbol{\kappa})\mathbf{R}_{v}(\boldsymbol{\phi})\mathbf{R}_{x}(\boldsymbol{\omega}).$$

2.1.2 Innere Orientierung

Bildseitig wird die Lage der Abbildungs-/Sensorfläche durch die Lage des Bildhauptpunktes x_p , y_p und die Kamerakonstante¹ c definiert. Diese drei Parameter werden auch als Elemente der inneren Orientierung (*inner/interior orientation*) bezeichnet. Bei positiver Abbildung wird der Zusammenhang zwischen den reduzierten Bildkoordinaten (*photo coordinates*) \bar{x} , \bar{y} , \bar{z} und den Bildkoordinaten x, y wird nach Slama u. a. (1980) wie folgt gebildet:

$$\bar{x} = x - x_p$$

$$\bar{y} = y - y_p$$

$$\bar{z} = -c.$$
(2.2)

¹Wird auch als Kammerkonstante bezeichnet.

Abbildung 2.2: Innere Orientierung

2.1.3 Kollinearitätsgleichung

Um für die Ausgleichung das Gauß-Markov-Modell anwenden zu können, werden in (2.1) die Beobachtungen — die reduzierten Bildkoordinaten \bar{x}, \bar{y} — von den unbekannten Parametern — Objektpunktkoordinaten X, Y, Zund Orientierungsparameter $X_o, Y_o, Z_o, r_1, r_2, \dots, r_9$ — und den Konstanten getrennt. Da $\bar{z} = -c$ eine Konstante ist, kann der Maßstabsfaktor λ eliminiert werden. Dadurch ergibt sich die sogenannte Kollinearitätsbedingung oder Kollinearitätsgleichung² (*collinear equation*)

$$\bar{x} = \bar{z} \frac{r_{11}\Delta X + r_{21}\Delta Y + r_{31}\Delta Z}{r_{13}\Delta X + r_{23}\Delta Y + r_{33}\Delta Z}$$

$$\bar{y} = \bar{z} \frac{r_{12}\Delta X + r_{22}\Delta Y + r_{32}\Delta Z}{r_{13}\Delta X + r_{23}\Delta Y + r_{33}\Delta Z}$$
(2.3)

mit den Koordinatendifferenzen

$$\Delta X = X - X_o$$

$$\Delta Y = Y - Y_o$$

$$\Delta Z = Z - Z_o$$

und den Elementen der Rotationsmatrix **R** $r_{11}, r_{12}, \ldots, r_{33}$.

²Schon beim Aufstellen der Kollinearitätsgleichung treten zwei Unterschiede auf, die beim Vergleich mit anderen Bündelausgleichungen und bei der Übernahme der Orientierungsdaten aus anderen Quellen berücksichtigt werden müssen:

- 1. Die Rotationsmatrix kann als Drehung vom Objekt- in das Bildkoordinatensystem **R** oder vom Bild- in das Objektkoordinatensystem **R**' aufgefasst werden. Es gilt: $\mathbf{R} = \mathbf{R}^{T}$.
- 2. Und in welcher Weise das Vorzeichen der Kamerakonstanten *c* berücksichtigt wird. Entweder wird das Vorzeichen von *c* in der Gleichung mit einbezogen, oder es wird $\bar{z} = -c$ verwendet oder es wird $\bar{z} = +c$ gesetzt. Letzeres ist gleichbedeutend mit einer Drehung um die Z-Achse um 180° oder der Multiplikation mit der Drehmatrix

$$\left[\begin{array}{rrrrr} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

oder der Messung im negativen Bild.

Zur Kompensation systematischer Fehler im Bildraum wird die Kollinearitätsgleichung (2.3) oft um die Terme Δx und Δy erweitert:

$$\bar{x} = \bar{z} \frac{r_{11}\Delta X + r_{21}\Delta Y + r_{31}\Delta Z}{r_{13}\Delta X + r_{23}\Delta Y + r_{33}\Delta Z} + \Delta x$$

$$\bar{y} = \bar{z} \frac{r_{12}\Delta X + r_{22}\Delta Y + r_{32}\Delta Z}{r_{13}\Delta X + r_{23}\Delta Y + r_{33}\Delta Z} + \Delta y.$$
(2.4)

Diese Terme sind ganz allgemein Funktionen der zusätzlichen Parameter oder Zusatzparameter³ (*additional parameters*) a_1, \ldots, a_n :

$$\Delta x = f_x(a_1, a_2, \dots, a_n)$$

$$\Delta y = f_y(a_1, a_2, \dots, a_n).$$
(2.5)

Als Funktionen der Zusatzparameter werden verschiedene Modelle vorschlagen (siehe 9). Diese Modelle erlauben auch eine Kalibrierung der Kamera.

Allgemein können die Kollinearitätsgleichungen als <u>nichtlineare</u> Funktionen der unbekannten Parameter formuliert werden:

$$x = F_x(X, Y, Z, X_o, Y_o, Z_o, \omega, \phi, \kappa, x_p, y_p, c, a_1, \dots, a_n)$$

$$y = F_y(X, Y, Z, X_o, Y_o, Z_o, \omega, \phi, \kappa, x_p, y_p, c, a_1, \dots, a_n).$$
(2.6)

Darin bedeuten

ıler.

In der Regel treten die Elemente der äußeren Orientierung und die Objektpunktkoordinaten immer als unbekannte Parameter auf und die Elemente der inneren Orientierung nur bei einer Kamerakalibrierung. Die zusätzlichen Parameter werden bei Bedarf eingeführt und bei einer Kamerakalibrierung.

Im Rahmen der Selbstkalibrierung mit zusätzlichen Parametern ist es möglich die innere Orientierung zu bestimmen (siehe 9). Hierbei werden nicht die Parameter selbst, sondern deren Änderungen Δx_p , Δy_p und Δc bestimmt.

Das funktionale Modell in (2.4) setzt voraus, dass sich die verwendeten Koordinaten auf ein kartesisches Koordinatensystem (siehe 5.1) beziehen. Diese Voraussetzung ist sowohl bei den Bild- und Objektkoordinaten nicht immer hinreichend genau erfüllt. Durch geeignete 2/3-D-Transformationen sind die Koordinaten eventuell vorher in ein kartesisches Koordinatensystem zu transformieren. Diese Transformationen sind nicht Teil dieser Software.

2.2 **Projektive Transformation**

Die projektive Transformation ist eine Verallgemeinerung der Zentralprojektion. Das Abbildungsmodell ist auch als direkte lineare Transformation (DLT) bekannt (Karara 1980 und Kraus 1996). Bei der projektiven

³In der Bündelausgleichung treten üblicherweise die Orientierungsparameter und die Objektpunktkoordinaten <u>immer</u> als zu schätzende Parameter auf. Alle weiteren Parameter, die darüberhinaus das Abbildungsmodell erweitern, werden zusammenfassend auch als zusätzliche Parameter oder Zusatzparameter bezeichnet.

Transformation wird der Zusammenhang zwischen den zweidimensionalen Bild- oder Sensorkoordinaten⁴ und den dreidimensionalen Objektkoordinaten wie folgt hergestellt:

$$x = \frac{L_1 X + L_2 Y + L_3 Z + L_4}{L_9 X + L_{10} Y + L_{11} Z + 1} + \Delta x$$

$$y = \frac{L_5 X + L_6 Y + L_7 Z + L_8}{L_9 X + L_{10} Y + L_{11} Z + 1} + \Delta y$$
(2.7)

wobei

x,y(nicht reduzierte) Bild- oder Sensorkoordinaten L_1,L_2,\ldots,L_{11} Transformationsparameter.

Die DLT kommt ohne die Kenntnis der inneren Orientierung aus. Außerdem muss das Bild- oder Sensorkoordinatensystem nicht orthogonal sein. Daher eignet sich das Modell besonders für die geometrische Auswertung von Nicht- und Teilmessbildern. Wong (1975) unterscheidet zwei Lösungsansätze, die "direkte Lösung" (*direct solution approach*) und die "iterative Lösung" (*iterative solution approach*):

2.2.1 Direkte Lösung

Sind die Objektpunktkoordinaten bekannt (= Passpunkte), vermitteln die Transformationsgleichungen (2.7) einen linearen Zusammenhang zwischen den Bild- und den Objektkoordinaten. Daher können die 11 Transformationsparameter L_1, L_2, \ldots, L_{11} direkt aus den Transformationsgleichungen bestimmt werden. Da jeder Passpunkt zwei Beobachtungsgleichungen liefert, sind mindestens 6 Passpunkte zur Orientierung notwendig. Werden die Transformationsgleichungen als Kollinearitätsgleichungen aufgefasst, entspricht die DLT dem räumlichen Rückwärtsschnitt. Nach Umformung von Gleichung (2.7) erhält man die linearen Gleichungen:

$$x = \frac{X}{q}L_{1} + \frac{Y}{q}L_{2} + \frac{Z}{q}L_{3} + \frac{1}{q}L_{4} - x\frac{X}{q}L_{9} - x\frac{Y}{q}L_{10} - x\frac{Z}{q}L_{11}$$

$$y = \frac{X}{q}L_{5} + \frac{Y}{q}L_{5} + \frac{Z}{q}L_{7} + \frac{1}{q}L_{8} - y\frac{X}{q}L_{9} - y\frac{Y}{q}L_{10} - y\frac{Z}{q}L_{11}$$
(2.8)

mit

$$q = XL_9 + YL_{10} + ZL_{11} + 1.$$

Man kann auch mit q auf der linken Seite multiplizieren und nach 0 umstellen. Dann erhält man die Bedingungsgleichungen

$$XL_{1} + YL_{2} + ZL_{3} + L_{4} - xXL_{9} - xYL_{10} - xZL_{11} - x = 0$$

$$XL_{5} + YL_{5} + ZL_{7} + L_{8} - yXL_{9} - yYL_{10} - yZL_{11} - y = 0$$
(2.9)

auf denen direkt das Gauß-Helmert-Modell angewendet werden kann.

2.2.2 Iterative Lösung

Allgemein können die Transformationsgleichungen als <u>nicht</u> lineare Funktionen der unbekannten Parameter formuliert werden:

$$x = F_x(X, Y, Z, L_1, L_2, \dots, L_{11}, a_1, \dots, a_n)$$

$$y = F_y(X, Y, Z, L_1, L_2, \dots, L_{11}, a_1, \dots, a_n).$$
(2.10)

⁴Bei der Messung in analogen Bildern die Komparatorkoordinaten.

Darin bedeuten

X, Y, Z	Objektkoordinaten
L_1, L_2, \ldots, L_{11}	Transformationsparameter
a_1,\ldots,a_n	zusätzliche Parameter zur Erfassung systematischer Bildfehler

Damit können die unbekannten Objektpunktkoordinaten und Transformationsparameter simultan in einer Ausgleichung bestimmt werden. In diesem Fall ist jedoch eine Linearisierung des Modells und die Einführung von Näherungswerten notwendig. Die Näherungswerte für Transformationsparameter können durch Anwendung der direkten Lösung gewonnen werden. Zur Erfassung systematischer Bildfehler, z.B. der radialen und dezentrischen Verzeichnung, kann das Modell um zusätzliche Parameter erweitert werden (Karara und Abdel-Aziz 1974 und Bopp und Krauss 1978c).

Die DLT kann aus der Kombination der Zentralprojektion mit einer affinen 5-Parameter-Transformation hergeleitet werden (Abdel-Aziz und Karara, 1971). Dabei ergeben sich die 11 DLT-Parameter aus den 6 Elementen der äußeren Orientierung und den 5 Elementen einer Affintransformation. Die Affintransformation beschreibt die Transformation zwischen den möglicherweise (affinen) schiefwinkligen Bild- oder Sensorkoordinatensystem und dem orthogonalen reduzierten Bildkoordinatensystem, durch zwei Verschiebungsparameter ($\hat{=}$ der Hauptpunktlage), einen Massstabfaktor ($\hat{=}$ der Kamerakonstante), einen Massstabunterschied *m* und einer Scherung *d* ($\hat{=}$ Nicht-Orthogonalität) zwischen den beiden Bildkoordinatenachsen. Alternativ kann der Massstabfaktor und der Massstabunterschied auch durch zwei Kamerakonstanten c_x und c_y ausgedrückt werden.

2.2.3 Bestimmung der Orientierungsparameter

Die DLT-Parameter können auch durch die Parameter einer erweiterten Zentralprojektion und umgekehrt ausgedrückt werden (Bopp und Krauss 1978a, Bopp und Krauss 1978b, Kratky 1989, Kraus 1996). Die DLT eignet sich damit auch zur Bestimmung von Näherungswerten für die Parameter der äußeren und inneren Orientierung. Aus den DLT-Parametern ergeben sich die Elemente der inneren und äußeren Orientierung wie folgt:

Bildhauptpunkt

$$x_p = (L_1 L_9 + L_2 L_{10} + L_3 L_{11})k^2$$

$$y_p = (L_5 L_9 + L_6 L_{10} + L_7 L_{11})k^2$$
(2.11)

Kamerakonstanten in x- und y-Richtung

$$c_x = \sqrt{L_1^2 + L_2^2 + L_3^2)k^2 - x_p^2}$$

$$c_y = \sqrt{L_5^2 + L_6^2 + L_7^2)k^2 - y_p^2}$$
(2.12)

Koordinanten des Projektionszentrums

$$\begin{bmatrix} X_o \\ Y_o \\ Z_o \end{bmatrix} = \begin{bmatrix} L_1 & L_2 & L_3 \\ L_5 & L_6 & L_7 \\ L_9 & L_{10} & L_{11} \end{bmatrix}^{-1} \begin{bmatrix} -L_4 \\ -L_8 \\ -1 \end{bmatrix}$$
(2.13)

Elemente der Drehmatrix

$$r_{13} = -kL_9$$

$$r_{23} = -kL_{10}$$

$$r_{33} = -kL_{11}$$
(2.14)

$$r_{11} = (kL_1 + x_p r_{13})/c_x$$

$$r_{21} = (kL_2 + x_p r_{23})/c_x$$

$$r_{31} = (kL_3 + x_p r_{33})/c_x$$

$$r_{12} = (kL_5 + y_p r_{13})/c_y$$

$$r_{22} = (kL_6 + y_p r_{23})/c_y$$

$$r_{32} = (kL_7 + y_p r_{33})/c_y$$
(2.16)

wobei

$$k^2 = 1/(L_9^2 + L_{10}^2 + L_{11}^2).$$

Bopp und Krauss (1978a) reduzieren die 11 DLT-Parameter auf die 9 Parameter der inneren und äußeren Orientierung durch zwei zusätzliche Bedingungen. Durch hinzufügen von drei weiteren Bedingungen kann die DLT auf die 6 Parameter der äußeren Orientierung reduziert werden. Durch die zusätzlichen Bedingungen kann eine bekannte innere Orientierung erzwungen werden.

Ähnlich wie beim photogrammetrischen Modell wird die Genauigkeit durch die Aufnahmekonfiguration (Aufnahmeabstand, Aufnahmebasis und Konvergenzwinkel) und der Messgenauigkeit der Bildkoordinaten bestimmt. Vom besonderen Nachteil der DLT gegenüber den photogrammetrischen Modell ist, dass mehr Passpunkte notwendig sind, die außerdem nicht in einer Ebene liegen dürfen. Auch besteht die Möglichkeit der Überparametrisierung.

2.3 Affine Transformation

Für hochauflösende Satellitenbilder werden Kameras mit besonders langer Brennweite und sehr kleinen Öffnungswinkel verwendet. Dadurch sind die Bildstrahlen fast parallel und es entsteht eine affine Abbildung, die durch eine affine Transformation bzw. ein lineares Polynom beschrieben werden kann:

$$\begin{aligned} x &= A_1 X + A_2 Y + A_3 Z + A_4 + \Delta x \\ y &= A_5 X + A_6 Y + A_7 Z + A_8 + \Delta y. \end{aligned}$$
 (2.17)

wobei

 A_4, A_8 Translations-/Verschiebungsparameter $A_1, A_2, A_3, A_5, A_6, A_7$ lineare Transformationsparameter.

Allgemein können die Transformationsgleichungen als <u>lineare</u> Funktionen der unbekannten Parameter formuliert werden:

$$x = F_x(X, Y, Z, A_1, \dots, A_8, a_1, \dots, a_n)$$

$$y = F_y(X, Y, Z, A_1, \dots, A_8, a_1, \dots, a_n).$$
(2.18)

Darin bedeuten

X,Y,Z	Objektkoordinaten
A_1,\ldots,A_8	Transformationsparameter
a_1,\ldots,a_n	zusätzliche Parameter zur Erfassung systematischer Bildfehler.

Ausgleichung vermittelnder Beobachtungen

3.1 Ausgleichungsalgorithmus

Die Ausgleichung erfolgt nach vermittelnden Beobachtungen (Gauß-Markov-Modell). Das Ausgleichungsmodell und die Rechenformeln sind in Tabelle 3.1 und 3.2 zusammengestellt (Pelzer, 1985).

$\hat{\mathbf{L}} = \mathbf{L} + \mathbf{v} = \boldsymbol{\varphi}(\hat{\mathbf{X}})$	funktionales Modell
$\hat{\mathbf{l}} = \mathbf{l} + \mathbf{v} = \mathbf{A}\hat{\mathbf{x}}$	linearisiertes funktionales Modell
$\Sigma_{ll} = \sigma_0^2 \mathbf{Q}_{ll}$	stochastisches Modell
wobei	
$\mathbf{l} = \mathbf{L} - \mathbf{L}_0 = \mathbf{L} - \boldsymbol{\varphi}(\mathbf{X}_0)$	gekürzter Beobachtungsvektor
$\mathbf{A} = \left(\frac{\partial \boldsymbol{\varphi}(\mathbf{X})}{\partial \mathbf{X}}\right)_0$	Designmatrix

Tabelle 3.1: Ausgleichungsmodell

$\mathbf{P} = \mathbf{Q}_{ll}^{-1} = (1/\sigma_0^2 \Sigma_{ll})^{-1}$	Gewichtsmatrix	
$\mathbf{N} = \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A}$	Normalgleichungsmatrix	
$\mathbf{n} = \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{l}$	Absolutglied	
$\mathbf{N}\hat{\mathbf{x}} = \mathbf{n}$	Lösung des Normalgleichungssystems	
$\hat{\mathbf{X}} = \mathbf{X}_0 + \hat{\mathbf{x}}$	geschätzte (ausgeglichene) Parameter	
f = n - u	Anzahl der Freiheitsgrade (Redundanz)	
$\mathbf{v}^{\mathrm{T}}\mathbf{P}\mathbf{v} = \mathbf{l}^{\mathrm{T}}\mathbf{P}\mathbf{l} - \mathbf{n}^{\mathrm{T}}\hat{\mathbf{x}}$	gewichtete Quadratsumme der Verbesserungen	
$\hat{\sigma}_0^2 = \mathbf{v}^{\mathrm{T}} \mathbf{P} \mathbf{v} / f$	a posteriori Varianz der Gewichtseinheit	
$\mathbf{v} = \boldsymbol{\varphi}(\hat{\mathbf{X}}) - \mathbf{L}$	Verbesserungen	
$\mathbf{Q}_{xx} = \mathbf{N}^{-1}$	Inversion	
$\Sigma_{xx} = \hat{\sigma}_0^2 \mathbf{Q}_{xx}$	Kovarianzmatrix der ausgeglichenen Parameter	

Tabelle 3.2: Ausgleichungsalgorithmus

Da die verwendeten funktionalen Modelle (2.4) und (2.7) nicht linear sind, wird der funktionale Zusammenhang durch eine Reihenentwicklung nach Taylor linearisiert:

$$\tilde{\mathbf{L}} = \boldsymbol{\varphi}(\mathbf{X}_0) + \left(\frac{\partial \boldsymbol{\varphi}(\mathbf{X})}{\partial \mathbf{X}}\right)_0 (\tilde{\mathbf{X}} - \mathbf{X}_0).$$
(3.1)

Diese Implementation verwendet den konventionellen Ansatz. Darin erscheinen die Bildkoordinaten als Beobachtungen L, und die Koordinaten der Objektpunkte, die Orientierungsparameter (Parameter der äußeren Orientierung) und die zusätzlichen Parameter als unbekannte Parameter $\hat{\mathbf{X}}$ und bekannte Parameter als (quasi) Konstanten¹ c. Werden kleine Verbesserungen v an den tatsächlich beobachteten Bildkoordinaten zugelassen, führt dieses zu den nichtlinearen Verbesserungsgleichungen:

$$\hat{\mathbf{L}} = \mathbf{L} + \mathbf{v} = \boldsymbol{\varphi}(\hat{\mathbf{X}}, \mathbf{c}). \tag{3.2}$$

Die Linearisierung ergibt dann die linearisierten Verbesserungsgleichungen

$$\mathbf{v} = \mathbf{A}_p \hat{\mathbf{x}}_p + \mathbf{A}_t \hat{\mathbf{x}}_t + \mathbf{A}_a \hat{\mathbf{x}}_a - \mathbf{l}; \quad \mathbf{P}$$
(3.3)

mit

V	Verbesserungen der Bildkoordinaten
$\mathbf{A}_p, \mathbf{A}_t, \mathbf{A}_a$	Designmatrizen der unbekannten Parameter: Objektkoordinaten (Index p),
	Orientierungsparameter (t) und zusätzlichen Parametern (a)
$\hat{\mathbf{x}}_p, \hat{\mathbf{x}}_t, \hat{\mathbf{x}}_a$	Zuschläge zu den unbekannten Parametern
1	gekürzter Beobachtungsvektor der Bildkoordinaten
Р	Gewichtsmatrix der Bildkoordinaten.

Wegen der Linearisierung werden nur Zuschläge $\hat{\mathbf{x}}$ zu den genäherten unbekannten Parametern (Näherungswerte) \mathbf{X}_o berechnet. Die gesuchten unbekannten Parameter ergeben sich schließlich mit

$$\hat{\mathbf{X}} = \mathbf{X}_o + \hat{\mathbf{x}}.\tag{3.4}$$

¹Die Konstanten spielen in der Ausgleichung nur im funktionalen Modell eine Rolle und werden daher bei der Notation in der Regel weggelassen.

Der gekürzte Beobachtungsvektor ergibt sich aus der Linearisierung:

$$\mathbf{l} = \mathbf{L} - \mathbf{L}_o = \mathbf{L} - \boldsymbol{\varphi}(\mathbf{X}_o, \mathbf{c}). \tag{3.5}$$

wobei

$\mathbf{L}^{\mathrm{T}} = [\begin{array}{ccc} x_1 & y_1 & \dots, \end{array}]^{\mathrm{T}}$	Beobachtungsvektor mit den beobachteten Bildkoordinaten
$\mathbf{L}_{o}^{\mathrm{T}} = [\begin{array}{ccc} x_{1o} & y_{1o} & \dots, \end{array}]^{\mathrm{T}}$	genäherter Beobachtungsvektor mit den genäherten Bildkoordinaten
\mathbf{X}_{o}	genäherte Parameter.

Da der linearisierte Zusammenhang den tatsächlichen mathematische Zusammenhang nur unvollständig beschreibt, muss der Ausgleichungsalgorithmus iterativ angewendet werden. Im neuen Iterationsschritt werden die geschätzten Parameter als neue verbesserte Näherungswerte verwendet:

$$(\mathbf{X}_o)_i = (\hat{\mathbf{X}})_{i-1}.\tag{3.6}$$

Die Iteration wird abgebrochen wenn die Zuschläge für die unbekannten Parameter kleiner als die Konvergenzkriterien sind oder die gewichtete Quadratsumme der Verbesserungen nicht kleiner wird (Divergenztest)

$$(\mathbf{v}^{\mathrm{T}}\mathbf{P}\mathbf{v})_{i-1} < (\mathbf{v}^{\mathrm{T}}\mathbf{P}\mathbf{v})_{i}$$
(3.7)

oder eine maximale Anzahl von Iterationschritten erreicht ist.

Als besondere Konvergenzkriterien finden Verwendung:

- 1. Objektkoordinaten (Index p) $\hat{x}_p < x_{p,lim}$
- 2. Koordinaten des Projektionszentrums (s) $\hat{x}_s < x_{s,lim}$
- 3. Drehwinkel oder die entsprechenden Parameter bei einer anderen Parametrisierung der Rotationsmatrix (*r*) $\hat{x}_r < x_{r,lim}$

Ein allgemeines Konvergenzkriterium (Kraus, 1996) ergibt sich aus der Verbesserungsgleichung. Gehen die Zuschläge gegen Null

$$\hat{\mathbf{x}} \to \mathbf{0} \quad \text{wird} \quad \mathbf{v} = -\mathbf{l}.$$

Daher können die Iterationen abgebrochen werden, wenn die vorgegebene Genauigkeit ε für das gesamte Gleichungssystem unterschritten wird:

$$\mathbf{l}^{\mathrm{T}}\mathbf{l} - \mathbf{v}^{\mathrm{T}}\mathbf{v} < \varepsilon$$
.

Um die Berechnung der Verbesserungen \mathbf{v} in der Iterationsschleife zu vermeiden und da die Summen $\mathbf{l}^{T}\mathbf{P}\mathbf{l}$ und $\mathbf{A}^{T}\mathbf{P}\mathbf{l}$ unmittelbar beim Aufbau des Normalgleichungssystems gebildet werden können, eignet sich die Beziehung

$$\mathbf{l}^{\mathrm{T}}\mathbf{P}\mathbf{l} - \mathbf{v}^{\mathrm{T}}\mathbf{P}\mathbf{v} = \hat{\mathbf{x}}^{\mathrm{T}}(\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{l}) < \varepsilon$$
(3.8)

besser als Abbruchskriterium.

In der Regel sollten die Konvergenzkriterien in weniger als 10 und in höchstens 20 Iterationsschritten erreicht sein.

3.2 Standardabweichungen der Beobachtungen

Den beobachteten Bildkoordinaten L_i wird eine Standardabweichung σ_i zugeordnet. Die Standardabweichungen bzw. Varianzen σ_i^2 sind in der Kovarianzmatrix Σ_{ll} zusammengefasst. Es wird angenommen — wie allgemein üblich —, dass die Bildkoordinaten voneinander stochastisch unabhängig sind. Die Kovarianzmatrix Σ_{ll} , die Kofaktormatrix \mathbf{Q}_{ll} und die Gewichtsmatrix \mathbf{P} vereinfachen sich dadurch zu Diagonalmatrizen. Damit sind die Gewichte p_i umgekehrt proportional zu den Quadraten der Standardabweichungen bzw. Varianzen σ_i^2 :

$$\frac{p_i}{p_0} = \frac{\sigma_0^2}{\sigma_i^2}.$$

Bei einer a priori gegebene "Standardabweichung der Gewichtseinheit" (*standard deviation of unit weight*) σ_0 mit dem zugehörigen Gewicht $p_0 = 1$ (daher der Name) ergeben sich dann die einzelnen Gewichte p_i zu

$$p_i = \frac{\sigma_0^2}{\sigma_i^2}.\tag{3.9}$$

3.3 Direkte Beobachtung der unbekannten Parameter

In der Ausgleichung werden folgende Gruppen von Parametern bestimmt:

- Objektkoordinaten,
- Orientierungs-/Transformationsparameter und
- zusätzliche Parameter, z.B. zur Korrektur systematischer Bildfehler oder Positions- und Lagekorrekturparameter.

Dabei treten die Parameter der Objektkoordinaten und der Orientierungen <u>immer</u> als unbekannte Parameter auf. Die zusätzlichen Parameter sind dagegen optional.

Aus Gründen der Flexibilität und allgemeinen Anwendbarkeit werden grundsätzlich <u>alle</u> unbekannten Parameter \hat{X}_i zusätzlich als direkte Beobachtungen eingeführt und ebenfalls eine Standardabweichung σ_i zugeordnet (stochastische Gewichtung). Damit ergeben sich zusätzlich zur Gleichung (3.3) die folgenden Verbesserungsgleichungen:

$$\begin{bmatrix} \mathbf{v}_p \\ \mathbf{v}_t \\ \mathbf{v}_a \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}_p \\ \hat{\mathbf{x}}_t \\ \hat{\mathbf{x}}_a \end{bmatrix} - \begin{bmatrix} \mathbf{l}_p \\ \mathbf{l}_t \\ \mathbf{l}_a \end{bmatrix}; \begin{bmatrix} \mathbf{P}_p & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_t & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{P}_a \end{bmatrix}$$
(3.10)

mit

$\mathbf{v}_p, \mathbf{v}_t, \mathbf{v}_a$	Verbesserungen der unbekannten Parameter: Objektkoordinaten (Index p),
	Orientierungsparameter (t) und zusätzliche Parameter (a)
$\mathbf{l}_p, \mathbf{l}_t, \mathbf{l}_a$	gekürzter Beobachtungsvektor der unbekannten Parameter
$\mathbf{P}_p, \mathbf{P}_t, \mathbf{P}_a$	Gewichtsmatrix der unbekannten Parameter
Ι	Einheitsmatrix.

Der Status eines unbekannten Parameters, ob unbekannt, beobachtet oder eliminiert/fest, kann damit einfach über die zugehörige Standardabweichung bzw. das Gewicht gesteuert werden.

Innerhalb des Ausgleichungsalgorithmus erfolgt <u>keine</u> Unterscheidung der Parameter entsprechend ihrer Standardabweichung. Eine Klassifizierung (*state*) in eliminierte/festgehaltene, beobachtete und unbekannte Parameter wird <u>nur</u> für die Ausgabe vorgenommen.

Die Grenzwerte für die Standardabweichungen σ_{min} und σ_{max} legen fest, ob sie als unbekannt, beobachtet oder eliminiert/fest klassifiziert werden (siehe Abb. 3.1):

Abbildung 3.1: Status der Standardabweichungen

eliminierter/fester Parameter	eli minated/ fix ed	$0 < \sigma_i < \sigma_{min}$
beobachteter Parameter	obs erved	$\sigma_{min} \leq \sigma_i \leq \sigma_{max}$
unbekannter Parameter	unk nown	$\sigma_i > \sigma_{max}$

Die Grenzwerte σ_{min} und σ_{max} sind frei wählbar. Sie können in der Least-Squares-Parameter-/Optionendatei gesetzt werden. Zwei weitere wählbare Konstanten $\sigma_{min,u}$ und $\sigma_{max,u}$ definieren die Voreinstellung für eliminierte und unbekannte Parameter. Für diese Werte gilt $\sigma_{min,u} < \sigma_{min}$ und $\sigma_{max,u} > \sigma_{max}$.

3.4 Standardabweichungen der ausgeglichenen Parameter

Die Standardabweichungen der ausgeglichenen/geschätzten Parameter ergibt sich nach

$$\hat{\sigma}_i = \hat{\sigma}_0 \sqrt{q_{ii}} \,. \tag{3.11}$$

Dabei ist $\hat{\sigma}_0$ die a posteriori Standardabweichung der Gewichtsheit und q_{ii} die Diagonalelemente der Kofaktormatrix \mathbf{Q}_{xx} (Kofaktoren).

Kameras

4.1 Analogkameras

Bei Analogkameras wird die optische Abbildung in der Bildebene durch einen chemischen Sensor (photographische Bildaufzeichnung) aufgezeichnet. Der chemische Sensor besteht aus einer photographischen Schicht, die auf Film oder, heute eher selten, auf Glasplatten aufgebracht ist. Bei analogen Messkameras¹ sind in der Bildebene Rahmenmarken angebracht. Diese vier oder mehr Rahmenmarken definieren das Rahmenmarkenkoordinatensystem. Die Rahmenmarken werden bei der Belichtung zusammen mit dem Aufnahmeobjekt abgebildet. Die Abbildung der Rahmenmarken ermöglicht es, die in den Bildern vorgenommenen Messungen, auf das allen Bildern gemeinsame Rahmenmarkenkoordinatensystem der Messkamera, zu überführen (Rahmenmarkentransformation). Die Bestimmung der Sollkoordinaten der Rahmenmarken erfolgt, zusammen mit der Bestimmung der Kamerakonstante und der Objektivverzeichnung, durch eine Kamerakalibrierung.

Abbildung 4.1: Rahmenkamera

4.2 Digitalkameras

Bei Digitalkameras ist in der Bildebene ein Flächensensor angebracht. Die Bildelemente oder Pixel sind als $n \times m$ -dimensionales Feld, Matrix oder Array organisiert und definieren das Pixelkoordinatensystem (s. Abb.

¹Wird auch als Messkammer bezeichnet.

4.2). *m* ist die Anzahl der Zeilen und *n* ist die Anzahl der Spalten der Matrix. Wie in der Computergraphik üblich, bildet die Mitte des linken oberen Pixels den Ursprung des *c*,*r*-Pixelkoordinatensystems mit den Koordinaten $(0;0)^2$ Die horizontale positive *c*- oder Spalten-(*column*-)Achse zeigt in Zeilenrichtung nach rechts und die senkrechte positive *r*- oder Zeilen-(*row*)-Achse in Spaltenrichtung nach unten. Der Maßstab ist durch die Pixelgröße in Spalten- Δc und Zeilenrichtung Δr festgelegt.

Die Lage des Bildkoordinatensystems (Image Coordinate System (ICS) location) wird durch die Mitte der Sensorfläche definiert mit

$$c_0 = (n-1)/2$$

$$r_0 = (m-1)/2$$
(4.1)

in Pixelkoordinaten. Mit der ICS-Definition und mit der Pixelgröße ergeben sich die Bildkoordinaten zu

$$x = (c - c_0)\Delta c$$

$$y = -(r - r_0)\Delta r.$$
(4.2)

Abbildung 4.2: Digitalkamera

4.3 Zeilenkameras

Bei der digitalen Zeilen-/Pushbroom-Kamera-/Scanner sind eine oder mehrere Sensorzeilen in der Bildebene angebracht. Bei einer idealen Zeilenkamera (Abb. 4.3) befindet sich die Sensorzeile senkrecht und symmetrisch zur x-Achse an der Position x_0 . Die x-Bildkoordinate ist dann

$$x = x_0 = const. \tag{4.3}$$

Die y-Bildkoordinate ergibt sich aus der Pixelgröße und der Spaltenposition des Bildkoordinatensystems $c_0 = (n-1)/2$ mit

$$y = (c - c_0)\Delta c. \tag{4.4}$$

Bei einer realen Zeilenkamera (Abb. 4.4) wird die Position mehrerer Pixel der Sensorzeile durch eine Laborkalibrierung oder durch Selbstkalibierung bestimmt. Aus der Position in der Scannzeile *c* ergeben sich die Bildkoordinaten durch linearer Interpolation zwischen den benachbarten (kalibrierten) Pixelpositionen:

$$c \Rightarrow (x, y). \tag{4.5}$$

6

²Man findet auch andere Definitionen, z.B. (1;1) für die Mitte oder (0;0) für die linke obere Ecke des linken oberen Pixels.

Abbildung 4.3: Ideale Zeilenkamera

Abbildung 4.4: Reale Zeilenkamera

Objektkoordinaten

5.1 Koordinatensysteme

Die funktionalen Modelle (2.4), (2.7) und (2.17) gelten strenggenommen nur für kartesische Koordinaten (mit drei paarweise orthogonal stehende Koordinatenachsen). In der Photogrammetrie werden dazu Rechtssysteme verwendet: x- (Abszisse), y- (Ordinate) und z-Achse (Applikate). Dagegen sind geodätische Koordinatensysteme meist als Linkssysteme definiert: die x- (Abszisse) zeigt in die geodätische Nordrichtung, die z- (Höhe) zeigt in Richtung der Ellipsoidnormalen und die y-Achse (Ordinate) zeigt nach Osten und steht senkrecht auf x und y.

Bei Nahbereichsanwendungen ist diese Voraussetzung in der Regel gegeben. Dazu werden meistens projektbezogene lokale Bezugssystem definiert. In der Aerotriangulation für Luftaufnahmen und bei der Orientierung von Satellitenaufnahmen liegen die Passpunkte meist in einem Bezugs-/Koordinatensystem der Landesvermessung vor, in dem auch die spätere Auswertung erfolgen soll. Hierbei ist zu beachten, dass die Referenzsysteme für die Lage und die Höhe unterschiedlich definiert sind. Während sich die zweidimensionalen Lagekoordinaten auf ein Referenzellipsoid beziehen, beziehen sich die eindimensionalen Höhen auf das Geoid bzw. das Quasigeoid.

Den Lagekoordinatensystemen liegen geodätischen Abbildungen zugrunde, z.B. die Gauß-Krüger-, UTM- oder Lambert-Abbildung. Dabei wird der Abszissenwert X^L nach Norden positiv und Ordinatenwert Y^L nach Osten positiv gezählt. Um ausschliesslich positive Koordinatenwerte zu erhalten sind manchmal die Abszissenund Ordinatenwerte durch einen konstanten Zuschlag modifiziert. Bei den Höhensystemen werden meist die orthometrische Höhe *H* bzw. die Normalhöhe H^N verwendet.

Wenn möglich werden die Landeskoordinaten Y^L , X^L , H bzw. H^N in ein lokales Tangentialsystem¹ transformiert. Dazu wird ein lokales tangentiales (ellipsoidisch topozentrisches) Koordinatensystem definiert, dessen Ursprung (Topozentrum) ϕ_B , λ_B , h_B in etwa in der Mitte des Auswertegebietes liegt. Die positive Z^T -Achse zeigt in Richtung der Ellipsoidnormalen, die positive Y^T -Achse steht senkrecht auf der Z^T -Achse und liegt in der geodätischen Meridianebene in Nordrichtung. Die positive X^T -Achse steht senkrecht auf der Merdianebene und zeigt nach Osten und vervollständigt so das kartesische Rechtssystem.

Die Transformation zwischen beiden Koordinatensystemen kann streng in vier Schritten erfolgen (siehe Abb. 5.3).

1. Da unterschiedliche Bezugssysteme für Lage und Höhe verwendet werden, erfolgt die Transformation zwischen Landeskoordinaten und ellipsoidischen oder geodätischen Koordinaten ϕ , λ , h getrennt. Für

¹Dieses System wird auch als *Local Space Rectangular (LSR) coordinate system* bezeichnet.

die Lagekoordinaten erfolgt die Transformation gemäß den üblichen Abbildungsgleichungen:

$$Y^L, X^L \Leftrightarrow \phi, \lambda.$$
 (5.1)

Für die Abbildungsgleichungen und ihre Umkehrung siehe z.B. Großmann (1976) oder Heck (1987).

Die Höhenbezugsfäche für die orthometrische Höhe *H* ist das Geoid; bzw. für die Normalhöhen H^N das Quasigeoid. Der Abstand des Geoids bzw. des Quasigeoids vom Ellipsoid wird als Geoidundulation² N_G bzw. N_{QG} bezeichnet. Der Zusammenhang zwischen den Höhensystemen ist definiert durch

$$h = H + N_G \quad \text{bzw.} \quad h = H^N + N_{OG}. \tag{5.2}$$

Die Geoidundulationen werden meistens vernachlässigt, da die Werte nicht bekannt sind. Die Vernachlässigung der Geoidundulationen führt zu einer konstanten Höhenverschiebung im Auswertegebiet. Dieser Effekt wird von den Orientierungsparametern weitgehend kompensiert.

2. Die Umformung zwischen geodätische und kartesische geozentrische Koordinaten X, Y, Z erfolgt mit

$$X = (N+h)\cos\phi\cos\lambda$$

$$Y = (N+h)\cos\phi\sin\lambda$$

$$Z = [(1-e^2)N+h]\sin\phi.$$
(5.3)

Dabei ist

$$N = \frac{a}{\sqrt{1 - e^2 \sin^2 \phi}}$$

der Querkrümmungsradius, *a* die Länge der großen Halbachse und *e* die erste numerische Exzentrizität, die das Rotationsellipsoid geometrisch beschreiben. Die Umkehrung der Aufgabe ist etwas aufwändiger. Ein Lösung kann aber recht einfach durch iterative Verfahren gefunden werden (Heck, 1987).

3. Sollen die Koordinaten der Landesvermessung mit Positionen aus GPS-Messungen (siehe 10) kombiniert werden, ist zu beachten, dass sich die Landeskoordinaten meistens auf ein konventionelles geodätisches Koordinatensystem und die mit GPS bestimmte Positionen auf das dreidimensionale Bezugssystem World Geodetic System 1984 (WGS84) beziehen. Die kartesischen geozentrischen Koordinaten der beiden System – hier ganz allgemein als System 1 und 2 bezeichnet – X¹, Y¹, Z¹ und X², Y², Z² sind zwar unabhängig vom Bezugsellipsoid, beziehen sich aber auf das Datum des zugrundegelegten geodätischen Koordinatensystems. Die Koordinatensysteme sind daher unterschiedlich in der Lage des Ursprungs O, der Achsrichtungen und des Maßstabes. Der Datumsübergang erfolgt mit einer räumlichen Ähnlichkeitstransformation (7-Parameter- oder Helmert-Transformation):

$$\vec{s} = \vec{t} + m\mathbf{R}(\omega, \varphi, \kappa)\vec{r} \tag{5.4}$$

dabei sind

$\vec{r}^{\mathrm{T}} = (X^1, Y^1, Z^1)$	geozentrische Koordinaten im System 1
$\vec{s}^{\mathrm{T}} = (X^2, Y^2, Z^2)$	geozentrische Koordinaten im System 2
$\vec{t}^{\mathrm{T}} = (t_X, t_Y, t_Z)$	Translations-/Verschiebungsvektor
m	Maßstabsfaktor
$\mathbf{R}(\boldsymbol{\omega},\boldsymbol{\varphi},\boldsymbol{\kappa})$	= $\mathbf{R}_{Z}(\kappa) \mathbf{R}_{Y}(\boldsymbol{\varphi}) \mathbf{R}_{X}(\omega)$ mit den Drehwinkel $\omega, \boldsymbol{\varphi}, \kappa$ um die drei Achsen.

Die Achsen der Koordinatensysteme 1 und 2 sind in der Regel fast parallel und die Drehwinkel meistens < 1". Daher kann die Drehung durch die differentielle Rotationsmatrix ausgedrückt werden:

$$\mathbf{R}(\varepsilon_X, \varepsilon_Y, \varepsilon_Z) = \begin{bmatrix} 1 & \varepsilon_Z & -\varepsilon_Y \\ -\varepsilon_Z & 1 & \varepsilon_X \\ \varepsilon_Y & -\varepsilon_X & 1 \end{bmatrix}$$

²Die Geoidundulation ist abhängig vom gewählten Bezugssystem (Referenzellipsoid und geodätischen Datum).

mit den drei kleinen Drehwinkel ε_X , ε_Y und ε_Z um die X-, Y- bzw. Z-Achse. Diese Parametrisierung der Rotationsmatrix ist unabhängig von der Drehreihenfolge.

Da der Maßstabsfaktor m nur wenig von 1 verschieden ist, wird oft der Maßstabsunterschied

$$\Delta m = m - 1$$

verwendet.

Die sieben Parameter werden in der Regel mit identischen Punkten in einer Ausgleichung bestimmt. Dabei werden zwei etwas unterschiedliche Transformationsmodelle verwendet, das Bursa-Wolf- oder das Molodenskii-Badekas-Modell (Heck, 1987). Je nach Anzahl der bestimmten Parameter, üblich sind drei bis sieben Parameter³, sind die Parameter beider Modelle etwas unterschiedlich. Beide Modelle sind jedoch äquivalent.

Abbildung 5.1: Datumstransformationen

4. Die Transformation in das lokale Tangentialsystem (Kraus, 1997) erfolgt mit einer räumliche Verschiebung in den Bezugspunkt B und anschließender Drehung:

$$\vec{s} = \mathbf{M}(\boldsymbol{\varphi}_B, \boldsymbol{\lambda}_B)[\vec{r} - \vec{r}_B] \tag{5.5}$$

wobei

$$\vec{s}^{T} = (X^{T}, Y^{T}, Z^{T})$$
Koordinaten im lokalen Tangentialystem $\vec{r}^{T} = (X, Y, Z)$ geozentrische Koordinaten des Punktes P $\vec{r}_{B}^{T} = (X_{B}, Y_{B}, Z_{B})$ geozentrische Koordinaten des Bezugspunktes B $\mathbf{M}(\varphi_{B}, \lambda_{B})$ Drehmatrix vom geozentrische Koordinatensystem in das lokale Tangential-
system.

Die Drehmatrix ist definiert durch die geodätischen Koordinaten des Bezugspunktes ϕ_B , λ_B :

$$\mathbf{M}(\boldsymbol{\varphi}_B, \boldsymbol{\lambda}_B) = \begin{bmatrix} -\sin \boldsymbol{\lambda}_B & \cos \boldsymbol{\lambda}_B & \mathbf{0} \\ -\cos \boldsymbol{\lambda}_B \sin \boldsymbol{\varphi}_B & -\sin \boldsymbol{\lambda}_B \sin \boldsymbol{\varphi}_B & \cos \boldsymbol{\varphi}_B \\ \cos \boldsymbol{\lambda}_B \cos \boldsymbol{\varphi}_B & \sin \boldsymbol{\lambda}_B \cos \boldsymbol{\varphi}_B & \sin \boldsymbol{\varphi}_B \end{bmatrix}.$$
(5.6)

³Die Anzahl der Parameter kann aufgrund der Bestimmbarkeit der Parameter und aufgrund von Spannungen im Netz der Landesmessung variieren.

Abbildung 5.2: Lokales Tangentialsystem

Abbildung 5.3: Reihenfolge der Koordinatentransformationen

Die Landeskoordinaten können auch direkt als kartesische Koordinaten in der Ausgleichung verwendet werden:

$$\begin{bmatrix} Y^L \\ X^L \\ H \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}.$$
(5.7)

Dabei werden die Abbildungsverzerrungen weitgehend von den Orientierungsparametern absorbiert. Da sich jedoch die Höhen auf das Geoid bzw. Quasigeoid beziehen und nicht auf eine Tangentialebene sollte dieser Unterschied durch die Erdkrümmungskorrektur korrigiert werden.

5.2 Erdkrümmungskorrektur

Für genäherte Senkrechtaufnahmen können die gegenüber einer Tangentialebene auftretenden Höhendifferenzen als radiale Verzeichnung aufgefasst werden:

$$\Delta r = -\frac{Hr^3}{2Rc^2} \tag{5.8}$$

wobei

HFlughöhe $r = \sqrt{\bar{x}^2 + \bar{y}^2}$ radialer Abstand des BildpunktesRErdradiuscKamerakonstante

Obwohl der Effekt in den Objektkoordinaten auftritt, erfolgt die Korrektur in den Bildkoordinaten! Bei Vertikalaufnahmen ist der Effekt rotationssymmetrisch. Oft wird die Erdkrümmungskorrektur zusammen mit der Refraktionskorrektur angebracht.

> Die Erdkrümmungskorrektur darf selbstverständlich <u>nicht</u> angebracht werden, wenn die Auswertung im lokalen tangentialen Koordinatensytem erfolgt

5.3 Objektpunkte

5.3.1 Passpunkte

Globale Navigations-Satellitensysteme (GNSS) erlauben die Bestimmung globaler geodätischer Netze mit Zentimeter-Genauigkeit. Die GNSS übernehmen damit die Aufgaben des Festpunktfeldes. Der Übergang in das Landeskoordinatenssytem kann über identische Punkte durch eine überbestimmte räumliche Ähnlichkeitstransformation erfolgen.

5.3.2 Neu- und Verknüpfungspunkte

Durch die stochastische Behandlung aller unbekannten Parameter findet bei den Objektkoordinaten keine explizite Unterscheidung zwischen Neu- und Passpunktkoordinaten ⁴ statt. Die Objektkoordinaten unterscheiden sich nur durch ihre Standardabweichung bzw. Gewichtung. Nur für die Ausgabe findet eine Klassifizierung statt:

Neupunkt oder Kontrollpunkt $\sigma_X > \sigma_{max} \land \sigma_Y > \sigma_{max} \land \sigma_Z > \sigma_{max}$ Passpunkt $\sigma_X < \sigma_{max} \lor \sigma_Y < \sigma_{max} \lor \sigma_Z < \sigma_{max}$

⁴Die Namensgebung für Objektpunkte in der deutschen und englischen Sprache führt manchmal zur Verwirrung: *Paβpunkte* sind *control points* und *Kontrollpunkte* sind *check points*.

5.3.3 Kontrollpunkte

Ein Kontrollpunkt wird wie ein Neupunkt in der Ausgleichung durch Strahlenschnitt bestimmt. Jedoch liegen für ein, zwei oder alle drei Koordinatenunbekannten Soll-Koordinaten (Vergleichswerte) vor. Die Kontrollpunkte dienen zur Bestimmung der äußeren Genauigkeit (siehe 11.2).

Parametrisierung der Rotationsmatrix

Die neun Elemente der Rotationsmatrix enthalten die Richtungskosinus-Werte. Die Rotationsmatrix ist eine orthogonale Matrix, d.h. zwischen den neun Elementen bestehen sechs Beziehungen (Orthogonalitätsbedingungen). Daher gilt

 $\mathbf{R}^{\mathrm{T}}\mathbf{R} = \mathbf{R}\mathbf{R}^{\mathrm{T}} = \mathbf{E}$ und $\mathbf{R}^{\mathrm{T}} = \mathbf{R}^{-1}$ und $\det(\mathbf{R}) = 1$

wobei E die Einheitsmatrix ist.

Meistens werden die Elemente der Rotationsmatrix nicht selbst bestimmt sondern besondere Gruppen von Parametern, die allgemein als Rotationsparameter (*rotation parameters*) bezeichnet werden. Die Parametergruppen oder Rotationsparameter unterscheiden sich durch folgende Eigenschaften:

- Parameteranzahl,
- das Auftreten von Singularitäten,
- Eindeutigkeit,
- geometrische Interpretation und
- Rechenaufwand.

Eine Übersicht über die Parametrisierungen gibt Schut (1958/59) und Knickmeyer und Nitschke (1994). Einige übliche Parametrisierungen sind:

- drei Drehwinkel oder Euler-Winkel in verschiedenen Variationen (Goldstein, 1963), (Finsterwalder und Hofmann, 1968), (Schwidefsky und Ackermann, 1976),
- Rodrigues-Matrix/Parameter (Schwidefsky und Ackermann, 1976),
- Hamilton-Quaternion (Schut, 1958/59), (Shoemake, 1994), (Zhang, 1994) (Grassia, 1998),
- drei Nebendiagonalelemente der Rotationsmatrix (Schut, 1958/59),
- Drehung um eine spezielle Achse (Rinner, 1957),
- Cayley-Klein-Parameter (Goldstein, 1963),
- Doppelrotationen (Wrobel und Klemm, 1984).

6.1 Drehwinkel/Euler-Winkel

In der Photogrammetrie werden oft Drehwinkel um die drei Koordinatenachsen zur Parametrisierung verwendet. Dabei sind folgende Fälle zu unterscheiden:

- Die Drehreihenfolge legt fest in welcher Reihenfolge die Einzeldrehungen erfolgen, z.B. die 1. Drehung um die *x*-Achse um den Winkel ω ⇒ **R**_x(ω), die 2. Drehung um die *y*-Achse um φ ⇒ **R**_y(φ), und die 3. Drehung um die *z*-Achse um κ ⇒ **R**_z(κ).
- 2. Ob die Drehungen um raumfeste oder mitgedrehte Achsen erfolgt. Bei raumfesten Achsen sind die einzelnen Drehungen auf das Ausgangssystem bezogen:

$$\mathbf{R} = \mathbf{R}_{z}(\kappa) \mathbf{R}_{y}(\boldsymbol{\varphi}) \mathbf{R}_{x}(\boldsymbol{\omega}).$$

Dagegen beziehen sich die Drehungen um mitgedrehte Achsen auf das zuvor erreichte Koordinatensystem:

$$\mathbf{R} = \overline{\mathbf{R}}_{x}(\bar{\boldsymbol{\omega}}) \ \overline{\mathbf{R}}_{y}(\bar{\boldsymbol{\varphi}}) \ \overline{\mathbf{R}}_{z}(\bar{\boldsymbol{\kappa}}).$$

3. Die positive Drehrichtung im (clockwise) oder gegen den Uhrzeigersinn (counter clockwise) definiert ist.

Vier übliche Parametrisierungen in der Photogrammetrie sind z.B., wobei $c\varphi$ als Abkürzung für $\cos\varphi$ und $s\varphi$ für $\sin\varphi$, usw. steht:

• Drehreihenfolge $\omega - \varphi - \kappa$ um feste Achsen und Drehung im Uhrzeigersinn (siehe Slama u. a. (1980), S. 51, Gl. 2.23, Konecny und Lehmann (1984) S. 101, Heuchel (1994)¹)

$$\mathbf{R}(\omega,\varphi,\kappa) = \mathbf{R}_{z}(\kappa)\mathbf{R}_{y}(\varphi)\mathbf{R}_{x}(\omega) = \begin{bmatrix} c\varphi c\kappa & c\omega s\kappa + s\omega s\varphi c\kappa & s\omega s\kappa - c\omega s\varphi c\kappa \\ -c\varphi s\kappa & c\omega c\kappa - s\omega s\varphi s\kappa & s\omega c\kappa + c\omega s\varphi s\kappa \\ s\varphi & -s\omega c\varphi & c\omega c\varphi \end{bmatrix}$$
(6.1)

Drehreihenfolge ω-φ-κ um mitgedrehte Achsen und Drehung gegen den Uhrzeigersinn (siehe Kraus (1994) Gl. 2.2-4, Schwidefsky und Ackermann (1976) Gl. 1.7c, Finsterwalder und Hofmann (1968) S. 33, Gl. 1.25)

$$\mathbf{R}(\omega,\varphi,\kappa) = \mathbf{R}_{x}(\omega)\mathbf{R}_{y}(\varphi)\mathbf{R}_{z}(\kappa) = \begin{bmatrix} c\varphi c\kappa & -c\varphi s\kappa & s\varphi \\ c\omega s\kappa + s\omega s\varphi c\kappa & c\omega c\kappa - s\omega s\varphi s\kappa & -s\omega c\varphi \\ s\omega s\kappa - c\omega s\varphi c\kappa & s\omega c\kappa + c\omega s\varphi s\kappa & c\omega c\varphi \end{bmatrix}$$
(6.2)

Drehreihenfolge φ-ω-κ um mitgedrehte Achsen und Drehung gegen den Uhrzeigersinn (Kraus (1994) S. 380, Gl. 2.2-1.7, Schwidefsky und Ackermann (1976) Tab. 27.1, Finsterwalder und Hofmann (1968) S. 32, Gl. 1.23, Konecny und Lehmann (1984) S. 101, Rüger u. a. (1978) S. 21, Gl. 2.16a)

$$\mathbf{R}(\boldsymbol{\varphi},\boldsymbol{\omega},\boldsymbol{\kappa}) = \mathbf{R}_{y}(\boldsymbol{\varphi})\mathbf{R}_{x}(\boldsymbol{\omega})\mathbf{R}_{z}(\boldsymbol{\kappa}) = \begin{bmatrix} c\boldsymbol{\varphi} c\boldsymbol{\kappa} + s\boldsymbol{\varphi} s\boldsymbol{\omega} s\boldsymbol{\kappa} & -c\boldsymbol{\varphi} s\boldsymbol{\kappa} + s\boldsymbol{\varphi} s\boldsymbol{\omega} c\boldsymbol{\kappa} & s\boldsymbol{\varphi} c\boldsymbol{\omega} \\ c\boldsymbol{\omega} s\boldsymbol{\kappa} & c\boldsymbol{\omega} c\boldsymbol{\kappa} & -s\boldsymbol{\omega} \\ -s\boldsymbol{\varphi} c\boldsymbol{\kappa} + c\boldsymbol{\varphi} s\boldsymbol{\omega} s\boldsymbol{\kappa} & s\boldsymbol{\varphi} s\boldsymbol{\kappa} + c\boldsymbol{\varphi} s\boldsymbol{\omega} c\boldsymbol{\kappa} & c\boldsymbol{\varphi} c\boldsymbol{\omega} \end{bmatrix}$$
(6.3)

 um den Richtungswinkel (*azimut*) α, die Bildneigung (*elevation*) ν und die Kantung (*roll*) r, in der Drehreihenfolge α-ν-κ um mitgedrehte Achsen und Drehung gegen den Uhrzeigersinn

$$\mathbf{R}(\alpha, \nu, \kappa) = \mathbf{R}_{z}(\kappa)\mathbf{R}_{x}(\nu)\mathbf{R}_{z}(\alpha) = \begin{vmatrix} c\alpha \ c\kappa + s\alpha \ s\nu \ s\kappa & -c\alpha \ s\kappa + s\alpha \ s\nu \ c\kappa & s\alpha \ c\nu \\ s\alpha \ c\kappa - c\alpha \ s\nu \ s\kappa & -s\alpha \ s\kappa - c\alpha \ s\nu \ c\kappa & -c\alpha \ c\nu \\ c\nu \ s\kappa & c\nu \ c\kappa & -s\nu \end{vmatrix}$$
(6.4)

Diese Parametrisierung wird im Programm Australis (Lit.?) verwendet.

¹Im Ausgleichungsmodell verwendet PATB die Rodrigues-Matrix.

Ein wesentlicher Nachteil <u>aller</u> Parametrisierungen durch drei Elemente ist das Auftreten von Singularitäten. Auch sind alle Parametrisierungen durch drei und vier Elemente nicht eindeutig, dieser Umstand spielt jedoch für die Bündelausgleichung keine Rolle.

6.2 Hamilton-Quaternion

(Achtung: Diese Abschnitt muss überarbeitet werden!)

Die Parametrisierung der Rotation mit dem Hamilton-Quaternion

$$q = q_0 + \mathrm{i}q_1 + \mathrm{j}q_2 + \mathrm{k}q_3,$$

genauer einem Einheitsquaternion², hat den Vorteil, dass diese Parametrisierung <u>keine Singularitäten</u> hat. Außerdem sind zur Berechnung nur einfache und schnelle Rechenoperationen notwendig, und keine trigonometrische Funktionen wie bei der Verwendung von Drehwinkeln. Die Rotationsmatrix hat folgende Form

$$\mathbf{R}(q_0, q_1, q_2, q_3) = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1 q_2 - q_0 q_3) & 2(q_1 q_3 + q_0 q_2) \\ 2(q_1 q_2 + q_0 q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2 q_3 - q_0 q_1) \\ 2(q_1 q_3 - q_0 q_2) & 2(q_2 q_3 + q_0 q_1) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}.$$
(6.5)

Mindestens drei voneinander unabhängige Parameter sind notwendig um eine reine Rotationen im dreidimensionalen Euklidischen Raum zu beschreiben. Werden mehr als drei Parameter verwendet, sind diese Parameter nicht alle unabhängig. Für die Quaternion-Elemente gilt die Bedingung:

$$|q| = q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1.$$
(6.6)

Diese Bedingung wird in der Ausgleichung durch eine zusätzliche deterministische oder stochastische Bedingung mit berücksichtigt. Grundsätzlich wäre hier die Verwendung von deterministischen Bedingungen angebracht. Jedoch wird aufgrund der allgemeinen und einfachen Handhabung eine stochastische Bedingung mit einem hohen Gewicht verwendet, z.B. $p_c = 10^6$.

²Ein Quaternion mit Betrag Eins: |q| = 1.

Näherungswertberechnung

Die nicht-linearen Verbesserungsgleichungen werden durch die Einführung von Näherungswerte für die unbekannten Parameter linearisiert. Daher ist eine hinreichend genaue Kenntnis von Näherungswerten für die unbekannten Parameter notwendig. Welche Parameter als Unbekannte bestimmt werden müssen ist von der Aufgabenstellung abhängig. Meistens werden Näherungswerte für die Orientierungsparameter, d.h. im Falle des photogrammetrischen Modells, für die Parameter der äußeren Orientierung und der Objektpunktkoordinaten benötigt.

Der eigentlichen Anwendung geht eine Aufnahmeplanung voraus. Wenn nicht wesentlich von der Aufnahmeplanung abgewichen wurde, können die Orientierungsparameter der Aufnahmeplanung verwendet werden. Die unbekannten Objektpunktkoordinaten können dann per Vorwärtsschnitt bestimmt werden.

In DGAP ist ein einfaches zweistufiges Verfahren implementiert. In der ersten Stufe wird versucht, die Orientierung des Einzelbildes durch räumlichen Rückwärtsschnitt zu bestimmen. Und in der zweiten Stufe erfolgt, aufgrund der zumindest näherungsweise bekannten Orientierung, die Bestimmung der Objektpunktkoordinaten durch räumlichen Vorwärtsschnitt.

Die Lösungen für den Rückwärtsschnitt sollte auch im einfachen und im überbestimmmten Fall geschlossen lösbar sein, also ohne Linearisierung in den Unbekannten auskommen. Dazu müssen aber ausreichend viele Passpunkte zur Orientierung des Einzelbildes vorhanden sein. Beim Vorwärtsschnitt liegt in der Regel ein überbestimmter Fall vor. Dabei wird der Objektpunkt durch den Schnitt zweier Strahlen bestimmt. Es liegen also vier Beobachtungen für die Bestimmung der drei unbekannten Objektpunktkoordinaten vor.

7.1 Zentralprojektion

Für den räumlichen Rückwärts- und Vorwärtsschnitt werden verschiedene Lösungen vorgeschlagen, z.B. gibt Grafarend u. a. (1989) eine geschlossene Lösung für den Rückwärtsschnitt an und ergänzt in (Grafarend, 1990) die Lösung durch den überbestimmten Vorwärtsschnitt. Albertz und Kreiling (1975) und Kraus (2004) geben Lösungen für den räumlichen Vorwärtsschnitt mit zwei Strahlen an.

Schmid (1958/59, S. 112+113) gibt eine direkte Lösung für den Vorwärtsschnitt mit m Strahlen an. Aus der Transformation (2.1) ergibt sich nach Drehung der Bildkoordinaten in das Objektkoordinatensystem

$$\begin{bmatrix} u \\ u \\ w \end{bmatrix} = \mathbf{R} \begin{bmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{bmatrix}$$

und Ersetzung des Maßstabfaktors durch

$$\lambda = \frac{Z - Z_o}{w}$$

für einen Strahl die Beziehung

$$X = X_o + (Z - Z_o)\frac{u}{w}$$
$$Y = Y_o + (Z - Z_o)\frac{v}{w}.$$

Durch Umstellung ergeben sich die linearen Beziehungen¹

$$1 \cdot X + 0 \cdot Y + \alpha_x Z = -\beta_x$$

$$0 \cdot X + 1 \cdot Y + \alpha_y Z = -\beta_y$$
(7.1)

wobei

$$\alpha_x = -\frac{u}{w}$$

$$\alpha_y = -\frac{v}{w}$$
(7.2)

und

$$\beta_x = -(\alpha_x Z_o + Y_o)$$

$$\beta_y = -(\alpha_y Z_o + X_o).$$
(7.3)

Auf die Gleichung (7.1) kann direkt das Gauß-Markov-Modell

$$\mathbf{l} + \mathbf{v} = \mathbf{A}\mathbf{\hat{x}}$$

angewendet werden, in welchem die unbekannten Objektpunktkoordinaten $\hat{\mathbf{x}}^{T} = (\hat{X}, \hat{Y}, \hat{Z})$ mittels der Zielfunktion $\mathbf{v}^{T}\mathbf{P}\mathbf{v} = \min z\mathbf{u}$

$$\hat{\mathbf{x}} = (\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{l}$$
(7.4)

bestimmt werden können.

Jeder Strahl liefert eine Beobachtungsgleichung der Form (7.1), aus der direkt das Normalgleichungssystem für *m* Strahlen aufgebaut werden kann. Werden alle Strahlen als gleich genau (Gewichtmatrix $\mathbf{P} = \mathbf{I}$) angenommen und werden die Gaußschen Summenklammern² zur Notation verwendet, ergibt sich das Normalgleichungssystem zu

$$\begin{bmatrix} m & 0 & [\alpha_x] \\ 0 & m & [\alpha_y] \\ [\alpha_x] & [\alpha_y] & [\alpha_x \alpha_y] \end{bmatrix} \begin{bmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{bmatrix} = \begin{bmatrix} [-\beta_x] \\ [-\beta_y] \\ [-\alpha_x \beta_x - \alpha_y \beta_y] \end{bmatrix}.$$
(7.5)

Die Verbesserungen beziehen sich in diesen Fall nicht auf die beobachteten Bildkoordinaten, sondern auf die Beobachtungsgleichung (7.1). Daher ist diese Lösung des Vorwärtsschnitts nicht equivalent zur Bündelausgleichung, da in der Bündelausgleichung die Verbesserungen in den Bildkoordinaten minimiert werden. Die geschätzten Objektkoordinaten werden daher gegenüber denen in der Bündelausgleichung geschätzen Objektkoordinaten.

7.2 DLT

RWE + VWE

¹Diese Form entspricht der Koordinatendarstellung in der Hesseschen Normalform einer Ebene im Raum $E: d = \vec{n} \cdot \vec{x} = ax + by + cz$. ²Die eckigen Klammern [] gelten hier als Summenzeichen.

7.3 Affine Transformation

RWE + VWE
Kapitel 8

Refraktion

Das mathematische Modell setzt eine geradlinige Ausbreitung des Lichtstrahles voraus. Tatsächlich wird aber der Lichstrahl durch die atmosphärische Refraktion beeinflusst. Bei Vertikalaufnahmen ist die Auswirkung der Refraktion rotationssymmetrisch und ergibt eine positive Verzeichnung. Aber erst bei großen Flughöhen macht sich die Refraktion bemerkbar. Eine Berücksichtigung des Einflusses findet meistens durch eine Korrektur der Bildkoordinaten vor der eigentlichen Bündelausgleichung statt.

In der Luftbildphotogrammetrie wird die Refraktion vernachlässigt oder durch Korrektur der Bildkoordinaten berücksichtigt. Da meistens keine meteorologische Daten vorliegen, werden die Korrekturen aufgrund einer Normalatmosphäre ermittelt. Restliche Anteile werden durch die Orientierungsparameter aufgefangen oder durch Zusatzparameter erfasst.

In der Satellitenphotogrammetrie ist das Strahlenbündel meist sehr schmal und die Strahlen sind fast parallel. Damit ist die Auswirkung für alle Bildstrahlen praktisch gleich. Die Refraktion wird durch die Orientierungsparameter kompensiert.

Bei Nahbereichsanwendungen kann auf eine Korrektur verzichtet werden, da sich die Refraktion aufgrund der kurzen Aufnahmeentfernung praktisch nicht auswirkt.

Die Korrektur der atmosphärischen Refraktion ist <u>nicht</u> Teil dieses Bündelprogramms.

Kapitel 9

Zusätzliche Parameter

Es existieren eine Vielzahl unterschiedlicher Parameteransätze (Modelle) zur Kompensation systematischer Fehler im Bildraum (Grün, 1976). Die Ursachen systematischer Bildfehler sind sehr vielfältig (Grün, 1986).

Die zusätzlichen Parameter sind Funktionen der reduzierten Bildkoordinaten¹:

$$\Delta x = f_x(\bar{x}, \bar{y}, \bar{z})$$

$$\Delta y = f_y(\bar{x}, \bar{y}, \bar{z}).$$
(9.1)

Die Auswirkung der physikalischen Effekte wird in Einflussgruppen getrennt. Die einzelne Einflussgruppe wird durch ein entsprechendes Modell beschrieben. Die Summe aller Modelle bilden das Gesamtmodell:

$$\Delta x = \Delta x_i + \Delta x_r + \Delta x_d + \Delta x_f + \Delta x_u$$

$$\Delta y = \Delta y_i + \Delta y_r + \Delta y_d + \Delta y_f + \Delta y_u.$$
(9.2)

wobei

Δx_i	Modell der inneren Orientierung
Δx_r	Modell der radialen Verzeichnung
Δx_d	Modell der tangentialen Verzeichnung
Δx_f	Modell der Verzerrung in der Abbildungsfläche
Δx_u	Modell der Unebenheit der Abbildungsfläche.

Allgemein können die Modelle wie folgt eingeteilt werden:

- 1. physikalische Modelle aufgrund von physikalisch ableitbaren Parametern,
- 2. mathematische Modelle ohne physikalische Interpretierbarkeit und
- 3. Kombinationen aus (1) und (2).

Die einzelnen Modelle können beliebig kombiniert werden. Dabei ist zu beachten, dass einzelne Parameter mehrfach auftreten können. Die überflüssigen Parameter sind dann im voraus zu eliminieren.

¹In dieser Form verletzten die zusätzlichen Parameter das funktionale Modell, denn der Ansatz setzt eine Trennung von Beobachtungen und unbekannten Parametern voraus: $\tilde{\mathbf{L}} = \varphi(\tilde{\mathbf{X}})$. Für die praktische Anwendung ist diese kleine Unstimmigkeit jedoch ohne Bedeutung.

9.1 Modell der inneren Orientierung

Korrektur der drei Elemente der inneren Orientierung:

$$\Delta x_i = \Delta x_p - \frac{x}{\bar{z}} \Delta c$$

$$\Delta y_i = \Delta y_p - \frac{\bar{y}}{\bar{z}} \Delta c$$
(9.3)

wobei

 $\Delta x_p, \Delta y_p$ Änderung der Bildhauptpunktlage Δc Änderung der Kammerkonstante.

9.2 Modell der radialen Verzeichnung

Korrektur der (symmetrischen) radialen Verzeichnung ((symmetric) radial distortion) (Brown, 1971):

$$\Delta x_r = \bar{x} r^2 K_1 + \bar{x} r^4 K_2 + \bar{x} r^6 K_3$$

$$\Delta y_r = \bar{y} r^2 K_1 + \bar{y} r^4 K_2 + \bar{y} r^6 K_3$$
(9.4)

mit dem Bildradius

$$r = \sqrt{\bar{x}^2 + \bar{y}^2}$$

wobei

 K_1, K_2, K_3 Parameter der radialen Verzeichnung.

9.3 Modell der tangentialen Verzeichnung

Korrektur der tangentialen Verzeichnung (decentring distortion) (Brown, 1971):

$$\Delta x_d = (3\bar{x}^2 + \bar{y}^2)P_1 + 2\bar{x}\bar{y}P_2$$

$$\Delta y_d = 2\bar{x}\bar{y}P_1 + (3\bar{y}^2 + \bar{x}^2)P_2$$
(9.5)

wobei

*P*₁,*P*₂ Parameter der tangentialen Verzeichnung.

9.4 Modell der Verzerrungen in der Abbildungsfläche

Korrektur von Verzerrungen in der Abbildungsfläche (in-plane distortion) (Brown, 1976):

$$\Delta x_f = \bar{x}a_1 + \bar{y}a_2 + \bar{x}\bar{y}a_3 + \bar{y}^2a_4 + \bar{x}^2\bar{y}a_5 + \bar{x}\bar{y}^2a_6 + \bar{x}^2\bar{y}^2a_7$$

$$\Delta y_f = \bar{x}\bar{y}a_8 + \bar{x}^2a_9 + \bar{x}^2\bar{y}a_{10} + \bar{x}\bar{y}^2a_{11} + \bar{x}^2\bar{y}^2a_{12}$$
(9.6)

wobei

 a_1, a_2, \dots, a_{12} Parameter der Verzerrung in der Abbildungsfläche

9.5 Modell Unebenheit der Abbildungsfläche

Korrektur von Effekten senkrecht zur Abbildungsfläche bzw. der Unebenheit (*out-of-plane distortion, unflatness*) (Brown, 1976):

$$\Delta x_u = (\bar{x}^2 - \bar{y}^2) s_x a_{13} + \bar{x}^2 \bar{y}^2 s_x a_{14} + (\bar{x}^4 - \bar{y}^4) s_x a_{15}$$

$$\Delta y_u = (\bar{x}^2 - \bar{y}^2) s_y a_{13} + \bar{x}^2 \bar{y}^2 s_y a_{14} + (\bar{x}^4 - \bar{y}^4) s_y a_{15}$$
(9.7)

mit

$$s_x = \frac{\bar{x}}{\bar{z}}$$
 und $s_y = \frac{\bar{y}}{\bar{z}}$

wobei

*a*₁₃, *a*₁₄, *a*₁₅ Parameter der Unebenheit der Abbildungsfläche.

9.6 Modelle nach Brown

Brown (1976) hat zwei etwas unterschiedliche Modelle 9.6.1 und 9.6.2 für die Aerotriangulation mit veröffentlicht. Beide Modelle werden auch in reduzierter Form 9.6.3 und 9.6.4 zur Kalibrierung von Digitalkameras verwendet.

9.6.1 Modell nach Brown Gl. 22

$$\begin{aligned} \Delta x &= a_1 \bar{x} + a_2 \bar{y} + a_3 \bar{x}^2 + a_4 \bar{x} \bar{y} + a_5 \bar{y}^2 + a_6 \bar{x}^2 \bar{y} + a_7 \bar{x} \bar{y}^2 \\ &+ \frac{\bar{x}}{c} (c_1 \bar{x}^2 + c_2 \bar{x} \bar{y} + c_3 \bar{y}^2 + c_4 \bar{x}^3 + c_5 \bar{x}^2 \bar{y} + c_6 \bar{x} \bar{y}^2 + c_7 \bar{y}^3) \\ &+ \bar{x} (K_1 r^2 + K_2 r^4 + K_3 r^6) \\ &+ P_1 (\bar{y}^2 + 3 \bar{x}^2) + 2 P_2 \bar{x} \bar{y} \\ &+ \Delta x_p + \frac{\bar{x}}{c} \Delta c \end{aligned}$$

$$\begin{aligned} \Delta y &= b_1 \bar{x} + b_2 \bar{y} + b_3 \bar{x}^2 + b_4 \bar{x} \bar{y} + b_5 \bar{y}^2 + b_6 \bar{x}^2 \bar{y} + b_7 \bar{x} \bar{y}^2 \\ &+ \frac{\bar{y}}{c} (c_1 \bar{x}^2 + c_2 \bar{x} \bar{y} + c_3 \bar{y}^2 + c_4 \bar{x}^3 + c_5 \bar{x}^2 \bar{y} + c_6 \bar{x} \bar{y}^2 + c_7 \bar{y}^3) \\ &+ \bar{y} (K_1 r^2 + K_2 r^4 + K_3 r^6) \\ &+ 2 P_1 \bar{x} \bar{y} + P_2 (\bar{x}^2 + 3 \bar{y}^2) \\ &+ \Delta y_p + \frac{\bar{y}}{c} \Delta c \end{aligned}$$

$$(9.8)$$

wobei

Parameter der Verzerrung in der Abbildungsfläche
Parameter der Unebenheit der Abbildungsfläche
Parameter der radialen Verzeichnung
Parameter der tangentialen Verzeichnung
Änderung der Bildhauptpunktlage
Änderung der Kammerkonstante.

9.6.2 Modell nach Brown Gl. 23

Nach praktischen Erfahrungen modifiziert Brown Gleichung (9.8) in den Parametern zur Erfassung der Verzerrungen in der Abbildungsfläche und der Unebenheit der Abbildungsfläche und verzichtet auf die Parameter für die tangentiale Verzeichnung.

$$\begin{aligned} \Delta x &= a_1 \bar{x} + a_2 \bar{y} + a_3 \bar{x} \bar{y} + a_4 \bar{y}^2 + a_5 \bar{x}^2 \bar{y} + a_6 \bar{x} \bar{y}^2 + a_7 \bar{x}^2 \bar{y}^2 \\ &+ \frac{\bar{x}}{c} [a_{13} (\bar{x}^2 - \bar{y}^2) + a_{14} \bar{x}^2 \bar{y}^2 + a_{15} (\bar{x}^4 - \bar{y}^4)] \\ &+ \bar{x} (K_1 r^2 + K_2 r^4 + K_3 r^6) \\ &+ \Delta x_p + \frac{\bar{x}}{c} \Delta c \end{aligned}$$

$$\Delta y &= a_8 \bar{x} \bar{y} + a_9 \bar{x}^2 + a_{10} \bar{x}^2 \bar{y} + a_{11} \bar{x} \bar{y}^2 + a_{12} \bar{x}^2 \bar{y}^2 \\ &+ \frac{\bar{y}}{c} [a_{13} (\bar{x}^2 - \bar{y}^2) + a_{14} \bar{x}^2 \bar{y}^2 + a_{15} (\bar{x}^4 - \bar{y}^4)] \\ &+ \bar{y} (K_1 r^2 + K_2 r^4 + K_3 r^6) \\ &+ \Delta y_p + \frac{\bar{y}}{c} \Delta c \end{aligned}$$
(9.9)

a_1, a_2, \ldots, a_{12}	Parameter der Verzerrungen in der Abbildungsfläche
a_{13}, a_{14}, a_{15}	Parameter der Unebenheit der Abbildungsfläche
K_1, K_2, K_3	Parameter der radialen Verzeichnung
$\Delta x_p, \Delta y_p$	Änderung der Bildhauptpunktlage
Δc	Änderung der Kammerkonstante.

9.6.3 GAP-Modell

Implementation des Ansatzes nach Brown im Bündelprogramm GAP (Beyer, 1992):

$$\Delta x = \Delta x_p - \frac{x}{\bar{z}} \Delta c - \bar{x} s_x + \bar{y} a + \bar{x} r^2 K_1 + \bar{x} r^4 K_2 + \bar{x} r^6 K_3 + (r^2 + 2\bar{x}^2) P_1 + 2\bar{x}\bar{y}P_2$$

$$\Delta y = \Delta y_p - \frac{\bar{y}}{\bar{z}} \Delta c + \bar{x} a + \bar{y} r^2 K_1 + \bar{y} r^4 K_2 + \bar{y} r^6 K_3 + 2\bar{x}\bar{y}P_1 + (r^2 + 2\bar{y}^2) P_2$$
(9.10)

wobei

S_X	Maßstabparameter in x
a	Scherungsparameter.

9.6.4 Australis-Modell

Implementation des Ansatzes nach Brown im Softwarepaket Australis² (Fraser, 1997):

$$\Delta x = \Delta x_p - \frac{\bar{x}}{\bar{z}} \Delta c + \bar{x} r^2 K_1 + \bar{x} r^4 K_2 + \bar{x} r^6 K_3 + (r^2 + 2\bar{x}^2) P_1 + 2\bar{x}\bar{y}P_2 + b_1\bar{x} + b_2\bar{y}$$

$$\Delta y = \Delta y_p - \frac{\bar{y}}{\bar{z}} \Delta c + \bar{y} r^2 K_1 + \bar{y} r^4 K_2 + \bar{y} r^6 K_3 + 2\bar{x}\bar{y}P_1 + (r^2 + 2\bar{y}^2) P_2$$
(9.11)

wobei

²Australis ist ein Programmpaket zur photogrammetrischen Auswertung digitaler Bilder für Nahbereichsanwendungen der University of Melbourne.

1	1 6 0 1 1	•	
h	Maketahnarameter	1n	v
v_{1}	Maissiauparameter	ш	Λ
1	1		

*b*₂ Scherungsparameter.

Die Implementierungen in GAP und Australis sind etwas unterschiedlich. GAP verwendet die Parameter s_x und *a* und Australis die Parameter b_1 und b_2 , wobei $-s_x = b_1$ aber $a \neq b_2$ ist. Beide Parametersätze sind also etwas unterschiedlich und führen somit zu leicht unterschiedlichen Ergebnissen.

9.7 Polynom-Modelle

Die Polynom-Modelle wurden speziell für die Aerotriangulation entwickelt. Die Ansätze berücksichtigen die besonderen Bedingungen bei der Luftbildphotogrammetrie: fast verzeichnungsfreie Objektive, genaue Planlage des Films, Verknüfungspunkte in den Gruber-Positionen und genäherte Senkrechtaufnahmen.

9.7.1 Orthogonales Polynom nach Ebner

Ebner (1976) schlägt zur Modellierung von Bilddeformationen bei der Aerotriangulation ein bivariates orthogonales Polynom 2. Grades vor:

$$\Delta x_{P12} = \bar{x}b_1 + \bar{y}b_2 - 2kb_3 + \bar{x}\bar{y}b_4 + lb_5 + \bar{x}lb_7 + \bar{y}kb_9 + klb_{11}$$

$$\Delta y_{P12} = -\bar{y}b_1 + \bar{x}b_2 + \bar{x}\bar{y}b_3 - 2lb_4 + kb_6 + \bar{y}kb_8 + \bar{x}lb_{10} + klb_{12}$$
(9.12)

mit

$$k = \bar{x}^2 - \frac{2}{3}b^2$$
 und $l = \bar{y}^2 - \frac{2}{3}b^2$

wobei b die Basis im Bildraum ist.

Die Basis im Bildraum ist abhängig vom Bildformat und bezogen auf die Längsüberdeckung p innerhalb der Flugstreifen. Bei einer Bildformatseitenlänge von s = 230 mm und einer in der Aerotriangulation üblichen Längsüberdeckung von p = 60% ergibt sich die Basislänge zu b = s(1 - p/100) = 92 mm.

9.7.2 Orthogonales Polynom nach Grün

Grün (1978) erweitert Ebners Ansatz auf ein Polynom 4. Grades:

$$\Delta x_{P44} = \bar{x}a_1 + \bar{y}a_2 + \bar{x}\bar{y}a_3 + la_4 - \frac{10}{7}ka_6 + \bar{x}pa_7 + \bar{y}ka_8 + \bar{x}la_9 + \bar{y}qa_{10} + ra_{15} + \bar{x}\bar{y}pa_{16} + kla_{17} + \bar{x}\bar{y}qa_{18} + sa_{19} + \bar{y}ra_{25} + \bar{x}lpa_{26} + \bar{y}kqa_{27} + \bar{x}sa_{28} + lra_{33} + \bar{x}\bar{y}pqa_{34} + ksa_{35} + \bar{y}qra_{39} + \bar{x}psa_{40} + rsa_{43} \Delta y_{P44} = -\bar{y}a_1 + \bar{x}a_2 - \frac{10}{7}la_3 + ka_5 + \bar{x}\bar{y}a_6 + \bar{x}pa_{11} + \bar{y}ka_{12} + \bar{x}la_{13} + \bar{y}qa_{14} + ra_{20} + \bar{x}\bar{y}pa_{21} + kla_{22} + \bar{x}\bar{y}qa_{23} + sa_{24} + \bar{y}ra_{29} + \bar{x}lpa_{30} + \bar{y}kqa_{31} + \bar{x}sa_{32} + lra_{36} + \bar{x}\bar{y}pqa_{37} + ksa_{38} + \bar{y}qra_{41} + \bar{x}psa_{42} + rsa_{44}$$

$$(9.13)$$

mit

$$k = \bar{x}^2 - \frac{1}{2}b^2, \quad l = \bar{y}^2 - \frac{1}{2}b^2, \quad p = \bar{x}^2 - \frac{17}{20}b^2, \quad q = \bar{y}^2 - \frac{17}{20}b^2,$$

$$r = \bar{x}^2(\bar{x}^2 - \frac{31}{28}b^2) + \frac{9}{70}b^4 \quad \text{und} \quad s = \bar{y}^2(\bar{y}^2 - \frac{31}{28}b^2) + \frac{9}{70}b^4.$$

9.8 Differentialquotienten für die innere Orientierung

Die Beobachtungsgleichungen für die Bildkoordinaten ergeben sich aus der Kollinearitätsgleichung (2.4) und der Definition der reduzierten Bildkoordinaten (2.2) zu

$$x = x_p - c \frac{u}{w} + \Delta x$$

$$y = y_p - c \frac{v}{w} + \Delta y.$$
(9.14)

Die Differentialquotienten für die Bildhauptpunktlage und der Kamerakonstante sind dann:

$$\frac{\partial x}{\partial x_p} = 1 \qquad \frac{\partial x}{\partial y_p} = 0 \qquad \frac{\partial x}{\partial c} = -\frac{u}{w}$$

$$\frac{\partial y}{\partial x_p} = 0 \qquad \frac{\partial y}{\partial y_p} = 1 \qquad \frac{\partial y}{\partial c} = -\frac{v}{w}.$$
(9.15)

Dabei werden die Differentialquotienten für die Kamerakonstante aus den Orientierungsparametern und den Objektpunktkoordinaten gewonnen. Dagegen werden bei Browns-Modellen (9.3), (9.10), (9.11) die Differentialquotienten aus den reduzierten Bildkoordinaten bestimmt:

$$\frac{\partial x}{\partial x_p} = 1 \qquad \frac{\partial x}{\partial y_p} = 0 \qquad \frac{\partial x}{\partial c} = -\frac{\bar{x}}{\bar{z}}$$

$$\frac{\partial y}{\partial x_p} = 0 \qquad \frac{\partial y}{\partial y_p} = 1 \qquad \frac{\partial y}{\partial c} = -\frac{\bar{y}}{\bar{z}}.$$
(9.16)

Die beiden Ansätze sind für die Diffentialquotienten der Kamerakonstanten etwas unterschiedlich. Denn durch Umstellung von (9.14)

$$\frac{x - x_p - \Delta x}{-c} = \frac{u}{w}$$
$$\frac{y - y_p - \Delta y}{-c} = \frac{v}{w}$$

und einsetzen der reduzierten Bildkoordinaten (2.2) ergibt sich

$$\frac{\bar{x} - \Delta x}{\bar{z}} = \frac{u}{w}$$
$$\frac{\bar{y} - \Delta y}{\bar{z}} = \frac{v}{w}.$$

Die Diffentialquotienten unterscheiden sich durch den Einfluss der aktuellen zusätzlichen Parameter. Und zusätzlich werden die beobachteten Bildkoordinaten (x, y) durch die Verbesserungen (v_x, v_y) beeinflusst.

In der Regel werden in der Literatur nur die Beobachtungsgleichungen und nicht die Differentialquotienten angegeben. Somit kann oft über die tatsächliche Implementation in der Bündelausgleichung nur spekuliert werden.

Die reduzierten Bildkoordinaten zur Anwendung in Gleichung (9.16) können nach drei verschiedenen Arten gebildet werden:

(a) Aus den beobachteteten Bildkoordinaten (x, y) reduziert auf den Bildhauptpunkt (z.B. Kenefick u. a., 1972, Fryer, 1992 oder Beyer, 1992):

$$\bar{x} = x - x_p^0$$

$$\bar{y} = y - y_p^0$$

$$\bar{z} = -c^0.$$
(9.17)

(b) Aus den beobachteteten Bildkoordinaten (*x*, *y*) reduziert auf den Bildhauptpunkt und zusätzlich korregiert um die Näherungswerte für die zusätzlichen Parameter:

$$\bar{x} = x - x_p^0 - \Delta x^0$$

$$\bar{y} = y - y_p^0 - \Delta y^0$$

$$\bar{z} = -c^0.$$
(9.18)

(c) Mit den reduzierten Bildkoordinaten, gewonnen aus den Näherungswerten der Orientierungsparameter, eingesetzt in der Kollinearitätsgleichung (9.14):

$$\bar{x} = \phi_x(X^0, Y^0, Z^0, X^0_o, Y^0_o, Z^0_o, \omega^0, \phi^0, \kappa^0)$$

$$\bar{y} = \phi_y(X^0, Y^0, Z^0, X^0_o, Y^0_o, Z^0_o, \omega^0, \phi^0, \kappa^0)$$

$$\bar{z} = -c^0.$$
(9.19)

In den ersten Iterationsschritten sind die Näherungswerte für die Orientierungsparameter und die Objektpunkte noch recht ungenau, daher können grössere Abweichungen bei Anwendung der Methode (c) auftreten. Die Abweichungen werden aber mit weiteren Iterationsschritten schnell geringer.

9.9 Signifikanztest

Für die zusätzlichen Parameter ist ein Signifikanztest obligatorisch. Im zweiseitigen Test für den einzelnen geschätzten Parameter \hat{X}_i ist die Nullhypothese H_0 : $\xi_i - \xi_{0,i} = 0$ und Alternativhypothese H_1 : $\xi_i \neq \xi_{0,i}$.

Die Prüfgröße ist:

$$t = \frac{\hat{X}_i - \xi_{0,i}}{\hat{\sigma}_i}.$$
(9.20)

Der Ablehnungsbereich beträgt

$$|t| > t_{f;1-\alpha/2}$$
 (9.21)

und der Annahmebereich

$$|t| \le t_{f;1-\alpha/2}$$
. (9.22)

 $t_{f;1-\alpha/2}$ ist das symmetrische Quantil der t-Verteilung bei *f* Freiheitsgraden und einer Wahrscheinlichkeit $1-\alpha$. Für f > 30 kann in guter Näherung das Quantil $t_{\infty;1-\alpha/2}$ gewählt werden. Wählt man z.B. das Vertrauensniveau $1-\alpha = 0,05$ ergibt sich das Quantil zu $t_{\infty;0.975} = 1,960$.

Trifft (9.21) zu, ist H_0 zu verwerfen, d.h. der Parameter ist signifikant. Andernfalls ist H_0 anzunehmen, d.h. der Parameter ist nicht signifikant und zu eliminieren.

Ein Test in dieser Form gilt nur für den <u>einzelnen</u> Parameter. Sollen mehrere oder alle Parameter getestet werden, muss ein multipler Test durchgeführt werden.

Die Parameter werden nach folgenden Regeln gekennzeichnet:

- $R_1: 0 < \sigma_i < \sigma_{min}$, der Parameter ist eliminiert oder fest (*eliminated*).
- R_2 : $\sigma_i \geq \sigma_{min} \wedge H_0$ verwerfen, der Parameter ist signifikant (*significant*).
- R_3 : $\sigma_i \geq \sigma_{min} \wedge H_0$ annehmen, der Parameter ist nicht signifikant (*not significant*).

Kapitel 10

Direkte Beobachtung der äußeren Orientierung

Globale Navigations-Satellitensysteme¹ (GNSS) wie das Gobal Positiong System (GPS)², und inertiale Navigationssysteme (INS) erlauben die Bestimmung der äußeren Orientierung mit ausreichender Genauigkeit. Im Fall der direkten Bestimmung der Elemente der äußeren Orientierung spricht man auch von *direkter Georeferenzierung*. Liegen <u>nur</u> Positionsdaten vor, spricht man von *GPS-gestützter Aerotriangulation*.

Die GPS-Messungen beziehen sich auf das Phasenzentrum der GPS-Antenne, während sich die INS-Messungen auf die verwendete inertiale Messeinheit (*Inertial Measurement Unit (IMU*)) beziehen. Aus mechanischen Gründen können Kamera, GPS-Antenne und IMU nicht den selben Platz einnehmen. Die Ezentrizität zum Phasenzentrum der GPS-Antenne (Positionsoffset) wird vor der Flugmission durch geodätische Messungen bestimmt. Die IMU ist meist direkt mit der Kamera verbunden und die Exzentrizität zum Projektionszentrum der Kamera kann gemessen oder aus den Konstruktionsdaten abgeleitet werden. Die Lagedaten beziehen sich auf das IMU-Körper-System. Der Richtungsunterschied zwischen dem Bildkoordinatensystem der Kamera und dem IMU-Körper-System wird als Fehlausrichtung (*misalignment* oder *misorientation*) bezeichnet. Da die Fehlausrichtung nicht mit ausreichender Genauigkeit direkt zu messen ist, muss sie im Rahmen einer Kalibrierung bestimmt werden.

Verfahrensbedingt beziehen sich die Positionsdaten auf das Bezugssystem des verwenden GNSS, z.B. bei Verwendung von GPS auf das WGS84. Ist ein Anschluss an das Landeskoordinatensystem erforderlich oder werden Passpunkte im Landeskoordinatensystem verwendet, so sind die Unterschiede zwischen den Bezugssystemen des GNSS und des Landeskoordinatensystems zu berücksichten. Kann die Passpunktbestimmung ebenfalls mit GNSS erfolgen, beziehen sich alle Koordinaten auf das GNSS-Bezugssystem. Der Übergang in das Landeskoordinatenssytem kann dann über identische Punkte durch eine Datumstransformation erfolgen (siehe 5.1).

10.1 GPS-gestützte Aerotriangulation

Für die Aerotriangulation können die Koordinaten der Projektionszentren \vec{X}_o mit ausreichender Genauigkeit aus GPS-Messungen abgeleitet werden. Durch die Anwendung von kinematischen differentiellen GPS (DGPS) und Trägerphasenmessung wird eine Genauigkeit von < 10 cm erreicht. Die Einbeziehung von direkt gemessenen

¹Die Namensgebung ist etwas irreführend, denn es geht genaugenommen nur um Positionierung. Die Begriff Navigation umfasst neben der Positionierung bzw. Ortsbestimmung, auch die Planung des Weges und die Steuerung des Fahrzeuges.

²Wegen der Dominanz des US-Satellitensystems NAVSTAR-GPS wird die Bezeichnung "GPS" im Folgenden als Synonym für GNSS verwendet.

Koordinaten der Projektionszentren in die Bündelausgleichung erlaubt eine erhebliche Einsparung von Passpunktinformationen. So kann bei der GPS-gestützte Aerotriangulation auf Höhenpasspunktketten verzichtet werden.

Fehler bei der GPS-Messung (z.B. Cycle Slips, Mehrwegeausbreitung) und bei der GPS-Verarbeitung (z.B. die falsche Bestimmung der Mehrdeutigkeit der Trägerphasenmessung) können systematische Fehler in den GPS-Positionen verursachen. In der Bündelausgleichung wird versucht, die dadurch verursachten systematischen Fehler, über die Schätzung von zusätzlichen Parametern für Offset und Drift zu korregieren. Prinzipiell gibt es zwei Möglichkeiten die Offset- und Drift-Parameter in die Ausgleichung zu integrieren:

- 1. entweder werden die GPS-Positionen als zusätzliche Verbesserungsgleichungen eingeführt (Kraus, 1996) oder
- 2. das funktionale Modell wird um einen linearen Korrekturterm erweitert (siehe 10.3.1).

10.2 Direkte Georeferenzierung

Die direkte Georeferenzierung (DGR)³ wird für die üblichen abbildenden und abtastenden Sensoren — Flächenkameras, Zeilen- und Laserscanner — eingesetzt. Ziel der direkten Georeferenzierung ist es die Anzahl von Passpunkten zu verringern und unter Umständen ganz auf Passpunkte zu verzichten⁴.

GPS und INS werden in der Regel kombiniert eingesetzt, da sie sich in ihren Eigenschaften gut ergänzen. Das GPS liefert die Position bei sehr guter Langzeitstabilität mit einer Datenrate von ≈ 1 Hz. Dagegen ermöglicht das INS die Positions- und Richtungsmessung mit einer hohen kurzzeitigen Genauigkeit und mit einer hohen Datenrate von < 50 Hz. Die INS-Messungen werden jedoch über längere Zeiträume durch grosse systematische Fehler beeinträchtigt. Dabei wird die Genauigkeit des INS im wesentlichen durch die Genauigkeit der verwendeten Beschleunigungs- und Drehgeschwindigkeitsmesser bestimmt.

Die Verknüpfung der einzelnen Sensoren — GPS, IMU und Kamera/Scanner — erfolgt oft in zwei Schritten⁵:

1. Schritt: Integration von IMU- und GPS-Messungen, meist in einem Kalmanfilter.

2. Schritt: Bestimmung der Objektpunktkoordinaten bei gleichzeitiger Bestimmung der Fehlausrichtung der IMU gegenüber der Kamera und evtl. weiterer Parameter in einer Bündelausgleichung.

Schwarz (1995) erweitert das einfache Modell der Ähnlichkeitstransformation (2.1) um die räumliche Anordnung und Ausrichtung der Sensoren:

$$\vec{X}^m = \vec{X}_o^m + \lambda \mathbf{R}_b^m [\mathbf{M}_c^b(\vec{p}^c + \vec{e}_c^c) + \vec{e}_a^b]$$
(10.1)

wobei

 \vec{X}^m Objektkoordinaten \vec{X}_{o}^{m} Koordinaten des Projektionszentrums \mathbf{R}_{h}^{m} Rotationsmatrix vom Körpersystem b in das Objektkoordinatensystem m \mathbf{M}_{c}^{b} Rotationsmatrix vom Bildkoordinatensystem c in das Körpersystem b \vec{p}^c reduzierte Bildkoordinaten \vec{e}_c^c Exzentrizität zwischen dem Projektionszentrum der Kamera und dem Körpersystem \vec{e}_a^b Exzentrizität zwischen dem Körpersystem und des Phasenzentrums der GPS-Antenne.

³Im Gegensatz zur klassischen "indirekten" Methode der photogrammetrischen Punktbestimmung, z.B. in einer Aerotriangulation. ⁴Dabei ist zu bedenken, dass <u>nur</u> Passpunkte eine durchgreifende Kontrolle der Georefenzierung ermöglichen (Ackermann, 1997).

⁵Optimal wäre eine integrierte Lösung aller Sensoren in einen Kalmanfilter.

Da sich die Vektoren und Matrizen auf unterschiedliche Koordinatensysteme beziehen, werden zur Verdeutlichung der Beziehungen folgende Indizes verwendet:

- das (Abbildungs-/)Objektkoordinatensystem (mapping system/frame) m,
- das Körpersystem (body frame) der IMU b und
- das reduzierte Kamera-/Bildkoordinatensystem (camera frame) c.

Der obere Index gibt bei den Vektoren an in welchem Koordinatensystem der Vektor definiert ist. Bei den Rotationsmatrizen bezeichnet der untere Index das Ausgangskoordinatensystem und der obere Index das Zielkoordinatensystem. D.h. \mathbf{R}_b^m beschreibt die Rotation vom IMU-Körpersystem *b* in das Objektkoordinatensystem *m*. Die inverse Rotation wird durch \mathbf{R}_m^b beschrieben, wobei $\mathbf{R}_b^m = (\mathbf{R}_m^b)^T$ die transponierte Matrix ist.

Das Modell (10.1) ist insofern nicht ganz vollständig, da die Kombination aus Kamera und IMU nicht fest mit der GPS-Antenne verbunden ist. Kamera und IMU befinden sich meist zusammen auf einer kreiselstabilisierten Plattform; dagegen ist die Antenne auf den Flugzeugrumpf angebracht. Die Bewegung der Plattform gegenüber des Flugzeugrumpfes muss daher ebenfalls registriert werden und bei der GPS-IMU-Integration berücksichtigt werden.

Die Ezentrizität zum Phasenzentrum der GPS-Antenne \vec{e}_a^b wird vorab durch geodätische Messungen bestimmt. Die IMU ist meist direkt mit der Kamera verbunden und die Exzentrizität zum Projektionszentrum der Kamera \vec{e}_c^c kann gemessen oder aus den Konstruktionsdaten abgeleitet werden.

Nach dem ersten Schritt der GPS-IMU-Integration beziehen sich die Koordinaten des Projektionszentrums auf das Objektkoordinatensystem m und die Rotationsmatrix \mathbf{R}_b^m dreht vom Körpersystem b in das Objektkoordinatensystem m. Die Fehlausrichtungsmatrix \mathbf{M}_c^b beschreibt die Verdrehung des Bildkoordinatensystem cgegenüber dem Körpersystem b.

Prinzipiell kann für die Fehlausrichtungsmatrix eine beliebige Parametrisierung gewählt werden (siehe 6), z.B. durch eine Drehung um feste Achsen

$$\mathbf{M}(\boldsymbol{\omega}^{b},\boldsymbol{\varphi}^{b},\boldsymbol{\kappa}^{b}) = \mathbf{M}_{z}(\boldsymbol{\kappa}^{b})\mathbf{M}_{y}(\boldsymbol{\varphi}^{b})\mathbf{M}_{x}(\boldsymbol{\omega}^{b})$$

oder durch ein Einheitsquaternion

$$\mathbf{M} = \mathbf{M}(q_0^b, q_1^b, q_2^b, q_3^b).$$

Wie bereits erwähnt, ist bei allen Parametrisierung mit drei unabhängigen Parametern mit Einschränkungen zu rechnen. Dagegen kann bei Verwendung des Einheitsquaternions oder mit Doppelrotationen (Wrobel und Klemm, 1984) die Drehung zwischen den Koordinatensystemen beliebig sein. Da aber die Drehung in der Regel sehr klein ist, bietet sich auch eine Beschreibung mit einer differentiellen Drehmatrix an.

Die Fehlausrichtung kann durch die Messung zu identischen Bildpunkten ermittelt werden. Dazu sollten die Punkte in den Bildern gut definiert sein, müssen aber nicht als Passpunkte koordinatenmäßig bekannt sein. Erfolgt die Bestimmung zusammen mit der Punktbestimmung, spricht man von einer "integrierten Sensororientierung". Dazu werden die Orientierungsdaten aus der GPS-IMU-Integration als direkte Beobachtungen eingeführt und die Fehlausrichtungsparameter als zusätzliche Parameter in der Bündelausgleichung simultan bestimmt.

Da die IMU fest mit der Kamera verbunden ist, kann diese Fehlausrichtung zumindest für die Zeitdauer des Fluges als konstant angenommen werden.

10.3 Erweitertes photogrammetrisches Abbildungsmodell

Für das erweiterte photogrammetrische Abbildungsmodell wird das Modell von Schwarz (10.1) um eine Positionsund eine Lagekorrektur erweitert:

$$\vec{X} = \vec{X}_o + \Delta \vec{X}_o(t) + \lambda \mathbf{R}(\omega + \Delta \omega(t), \varphi + \Delta \varphi(t), \kappa + \Delta \kappa(t)) [\mathbf{M}(\vec{p} + \vec{e}_c^c) + \vec{e}_a^b].$$
(10.2)

10.3.1 Positionskorrektur

Dabei ist $\Delta \vec{X}_o(t)$ eine zeitabhängige Positionskorrektur, die durch unabhängige Polynome *n*-ten Grades als Funktion des Belichtungszeitpunktes *t* definiert ist:

$$\Delta \vec{X}_{o}(t) = \begin{bmatrix} \Delta X_{o}(t) \\ \Delta Y_{o}(t) \\ \Delta Z_{o}(t) \end{bmatrix} = \begin{bmatrix} a_{0}^{X_{o}} + a_{1}^{X_{o}}(t-t_{0}) + \dots + a_{n}^{X_{o}}(t-t_{0})^{n} \\ a_{0}^{Y_{o}} + a_{1}^{Y_{o}}(t-t_{0}) + \dots + a_{n}^{Y_{o}}(t-t_{0})^{n} \\ a_{0}^{Z_{o}} + a_{1}^{Z_{o}}(t-t_{0}) + \dots + a_{n}^{Z_{o}}(t-t_{0})^{n} \end{bmatrix}.$$
(10.3)

Wobei die Polynomkoeffizienten

$a_0^{X_o},a_1^{X_o},\ldots,a_n^{X_o}$	Positionskorrekturparameter für X_o ,
$a_0^{Y_o},a_1^{Y_o},\ldots,a_n^{Y_o}$	Positionskorrekturparameter für Y_o ,
$a_0^{Z_o}, a_1^{Z_o}, \ldots, a_n^{Z_o}$	Positionskorrekturparameter für Z _o

in der Ausgleichung als zusätzliche Parameter mit bestimmt werden.

10.3.2 Lagekorrektur

Analog zur Positionskorrektur (10.3) kann auch eine Lagekorrektur $\Delta \vec{a}(t)$ definiert werden, die auf die Drehwinkel ω , φ , κ wirkt:

$$\Delta \vec{a}(t) = \begin{bmatrix} \Delta \omega(t) \\ \Delta \phi(t) \\ \Delta \kappa(t) \end{bmatrix} = \begin{bmatrix} a_0^{\omega} + a_1^{\omega}(t-t_0) + \dots + a_n^{\omega}(t-t_0)^n \\ a_0^{\varphi} + a_1^{\varphi}(t-t_0) + \dots + a_n^{\varphi}(t-t_0)^n \\ a_0^{\kappa} + a_1^{\kappa}(t-t_0) + \dots + a_n^{\kappa}(t-t_0)^n \end{bmatrix}$$
(10.4)

mit den Polynomkoeffizienten

$a_0^{\omega}, a_1^{\omega}, \ldots, a_n^{\omega}$	Lagekorrekturparameter für den Drehwinkel ω ,
$a_0^{\varphi}, a_1^{\varphi}, \ldots, a_n^{\varphi}$	Lagekorrekturparameter für den Drehwinkel ϕ ,
$a_0^{\kappa}, a_1^{\kappa}, \ldots, a_n^{\kappa}$	Lagekorrekturparameter für den Drehwinkel κ .

Die Drehwinkel ω , φ , κ sind dabei eine Parametrisierung mit drei voneinander unabhängigen Rotationsparametern. Für andere Parametrisierungen gilt dieses nicht, da Abhängigkeiten zwischen den Rotationsparametern und den Lagekorrekturparametern bestehen. In diesen Fällen sind die Abhängigkeiten als zusätzliche Bedingungsgleichungen formuliert in die Ausgleichung einzuführen.

Die äußere Orientierung bezieht sich auf die Belichtungszeitpunkte t im GPS-Zeitsystem⁶. Als Referenzzeitpunkt t_0 wird der erste Belichtungszeitpunkt verwendet:

$$t_0 = \min(t_1, t_2, \ldots, t_n).$$

⁶Bei der GPS-Auswertung werden verfahrensbedingt neben der Position *X*, *Y*, *Z* auch die Zeit *t* bestimmt.

Eine Verschiebung (Offset) kann mit den 0. Grad $(a_0^{X_o}, a_0^{Y_o}, a_0^{Z_o})$ und eine Drift mit den 1. Grad $(a_1^{X_o}, a_1^{Y_o}, a_1^{Z_o})$ korregiert werden. Die Verwendung von Polynomen des Grades n > 3 ist wenig sinnvoll, da diese Polynome generell zum Ausschwingen neigen.

Die Positions- und Lagekorrekturparameter können für den gesamten Block oder für die Flugstreifen getrennt angesetzt werden.

Die Koordinaten der Projektionszentren und die Drehwinkel sind perfekt mit den Offset-Parametern korreliert:

Da die Parameter der äußeren Orientierung immer als unbekannte Parameter auftreten, müssen diese Parameter mit einer entsprechenden Standardabweichung eliminiert (festgehalten) oder als beobachtet eingeführt werden. Werden zur Korrektur systematischer Fehler im Bildraum oder zur Kamerakalibrierung zusätzliche Parameter eingeführt, müssen weitere perfekte Korrelationen erwartet werden.

In der Regel, werden die Ezentrizitäten in der GPS-IMU-Integration berücksichtigt. Daher vereinfacht sich das Modell mit $\vec{e}_c^c = \vec{e}_a^b = \vec{0}$ zu

$$\vec{X} = \vec{X}_o + \Delta \vec{X}_o(t) + \lambda \mathbf{R}(\omega + \Delta \omega(t), \varphi + \Delta \varphi(t), \kappa + \Delta \kappa(t)) \mathbf{M} \vec{p}.$$
(10.5)

Die Kollinearitätsgleichung für das erweiterte photogrammetrische Abbildungsmodell ergibt sich durch Umstellung nach den Bildkoordinaten zu

$$\bar{x} = \bar{z} \frac{n_{11}\Delta X + n_{21}\Delta Y + n_{31}\Delta Z}{n_{13}\Delta X + n_{23}\Delta Y + n_{33}\Delta Z} + \Delta x$$

$$\bar{y} = \bar{z} \frac{n_{12}\Delta X + n_{22}\Delta Y + n_{32}\Delta Z}{n_{13}\Delta X + n_{23}\Delta Y + n_{33}\Delta Z} + \Delta y$$
(10.6)

mit der Gesamtrotation

$$\mathbf{N} = \mathbf{N}_{c}^{m} = \mathbf{R}(\boldsymbol{\omega} + \Delta\boldsymbol{\omega}(t), \boldsymbol{\varphi} + \Delta\boldsymbol{\varphi}(t), \boldsymbol{\kappa} + \Delta\boldsymbol{\kappa}(t))\mathbf{M}$$
(10.7)

und den Koordinatendifferenzen

$$\begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} - \begin{bmatrix} X_o \\ Y_o \\ Z_o \end{bmatrix} - \begin{bmatrix} \Delta X_o(t) \\ \Delta Y_o(t) \\ \Delta Z_o(t) \end{bmatrix}.$$
 (10.8)

Werden z.B. die Bildlage und die Fehlausrichtung durch drei Drehwinkel parametrisiert, gilt für die Kollinearitätsgleichungen allgemein formuliert als Funktion der unbekannten Parameter:

$$x = F_{x}(X, Y, Z, X_{o}, Y_{o}, Z_{o}, \omega, \phi, \kappa, a_{0}^{X_{o}}, \dots, a_{m}^{Z_{o}}, a_{0}^{\omega}, \dots, a_{o}^{\kappa}, \omega^{b}, \phi^{b}, \kappa^{b}, a_{1}, \dots, a_{n})$$

$$y = F_{y}(X, Y, Z, X_{o}, Y_{o}, Z_{o}, \omega, \phi, \kappa, a_{0}^{X_{o}}, \dots, a_{m}^{Z_{o}}, a_{0}^{\omega}, \dots, a_{o}^{\kappa}, \omega^{b}, \phi^{b}, \kappa^{b}, a_{1}, \dots, a_{n}).$$
(10.9)

Darin bedeuten

X, Y, Z	Objektkoordinaten
X_o, Y_o, Z_o	Koordinaten des Projektionszentrums
ω, ϕ, κ	Rotationsparameter zur Beschreibung der Bildlage
$a_0^{X_o},\ldots,a_m^{Z_o}$	Positionskorrekturparameter
$a_0^{\omega},\ldots,a_o^{\kappa}$	Lagekorrekturparameter
$\omega^b, arphi^b, \kappa^b$	Rotationsparameter zur Beschreibung der Fehlausrichtung
a_1,\ldots,a_n	zusätzliche Parameter.

Wie bereits erwähnt, existieren perfekte Korrelationen zwischen den unbekannten Parametern, so dass nicht gleichzeitig alle Parameter bestimmbar sind.

10.4 Direkte Georeferenzierung für Zeilenscanner

Für Aufnahmen mit Flächenkameras kann die äußere Orientierung für das gesamte Bild als gleich betrachtet werden. Daher kann bei Flächenkameras — eine geeignete Aufnahmekonfiguration vorausgesetzt — die Modellrekonstruktion vollständig aus den Bildinformationen erfolgen. Zusätzliche Orientierungsinformationen, z.B. GPS- und/oder INS-Informationen, sind von Vorteil, sind aber grundsätzlich nicht erforderlich. Dagegen hat bei Aufnahmen mit Zeilenscannern jede Scannzeile *r* eine eigene äußere Orientierung $X_o(r)$, $Y_o(r)$, $Z_o(r)$, $\omega(r)$, $\varphi(r)$ und $\kappa(r)$ mit der zugehörigen GPS-Zeit t(r), die von Zeile zu Zeile unterschiedlich ist. Die Bildgeometrie entspricht in Zeilrichtung einer Zentralprojektion und in Flugrichtung einer Parallelprojektion.

Abbildung 10.1: Direkte Georeferenzierung für Zeilenscanner

Dereny und Hofmann (1986) haben unabhängig voneinander gezeigt, dass mit dem Dreizeilenprinzip eine dreidimensionale photogrammetrische Auswertung ohne zusätzliche Orientierungsinformationen prinzipiell möglich ist. Das Objekt wird dazu gleichzeitig mit drei quer zur Flugrichtung (*along-track*) angeordneten Sensorzeilen (Dreizeilenkamera) mit mindestens 60% Längsüberdeckung aufgenommen. Die Punktbestimmung und Rekonstruktion der äußeren Orientierung kann gleichzeitig nach der Bündelmethode erfolgen (*Orientierungsbildmethode*) (Müller, 1991). Bei der Rekonstruktion wird die äußere Orientierung in den Intervallpunkten (*Aufnahmestützpunkte* oder *Orientierungsbilder*) längs des Flugweges bestimmt. Dazu wird vorausgesetzt,

- dass die äußere Orientierung innerhalb begrenzter Zeitintervalle interpoliert werden kann und
- eine ausreichend zuverlässige und dichte Verteilung von Verknüpfungspunkten (homologen Punkten) zwischen den drei Zeilenbildern vorhanden ist.

Die Verknüpfungspunkte werden durch eine automatische Punktübertragung bestimmt. Praktisch ist eine solche Punktübertragung bei Luftaufnahmen nicht immer zu gewährleisten.

Unter hochdynamische Aufnahmebedingungen, ist eine Zunahme der Aufnahmestützpunkte⁷ erforderlich. Damit wird gleichzeitig eine höhere Anzahl von Verknüpfungspunkten notwendig. Die Einbeziehung von GPSund INS-Informationen erlaubt eine Verringerung der Aufnahmestützpunkte und auch damit eine Verringerung

⁷Das entspricht einer Verringerung des Orientierungsbildabstandes.

der notwendigen Verknüpfungspunkte. Im extremen Fall — der direkten Georeferenzierung — wird ganz auf eine Bestimmung von Aufnahmestützpunkte verzichtet. Vorraussetzung dafür ist eine ausreichend genaue Bestimmung der äußeren Orientierung durch die GPS-INS-Integration, deren Qualität im Wesentlichen durch die Genauigkeitsklasse der IMU bestimmt ist.

Die Transformationsgleichung bzw. die Kollinearitätsgleichung entspricht denen für Flächenkameras (10.5) - (10.8), jedoch gelten für Aufnahmen mit Zeilenkameras die Gleichungen nur für die einzelne Scannzeile *r*:

$$\vec{X} = \vec{X}_o(r) + \Delta \vec{X}_o(r) + \lambda \mathbf{R}(\omega(r) + \Delta \omega(r), \varphi(r) + \Delta \varphi(r), \kappa(r) + \Delta \kappa(r)) \mathbf{M} \vec{p}.$$
 (10.10)

bzw.

$$\bar{x} = \bar{z} \frac{n_{11}\Delta X + n_{21}\Delta Y + n_{31}\Delta Z}{n_{13}\Delta X + n_{23}\Delta Y + n_{33}\Delta Z} + \Delta x$$

$$\bar{y} = \bar{z} \frac{n_{12}\Delta X + n_{22}\Delta Y + n_{32}\Delta Z}{n_{13}\Delta X + n_{23}\Delta Y + n_{33}\Delta Z} + \Delta y$$
(10.11)

mit der Gesamtrotation

$$\mathbf{N} = \mathbf{N}_{c}^{m} = \mathbf{R}(\boldsymbol{\omega}(r) + \Delta\boldsymbol{\omega}(r), \boldsymbol{\varphi}(r) + \Delta\boldsymbol{\varphi}(r), \boldsymbol{\kappa}(r) + \Delta\boldsymbol{\kappa}(r))\mathbf{M}$$
(10.12)

und den Koordinatendifferenzen

$$\begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} - \begin{bmatrix} X_o(r) \\ Y_o(r) \\ Z_o(r) \end{bmatrix} - \begin{bmatrix} \Delta X_o(r) \\ \Delta Y_o(r) \\ \Delta Z_o(r) \end{bmatrix}.$$
 (10.13)

Allgemein formuliert gilt für die Kollinearitätsgleichungen als Funktion der unbekannten Parameter:

$$x = F_x(X, Y, Z, a_0^{X_o}, \dots, a_m^{Z_o}, a_0^{\omega}, \dots, a_o^{\kappa}, \omega^b, \varphi^b, \kappa^b, a_1, \dots, a_n)$$

$$y = F_y(X, Y, Z, a_0^{X_o}, \dots, a_m^{Z_o}, a_0^{\omega}, \dots, a_o^{\kappa}, \omega^b, \varphi^b, \kappa^b, a_1, \dots, a_n)$$
(10.14)

wobei zu beachten ist, dass die Orientierungsparameter $X_o(r)$, $Y_o(r)$, Z_o , $\omega(r)$, $\phi(r)$ und $\kappa(r)$ nicht als unbekannte Parameter, sondern als Konstanten **c**, in das Ausgleichungsmodell eingehen.

Das Ergebnis einer Messung in den Zeilenbildern sind nicht-ganzzahlige Pixelkoordinaten (*c*, *r*) der Bildpunkte. Die Bildkoordinaten (*x*, *y*) ergeben sich aus der idealen bzw. der kalibrierten Lage der Sensorzeilen in der Bildebene (siehe 4.3). Die äußere Orientierung ist eine Funktion der Zeilennummer $r: X_o(r), Y_o(r), Z_o(r), \omega(r), \varphi(r)$ und $\kappa(r)$. Unter der Vorraussetzung, dass es für jede aufgenomme Bildzeile einen Orientierungsdatensatz gibt, ist der Index für den Orientierungsdatensatz

$$i = r - \Delta r - \Delta r_i$$

wobei Δr_j eine ganzzahlige Verschiebung zwischen den Bildzeilen *r* und den Orientierungsdatensatz *j* berücksichtigt. Zusätzlich kann mit einem nicht-ganzzahligen Zeilen-Offset Δr eine globale Zeilenverschiebung erfolgen, um mögliche Synchronisationsprobleme zu begegnen. Da die beobachtete Zeilennummer *r* in der Regel nicht ganzzahlig ist, wird einfach zwischen den benachbarten Orientierungen im Orientierungsdatensatz linear interpoliert.

Kapitel 11

Genauigkeit

Die *innere* und *äußere geometrische Genauigkeit* der Bündelausgleichung sind zu unterscheiden. Die innere Genauigkeit ist <u>nur</u> ein Maß dafür, in wie gut das funktionale Modell die verwendeten Daten modelliert. Erst die äußere Genauigkeit erlaubt eine unabhängige Aussage über die Genauigkeit, da hierfür unabhängige externe Werte, die Kontrollpunkte, verwendet werden.

11.1 Innere Genauigkeit

Die innere Genauigkeit wird aus den internen Werten der Ausgleichung, der a posteriori Standardabweichung der Gewichtseinheit und der Kofaktormatrix, bestimmt. Verschiedene Genauigkeitsmaße können abgeleitet werden:

• Die Standardabweichung für einzelne Objektkoordinaten:

$$\hat{\sigma}_X = \hat{\sigma}_0 \sqrt{q_{XX}}, \quad \hat{\sigma}_Y = \hat{\sigma}_0 \sqrt{q_{YY}}, \quad \hat{\sigma}_Z = \hat{\sigma}_0 \sqrt{q_{ZZ}}$$
(11.1)

wobei

 $\hat{\sigma}_0$ a posteriori Standardabweichung der Gewichtseinheit q_{XX}, q_{YY}, q_{ZZ} zugehörige Elemente der Kofaktormatrix \mathbf{Q}_{xx} .

- Das Maximum der Standardabweichung der einzelnen Parameter: $\hat{\sigma}_{X,max}$, $\hat{\sigma}_{Y,max}$, $\hat{\sigma}_{Z,max}$.
- Die mittlere (innere) Genauigkeit (average precision):

$$\bar{\sigma}_X = \sqrt{\frac{1}{n_X} \sum_{i=1}^{n_X} \hat{\sigma}_X}, \quad \bar{\sigma}_Y = \sqrt{\frac{1}{n_Y} \sum_{i=1}^{n_Y} \hat{\sigma}_Y}, \quad \bar{\sigma}_Z = \sqrt{\frac{1}{n_Z} \sum_{i=1}^{n_Z} \hat{\sigma}_Z}$$
(11.2)

wobei

 n_X, n_Y, n_Z Anzahl der Objektpunktkoordinaten.

11.2 Äußere Genauigkeit

Die äußere geometrische Genauigkeit ergibt sich aus den Koordinatendifferenzen in den Kontrollpunkten:

$$\Delta X = X^* - \hat{X}, \quad \Delta Y = Y^* - \hat{Y}, \quad \Delta Z = Z^* - \hat{Z}$$
 (11.3)

wobei

X^*, Y^*, Z^*	Soll-Koordinaten der Kontrollpunkte
$\hat{X}, \hat{Y}, \hat{Z}$	geschätzte Koordinaten der Kontrollpunkte.

Aus diesen Differenzen können verschiedene Genauigkeitsmaße abgeleitet werden:

- Die einzelnen Koordinatendifferenzen: ΔX , ΔY , ΔZ .
- Die maximalen absoluten Koordinatendifferenzen (*maximum of absolute differences*): $|\Delta X|_{max}$, $|\Delta Y|_{max}$, $|\Delta Z|_{max}$.
- Die mittleren Differenzen in den Kontrollpunkten (average of differences):

$$\overline{\Delta X} = \frac{1}{n_X} \sum_{i=1}^{n_X} \Delta X, \quad \overline{\Delta Y} = \frac{1}{n_Y} \sum_{i=1}^{n_Y} \Delta Y, \quad \overline{\Delta Z} = \frac{1}{n_Z} \sum_{i=1}^{n_Z} \Delta Z$$
(11.4)

wobei

- n_X, n_Y, n_Z Anzahl der Kontrollpunktkoordinaten.
- Die mittleren quadratischen Differenzen (Root-Mean-Square (RMS) of differences):

$$\mu_X = \sqrt{\frac{1}{n_X} \sum_{i=1}^{n_X} \Delta X^2}, \quad \mu_Y = \sqrt{\frac{1}{n_Y} \sum_{i=1}^{n_Y} \Delta Y^2}, \quad \mu_Z = \sqrt{\frac{1}{n_Z} \sum_{i=1}^{n_Z} \Delta Z^2}.$$
 (11.5)

• Die Standardabweichung der Differenzen oder unverfälschten mittleren quadratischen Differenzen (*standard deviations of differences or RMS of unbiased differences*):

$$\sigma_X = \sqrt{\frac{1}{n_X - 1} \sum_{i=1}^{n_X} (\Delta X - \overline{\Delta X})^2},$$

$$\sigma_Y = \sqrt{\frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (\Delta Y - \overline{\Delta Y})^2},$$

$$\sigma_Z = \sqrt{\frac{1}{n_Z - 1} \sum_{i=1}^{n_Z} (\Delta Z - \overline{\Delta Z})^2}.$$
 (11.6)

Um die Koordinatendifferenzen nicht erneut berechnen zu müssen, können die Standardabweichungen auch direkt aus den Summen und Quadratsummen abgeleitet werden:

$$\sigma_{X} = \sqrt{\frac{1}{n_{X} - 1} \left[\sum_{i=1}^{n_{X}} \Delta X^{2} - 2\overline{\Delta X} \sum_{i=1}^{n_{X}} \Delta X + n_{X} \overline{\Delta X}^{2} \right]},$$

$$\sigma_{Y} = \sqrt{\frac{1}{n_{Y} - 1} \left[\sum_{i=1}^{n_{Y}} \Delta Y^{2} - 2\overline{\Delta Y} \sum_{i=1}^{n_{Y}} \Delta Y + n_{Y} \overline{\Delta Y}^{2} \right]},$$

$$\sigma_{Z} = \sqrt{\frac{1}{n_{Z} - 1} \left[\sum_{i=1}^{n_{Z}} \Delta Z^{2} - 2\overline{\Delta Z} \sum_{i=1}^{n_{Z}} \Delta Z + n_{Z} \overline{\Delta Z}^{2} \right]}.$$
(11.7)

11.3 Verbesserungen in den Passpunkten

Wurden die Passpunkte mit einer realen Standardabweichung in die Ausgleichung eingeführt, werden in Abhängigkeit vom Gewichtsverhältnis neue Passpunktkoordinaten geschätzt. Für die Passpunkte können daher Verbesserungen (*control point residuals*) berechnet werden:

$$v_X = \hat{X} - X^0, \quad v_Y = \hat{Y} - Y^0, \quad v_Z = \hat{Z} - Z^0$$
(11.8)

wobei

$\hat{X}, \hat{Y}, \hat{Z}$	geschätzte Koordinaten der Kontrollpunkte
X^0, Y^0, Z^0	beobachtete Kontrollpunktkoordianten (= Anfangswerte).

Aus den Verbesserungen können verschiedene Genauigkeitsmaße abgeleitet werden:

- Die einzelnen Verbesserungen: v_X , v_Y , v_Z .
- Das Maximum der einzelnen Verbesserungen: $|v_X|_{max}$, $|v_Y|_{max}$, $|v_Z|_{max}$.
- Der Mittwert der Verbesserungen (average of residuals):

$$\bar{v}_X = \frac{1}{n_X} \sum_{i=1}^{n_X} v_X, \quad \bar{v}_Y = \frac{1}{n_Y} \sum_{i=1}^{n_Y} v_Y, \quad \bar{v}_Z = \frac{1}{n_Z} \sum_{i=1}^{n_Z} v_Z$$
 (11.9)

wobei

 n_X, n_Y, n_Z Anzahl der Verbesserungen in den Passpunktkoordinaten.

• Die Standardabweichung der Verbesserungen (RMS of residuals):

$$\sigma_{v_X} = \sqrt{\frac{1}{n_X} \sum_{i=1}^{n_X} v_X^2}, \quad \sigma_{v_Y} = \sqrt{\frac{1}{n_Y} \sum_{i=1}^{n_Y} v_Y^2}, \quad \sigma_{v_Z} = \sqrt{\frac{1}{n_Z} \sum_{i=1}^{n_Z} v_Z^2}.$$
 (11.10)

Kapitel 12

Korrelationen

Der Korrelationskoeffizient zweier Parameter r_{ij} berechnet sich aus den Elementen der Kofaktormatrix \mathbf{Q}_{xx} mit

$$r_{ij} = \frac{q_{ij}}{\sqrt{q_{ii}}\sqrt{q_{jj}}}.$$
(12.1)

Ist der Absolutbetrag des Korrelationskoeffizienten größer als 0,8, sollten die zwei Parameter sehr kritisch betrachtet werden, da zwischen beiden Parametern möglicherweise ein Zusammenhang besteht. Zwischen den Objektkoordinaten und den Parametern der äußeren Orientierung sind hohe Korrelation meist nicht zu vermeiden. Dagegen sollten hohe Korrelationen bei den zusätzlichen Parametern vermieden werden, indem einer der Parameter eliminiert wird.

Kapitel 13

Programmein- und ausgabe

Die Programmein- und ausgabe erfolgt über mehrere Textdateien im DOS- oder UNIX-Format. Die Dateinamenerweiterung kann zur Kennzeichnung verwendet werden, wird aber vom Programm selbst nicht verwendet. Allgemein gilt:

Alle Dateinamen sind frei wählbar.

Die Programm-/Konsoleneingaben und Textdateien werden hier in der Schreibmaschine dargestellt: ./dgap -help oder common-sdev. Spitze Klammern bezeichnen einen Parameter: <X> oder <ID>. Der Klammerinhalt ist durch den entsprechenden Parameter zu ersetzen wobei der Parameter den angegeben Datentyp entsprechen muss. Eckige Klammern bezeichnen ein optionales Schlüsselwort oder Parameter: [stop-dep].

Die Textdateien enthalten verschiedene Eingabefelder. Die Eingabefelder sind durch Zwischenraumzeichen¹ voneinander getrennt. Die Eingabefelder werden entsprechend des erwarteten Datentyps interpretiert. Die Eingabedaten können folgende C++ bzw. STL-Datentypen sein:

Datentyp	C++/STL Typ	Beispiel
binäre Zustände	bool	0 1
ganze Zahlen	int	42 -4711
doppeltgenaue Gleitpunktzahlen	double	-123.4 1.0e+31
Zeichenketten	char[], string	abc AP-set stereo_a

Generell erfolgt das Lesen der Datentypen nach den C/C++-Regeln. Binäre Zustände werden durch 0 (off) und 1 (on) unterschieden. Zeichenketten dürfen/können keine Zwischenraumzeichen enthalten. Wenn erforderlich können zur Worttrennung der Unterstrich _ (underscore) oder das Minus-Zeichen - (minus) verwendet werden. Da in Schlüsselwörtern das Minus-Zeichen verwendet wird, sollte in frei wählbaren Namen, zur besseren Lesbarkeit, der Unterstrich verwendet werden. Kann der Datentyp nicht gelesen werden, erfolgt ein Programmabbruch mit entspechender Fehlermeldung, wie und wo der Fehler aufgetreten ist. Die Information in der Textdatei endet mit dem Dateiende (EOF) oder mit dem Schlüsselwort stop-dep.

Achtung! Es erfolgt kein Hinweis wenn die Eingabedaten unvollständig gelesen wurden. Tipp: Daher als erstes die unter Input data angegebene Anzahl der eingelesenen Objekte überprüfen.

¹Standard C Zwischeraumzeichen (white spaces): Leerzeichen (blank), Tabulator (tab), Vertikal-Tabulator (vertical tab), Zeilentrenner (newline), Seitenvorschub (formfeed), Wagenrücklauf (carridge return).

- **Objekte:** Das Bündelprogramm verwendet für die Datenorganisation bestimmte Objekte. Ähnliche Objekte sind durch eine gemeinsame Klasse definiert, z.B. Bildpunkte, Objektpunkte, Bilder, Kameras, äußere Orientierungen und Sätze von zusätzlichen Parametern.
- **ID:** Zur Kennzeichnung der Objekte werden IDs (*identifier*) verwendet. Innerhalb einer Klasse muss die ID eindeutig sein. Die IDs sind generell als STL-Zeichenketten (*string*) implementiert. Es werden ausdrücklich keine Punktnummern für die Kennzeichnung von Punkten verwendet.
- **Datenorganisation:** Zur Vereinfachung der Datenorganisation können die (bestimmte) Objekte auf verschiedene Dateien verteilt sein.

Die im folgenden Text gezeigten Beispieldateien befinden sich im Verzeichnis dgap-name-X.X.X/doc. Dabei bezeichnet name einen Namen, z.B. release. X.X.X ist optional und bezeichnet eine Release-Nummer.

13.1 Konfigurations-/Projekt-Datei

Die Konfigurations- oder Projekt-Datei (.cfg oder .prj) fasst alle Eingabedateien zusammen. Der zu erwartende Typ der Eingabedatei wird durch ein Schlüsselwort (*keyword*) festgelegt. Danach wird der Name der Eingabedatei angegeben, evtl. einschliesslich des Verzeichnispfades. In Fällen, wo die ID nicht Teil der Eingabedatei ist, z.B. bei ADS40-Kameradaten und -Orientierungsdaten, erfolgt unmittelbar danach die Angabe der ID. Das Schlüsselwort stop-dep am Ende der Datei ist optional.

Für die Eingabedaten gilt folgende Reihenfolge:

- 1. Parameter/Optionen
- 2. Kameras
- 3. Bild-Verknüpfungen
- 4. Orientierungen, Objektpunkte, Zusatzparameter etc.

Schlüsselwort, Dateiname und ID sind durch Leerzeichen voneinander getrennt. Die Information in der Konfigurationsdatei endet mit dem Dateiende (EOF) oder mit dem Schlüsselwort stop-dep. Die Datei wird zeilenweise bearbeitet. Informationen die hinter dem Dateinamen oder hinter dem Schlüsselwort stop-dep stehen, werden ignoriert und können z.B. als Kommentare verwendet werden.

Allgemeine Dateistruktur:

```
<Keyword> <Dateiname> (<ID>)
...
[stop-dep]
```

Schlüsselwort	Dateityp
params	Parameter/Optionen
ls-params	Least-Squares Parameter/Optionen
network-design-params	Netzwerkdesign-Parameter/Optionen
camera	Kameradaten
camera-ads	ADS40-Kameradaten
image	Bild-Verknüpfungen
ext-ori	äußere Orientierungen
orientation-data-params	Orientierungsdatensatz-Parameter/Optionen
orientation-data	Orientierungsdaten für Zeilenkameras
orientation-data-odf	ADS40-Orientierungsdaten (ODF-Format)
image-crds	Bildkoordinaten
obj-crds	Objektkoordinaten
ctrl-supp	Control Support
ap-set	zusätzliche Parameter
pos-cor	Positionskorrektur-Parameter
att-cor	Lagekorrektur-Parameter
imu-misal	IMU-Fehlausrichtung
stop-dep	Dateiende

Tabelle 13.1: Schlüsselworte der Projektdatei

Listing	13.1:	Proi	iektdatei	test.cfg
Libering	10.1.	110	oncautor	contra

			0	5	8
1	params	test.pr			
2	ls-params	test.lsp			
3	camera	test.ca			
4	image	test.im			
5	image-crds	test.ic			
6	ext-ori	test.eo			
7	obj-crds	test.oc			
8	stop-dep				

13.2 Parameter-/Optionen-Datei

In der Parameter-/Optionen-Datei (.pr) können verschiedene Parameter und Optionen gesetzt werden.

```
Die Parameter und Optionen beeinflussen nur die Ausgabe und nicht das
Ergebnis der Ausgleichung!
```

Allgemeine Dateistruktur:

```
<pr_chk_appr> <pr_chk_rays> <pr_inter> <pr_ic>
<pr_obj_crds> <pr_ext_ori> <pr_ap_sets> <pr_pos_cor> <pr_att_cor> <pr_imu_mis>
<db_upari> <db_inter>
<pr_aps_nx> <pr_aps_ny>
<fname_normal_matrix_struct>
<fname_normal_matrix>
```

<fname_right_side_vector><fname_solution_vector>

Parameter	Datentyp	Beschreibung	Voreinst.
<pr_chk_appr></pr_chk_appr>	bool	Ausgabe von Näherungswerten der Kontroll-	0000
<pr_chk_rays></pr_chk_rays>		punkte, Anzahl der Bildstrahlen pro Punkt	
<pr_inter> <pr_ic></pr_ic></pr_inter>		wird ausgegeben, Resultate der Neupunkte	
		werden angezeigt, Ausgabe der beobachteten	
		Bildkoordinaten	
<pr_obj_crds></pr_obj_crds>	bool	Ausgabe der unbekannten Parameter in	000000
<pr_ext_ori></pr_ext_ori>		jeder Iteration: Objektkoordinaten, Ori-	
<pr_ap_sets></pr_ap_sets>		entierungsparameter, Zusatzparameter,	
<pr_pos_cor></pr_pos_cor>		Positions- und Lagekorrekturparameter,	
<pr_att_cor></pr_att_cor>		IMU-Fehlausrichtung	
<pr_imu_mis></pr_imu_mis>			
<db_upari> <db_inter></db_inter></db_upari>	bool	Ausgabe UPARI-Tabelle, Ausgabe der Resul-	0 0
		tate des Vorwärtsschnitts	
<pr_aps_nx></pr_aps_nx>	int	Ausgabe der Effekte der Zusatzparameter,	0 0
<pr_aps_ny></pr_aps_ny>		Anzahl der Gitterpunkte in x und y Richtung	
<fname_normal_< td=""><td>string</td><td>Ausgabedateiname der Normalgleichungs-</td><td>none</td></fname_normal_<>	string	Ausgabedateiname der Normalgleichungs-	none
matrix_struct>		struktur	
<fname_normal_matrix></fname_normal_matrix>	string	Ausgabedateiname der Normalgleichungs-	none
		matrix	
<fname_right_< td=""><td>string</td><td>Ausgabedateiname der rechten Seite</td><td>none</td></fname_right_<>	string	Ausgabedateiname der rechten Seite	none
side_vector>			
<fname_solution_< td=""><td>string</td><td>Ausgabedateiname des Lösungsvektors</td><td>none</td></fname_solution_<>	string	Ausgabedateiname des Lösungsvektors	none
vector>			

Tabelle 13.2: Parameter-/Optionen

Durch die Optionen pr_ (print) und db_ (debug) wird nur die Ausgabe durch zusätzliche Informationen erweitert. Das Ergebnis der Bündelausgleichung wird dadurch nicht beeinflusst.

Verschiedene Optionen können auch über den Kommadoaufruf beeinflusst werden (siehe Programm-Option -help in 13.17).

Die Ausgabe des Einflusses der Zusatzparameter auf die Bildkoordinaten wird durch die Angabe der Anzahl der Gitterpunkte gesteuert. Ist die Anzahl der Gitterpunkte in x- (<pr_aps_nx>) oder y-Richtung (<pr_aps_ny>) gleich null, erfolgt keine Ausgabe².

Wird als Dateiname der Ausdruck none gewählt, erfolgt keine Ausgabe. Die Ausgabe der Normalgleichungsstruktur erfolgt als Bitmap im "plain" PBM-Format.

Listing 13.2: Parameter-/Optionen-Datei test.pr

²Die Programmoption -pr_aps_infl ist veraltet.

- 5 none
- 6 none
- 7 none
- 8 none

13.3 Least-Squares Parameter-/Optionen-Datei

Die Kleinste-Quadrate-Ausgleichung (*least-squares adjustment*) wird durch die Least-Squares Parameter-/-Optionen-Datei (.lsp) gesteuert.

Allgemeine Dateistruktur:

```
<sigma0>
<max_iter>
<conv_chk> <conv_eps>
<chk_obj> <chk_pcc> <chk_rot>
<conv_obj> <conv_pcc> <conv_rot>
<smin> <smax>
<smin_u> <smax_u>
<unksup_wt> <constr_wt>
<ccoef_lim>
<incr_crd> <incr_rot>
<t_quantil>
<atpv_lim>
<res_lim>
<unit_objc> <unit_angle>
<adj_interface>
<ap_derivs>
```

Parameter	Datentyp	Beschreibung	Voreinst.
<sigma0></sigma0>	double	a priori Standardabweichung der Gewichts-	10^{-6}
		heit in m	
<max_iter></max_iter>	int	maximale Anzahl der Iterationen	10
<conv_chk> <conv_eps></conv_eps></conv_chk>	bool	allg. Konvergenzoption und Abbruchskriteri-	$1 \ 10^{-16}$
		um	
<chk_obj> <chk_pcc></chk_pcc></chk_obj>	bool	Konvergenzoptionen für Objektkoordinaten,	0000
<chk_rot></chk_rot>		Projektionszentren und Drehwinkel	
<conv_obj> <conv_pcc></conv_pcc></conv_obj>	double	Konvergenzgrenzen für Objektkoordinaten,	0.001 0.001
<conv_rot></conv_rot>		Projektionszentren und Drehwinkel in m bzw.	10^{-6}
		rad	
<smin> <smax></smax></smin>	double	Unterer und oberer Grenzwert der Standard-	$10^{-30} \ 10^{+30}$
		abweichungen σ_{min} , σ_{max} für beobachtete Pa-	
		rameter	
<smin_u> <smax_u></smax_u></smin_u>	double	Standardabweichungen für unbekannte bzw.	$10^{-31} \ 10^{+31}$
		eliminierte/feste Parameter $\sigma_{min,u}, \sigma_{max,u}$	

Fortsetzung auf der nächsten Seite

<unksup_wt></unksup_wt>	double	Gewichte für die Eliminierung von unbekann-	$10^{-10} \ 10^{-10}$
<constr_wt></constr_wt>		ten Parametern und für Bedingungsgleichun-	
		gen	
<ccoef_lim></ccoef_lim>	double	Ausgabelimit für Korrelationskoeffizienten	0.8
<incr_crd> <incr_rot></incr_rot></incr_crd>	double	Inkremente für numerisches Differenzie-	$10^{-0} \ 10^{-3}$
		ren für Objektkoordinaten- und Drehwinkel-	
		Parameter in m bzw. rad	
<t_quantil></t_quantil>	double	Quantil der t-Verteilung $t_{\infty,1-\alpha/2}$ für Signifi-	1.96
		kanztests bei einer Irrtumswahrscheinlichkeit	
		α	
<atpv_lim></atpv_lim>	double	Grenzwert für die Probe der Ausgleichung	10^{-4}
		$\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{v}=0$	
<res_lim></res_lim>	double	$\mathbf{A}^{\mathrm{T}} \mathbf{P} \mathbf{v} = 0$ Grenzwert für die Ausgabe von Verbessserun-	10 ⁻⁵
<res_lim></res_lim>	double	A ¹ Pv = 0Grenzwert für die Ausgabe von Verbessserungen der Bildkoordinaten in m	10 ⁻⁵
<res_lim> <unit_objc></unit_objc></res_lim>	double string	A ^T Pv = 0Grenzwert für die Ausgabe von Verbessserungen der Bildkoordinaten in mEinheiten bei der Ausgabe für Objektkoordi-	10 ⁻⁵ m rad
<res_lim> <unit_objc> <unit_angle></unit_angle></unit_objc></res_lim>	double string	 A¹Pv = 0 Grenzwert für die Ausgabe von Verbessserungen der Bildkoordinaten in m Einheiten bei der Ausgabe für Objektkoordinaten und Drehwinkel-Parameter (Schlüssel- 	10 ⁻⁵ m rad
<res_lim> <unit_objc> <unit_angle></unit_angle></unit_objc></res_lim>	double string	A ^T Pv = 0 Grenzwert für die Ausgabe von Verbessserungen der Bildkoordinaten in m Einheiten bei der Ausgabe für Objektkoordinaten und Drehwinkel-Parameter (Schlüsselwort)	10 ⁻⁵ m rad
<res_lim> <unit_objc> <unit_angle> <adj_interface></adj_interface></unit_angle></unit_objc></res_lim>	double string string	 A¹Pv = 0 Grenzwert für die Ausgabe von Verbessserungen der Bildkoordinaten in m Einheiten bei der Ausgabe für Objektkoordinaten und Drehwinkel-Parameter (Schlüsselwort) Schlüsselwort für die Bibliothek zur numeri- 	10 ⁻⁵ m rad native
<res_lim> <unit_objc> <unit_angle> <adj_interface></adj_interface></unit_angle></unit_objc></res_lim>	double string string	A ^T Pv = 0 Grenzwert für die Ausgabe von Verbessserungen der Bildkoordinaten in m Einheiten bei der Ausgabe für Objektkoordinaten und Drehwinkel-Parameter (Schlüsselwort) Schlüsselwort für die Bibliothek zur numerischen Lösung linearer Gleichungssysteme	10 ⁻⁵ m rad native
<res_lim> <unit_objc> <unit_angle> <adj_interface> <ap_derivs></ap_derivs></adj_interface></unit_angle></unit_objc></res_lim>	double string string string	 A¹Pv = 0 Grenzwert für die Ausgabe von Verbessserungen der Bildkoordinaten in m Einheiten bei der Ausgabe für Objektkoordinaten und Drehwinkel-Parameter (Schlüsselwort) Schlüsselwort für die Bibliothek zur numerischen Lösung linearer Gleichungssysteme Schlüsselwort für die Methode zur Bildung 	10 ⁻⁵ m rad native image-
<res_lim> <unit_objc> <unit_angle> <adj_interface> <ap_derivs></ap_derivs></adj_interface></unit_angle></unit_objc></res_lim>	double string string string	A ¹ Pv = 0 Grenzwert für die Ausgabe von Verbessserungen der Bildkoordinaten in m Einheiten bei der Ausgabe für Objektkoordinaten und Drehwinkel-Parameter (Schlüsselwort) Schlüsselwort für die Bibliothek zur numerischen Lösung linearer Gleichungssysteme Schlüsselwort für die Methode zur Bildung der partiellen Ableitungen der Zusatzparame-	10 ⁻⁵ m rad native image- coords-

Tabelle 13.3: Least-Squares-Parameter-/Optionen

Die Konvergenzkriterien bestimmen wann die Iterationsschleife abgebrochen wird. Es gibt ein allgemeines und drei spezielle Konvergenzkriterien. Das allgemeine Konvergenzkriterium verwendet die Gegebenheit, dass bei Konvergenz, die Summe der Verbesserungen gleich der Summe der (gekürzten) Beobachtungen wird: $\mathbf{v}^T \mathbf{v} = \mathbf{l}^T \mathbf{l}$. Die drei speziellen Konvergenzkriterien überprüfen, ob die Änderungen in Objektpunktkoordinaten, in den Koordinaten der Projektionszentren und in den (drei) Drehwinkeln den gegebenen Schwellwert unterschreiten. Die Konvergenzoptionen geben an, für welche unbekannten Parameter die Konvergenzgrenzen überprüft werden sollen. Werden die entsprechenden unbekannten Parameter nicht in der Ausgleichung bestimmt, erfolgt auch keine Überprüfung.

Gültige Schlüsselwörter für die Einheiten der Objektkoordinaten sind in Tabelle 13.4 und für die Drehwinkel in Tabelle 13.5 zu finden.

Achtung: Den Parameter für die Längeneinheiten	<unit_< th=""><th>_objc></th><th>immer auf</th></unit_<>	_objc>	immer auf
m einstellen. Diese Funktion ist nicht vollst	ändig in	plement	tiert!

Schlüsselwort	Einheit
um	Mikrometer
mm	Millimeter
CM	Zentimeter
m	Meter

Tabelle 13.4: Schlüsselwörter für Längeneinheiten

Schlüsselwort	Einheit
rad	Radiant (radiant)
deg	Grad (degree)
gon	Gon (gon/grads)

Tabelle 13.5: Schlüsselwörter für Winkeleinheiten

Für die numerische Lösung linearer Gleichungssysteme (Lösung des Gleichungssystems und Inversion der Normalgleichungsmatrix) werden standardmäßig die Funktionen der GenLib2-Bibliothek (native) verwendet. Zur schnelleren Berechnung können die LAPACK/BLAS-Routinen (*Linear Algebra PACKage*) verwendet werden (siehe 14.2). Bei der Verwendung der LAPACK-Routinen muss das Programm entsprechend übersetzt und montiert (gelinkt) werden. Andernfalls erfolgt eine Fehlermeldung mit Programmabbruch.

Schlüsselwort	Methode
native	GenLib2-Bibliothek
lapack	LAPACK/BLAS-Bibliothek

Tabelle 13.6: Schlüsselwörter für die Methoden zur Lösung und Inversion des Normalgleichungssystems

Schlüsselwort	Methode
image-coords	aus beobachteten Bildkoordinaten nach (9.17)
collinear-equation	aus der Kollineariätsgleichung nach (9.18)
image-coords-plus-aps	aus beobachteten Bildkoordinaten und Zusatzparameter nach (9.19)

Tabelle 13.7: Schlüsselwörter für die Methode zur Bildung der partiellen Ableitungen der Zusatzparameter

1	6.0e-6
2	10
3	0 le-16
4	0 0 1
5	0.001 0.001 1.57e-6
6	1e-30 le+30
7	1e-31 le+31
8	1e+10 1e+10
9	0.80
10	1e0 1e-3
11	1.96
12	1e-4
13	0.
14	m gon
15	lapack
16	image-coords-plus-aps

Listing 13.3: Least-Squares Parameter-/Optionen-Datei test.lsp

13.4 Netzwerkdesign-Parameter-/Optionen-Datei

Diese Datei fasst alle Parameter und Optionen zusammen, die nur das photogrammetrische Netzwerkdesign betreffen.

Allgemeine Dateistruktur:

<min_rays_point> <min_rays_image> <pr_freq_rays> [stop-dep]

Parameter	Datentyp	Beschreibung	Voreinst.
<min_rays_point></min_rays_point>	int	Minimale Anzahl der Strahlen pro Objekt-	2
		punkt	
<min_rays_image></min_rays_image>	int	Minimale Anzahl der Strahlen pro Bild	3
<pr_freq_rays> bool</pr_freq_rays>		Ausgabe der absoluten Häufigkeit der Strah-	0
		len pro Objektpunkt	

Tabelle 13.8: Netzwerkdesign-Parameter-/Optionen

<min_rays_point> legt die minimale Anzahl der Strahlen pro Objektpunkt fest³. D.h. alle Objektpunkte, die nicht durch mindestens <min_rays_point> Strahlen bestimmt sind, werden von der Ausgleichung ausgeschlossen. Durch <min_rays_point> = 1 werden auch Einzelstrahlen zu einem Objektpunkt erlaubt, sofern dieser Punkt ein Passpunkt ist. Erst dadurch wird die Berechnung des räumlichen Rückwärtsschnittes ermöglicht!

<min_rays_image> legt die minimale Anzahl der Strahlen pro Bild fest. D.h. alle Bilder, die nicht durch mindestens <min_rays_image> Strahlen bestimmt sind, werden von der Ausgleichung ausgeschlossen.

Listing 13.4: Beispiel test.pnp

1 2 2 1 3

13.5 Kamera-Datei

In dieser Datei werden alle Kamera-Parameter definiert. Dazu gehört neben den Parametern der inneren Orientierung auch weitere Parameter, die vom Kameratyp (siehe Tabelle 13.9) abhängig sind. Die Parameter der inneren Orientierung werden im Ausgleichungsmodell als Konstanten und nicht als unbekannte Parameter verwendet.

Die Parameter der inneren Orientierung werden als Konstanten behandelt.

Im Rahmen der Selbstkalibrierung mit zusätzlichen Parametern ist es jedoch möglich die innere Orientierung zu bestimmen (siehe 9). Hierbei werden nicht die Parameter selbst, sondern deren Änderungen Δx_p , Δy_p und Δc bestimmt.

Der Kameratyp bestimmt das Bild- bzw. Sensorkoordinatensystem: (metrische) Bildkoordinaten oder Pixelkoordinaten (siehe Tabelle 13.9).

Die Kamera muss vor dem Lesen der Bildkoordinaten definiert sein.

³Dieser Parameter ersetzt die alte Einzelstrahl-Option (*single ray option*).

Für jede Sensorzeile ist eine eigene Zeilenkamera anzulegen.

ADS40-Kameradateien (Leica, 2002) können direkt eingelesen werden. Jedoch muss die ADS40-Kameradatei und die Kamera-ID in der Projektdatei direkt spezifiert werden.

Das Eingabeformat ist abhängig vom Kameratyp:

Schlüsselwort	Kameratyp	Bildkoordinatensystem
camera-frame	Rahmenkamera	metrische Bildkoordinaten
camera-ccd	Digitalkamera	Pixelkoordinaten
camera-pushbroom	Zeilen-/Pushbroom-Kamera	Pixelkoordinaten
camera-pushbroom-calib	kalibrierte Zeilen-/Pushbroom-Kamera	Pixelkoordinaten

Tabelle 13.9: Schlüsselwörter für den Kameratyp

Es können mehrere Kameras, auch mit unterschiedlichen Typ, in einer Datei definiert sein. Das Schlüsselwort stop-dep am Ende der Datei ist optional.

Allgemeine Dateistruktur für Rahmenkameras:

```
camera-frame
<camera_id> <camera_name>
<c> <xp> <yp>
<sx> <sy><</pre>
```

Parameter	Datentyp	Beschreibung	Einheit
<camera_id></camera_id>	string	Kamera-ID zur Identifizierung der Kamera	-
<camera_name></camera_name>	string	Kamera-Name oder Kommentar	-
<c></c>	double	Kamerakonstante c	mm
<xp> <yp></yp></xp>	double	Koordinaten des Bildhauptpunktes x_p , y_p	mm
<sx> <sy></sy></sx>	double	Bildformat s_x , s_y	mm

Tabelle 13.10: Rahmenkamera-Parameter

Listing	13.5:	Beispiel	test.ca
---------	-------	----------	---------

```
1 camera-frame

2 101 RMK

3 150.000 0.000 0.000

4 230. 230.

5 stop-dep
```

Allgemeine Dateistruktur für Digitalkameras:

```
camera-ccd
<camera_id> <camera_name>
<c> <xp> <yp>
<nc> <nr>
<sc> <sr><</pre>
```

Parameter	Datentyp	Beschreibung Einhe	
<camera_id></camera_id>	string	Kamera-ID zur Identifizierung der Kamera -	
<camera_name></camera_name>	string	Kamera-Name oder Kommentar -	
<c></c>	double	Kamerakonstante c	mm
<xp> <yp></yp></xp>	double	Koordinaten des Bildhauptpunktes x_p , y_p	mm
<nc> <nr></nr></nc>	int	Anzahl der Spalten (columns) und Zeilen	Pixel
		(rows) des Flächensensors	
<dc> <dr></dr></dc>	double	Pixelgröße in Spalten- und Zeilenrichtung Δc ,	µm/Pixel
		Δr	

Tabelle	13.11:	Digitalkamera-P	arameter

Allgemeine Dateistruktur für Zeilenkameras:

camera-pushbroom
<camera_id> <camera_name>
<c> <xp> <yp>
<nc>
<dc> <dr>
<dc> <dr><</pre>

Parameter	Datentyp	Beschreibung	Einheit
<camera_id></camera_id>	string	Kamera-ID zur Identifizierung der Kamera -	
<camera_name></camera_name>	string	Kamera-Name oder Kommentar -	
<c></c>	double	Kamerakonstante c	mm
<xp> <yp></yp></xp>	double	Koordinaten des Bildhauptpunktes x_p, y_p mm	
<nc></nc>	int	Anzahl der Pixel des Zeilensensors Pixel	
<dc> <dr></dr></dc>	double	Pixelgröße in Spalten- und Zeilenrichtung Δc ,	µm/Pixel
		Δr	
<x_0></x_0>	double	x_0 -Position des Zeilensensors	mm

Tabelle 13.12: Zeilenkamera

Allgemeine Dateistruktur für kalibrierte Zeilenkameras:

```
camera-pushbroom-calib
<camera_id> <camera_name>
<c>
<nc>
<dc> <dr>
<dc> <dr>
<x_cal> <y_cal>
...
```

Parameter	Datentyp	Beschreibung	Einheit
<camera_id></camera_id>	string	Kamera-ID zur Identifizierung der Kamera	-

Fortsetzung auf der nächsten Seite

<camera_name></camera_name>	string	Kamera-Name oder Kommentar -	
<c></c>	double	Kamerakonstante c mm	
<xp> <yp></yp></xp>	double	Koordinaten des Bildhauptpunktes x_p, y_p mm	
<nc></nc>	int	Anzahl der Pixel des Zeilensensors Pixel	
<dc> <dr></dr></dc>	double	Pixelgröße in Spalten- und Zeilenrichtung Δc ,	µm/Pixel
		Δr	
<x_cal> <y_cal></y_cal></x_cal>	double	(kalibrierte) Pixelpositionen für jedes Pixel	mm
		der Sensorzeile	

Tabelle 13.13: Kalibrierte Zeilenkamera

13.6 Bilddefinitionsdatei

In der Bilddefinitionsdatei (.im) wird für jedes Bild das zu verwendende Abbildungsmodell bestimmt:

- photogrammetrisches Modell,
- erweitertes photogrammetrisches Modell,
- DLT,
- affine Transformation oder
- DGR für Zeilenbilder.

Außerdem werden die Beziehungen zwischen den Bildern, Stationen (Orientierungs-/Transformationsparameter) und Kameras festgelegt. Da sich das Abbildungsmodell auf das Einzelbild bezieht, können auch unterschiedliche Abbildungsmodelle kombiniert werden. Es ist also möglich für ein Bild das photogrammetrische Modell und für ein zweites Bild eine DLT zu verwenden, wobei die Orientierungs- bzw. Transformationsparameter und Objektpunktkoordinaten in einer Ausgleichung simultan bestimmt werden. Die Verbindung zwischen den Abbildungsmodellen wird, über die gemeinsamen Objektpunkte realisiert.

Achtung: Es ist wird zwischen Bild- und Stations-ID unterschieden. Daher kann eine Station potentiell mit mehreren Bilder verknüpft sein.

Die Abbildungsmodelle sind nur für bestimmte Kombinationen von Orientierungs- bzw. Transformationsparametern und Kameratypen möglich:

Schlüsselwort	Abbildungsmodell	Orientierungs-	Kameratype
		parameter	
image-frame	photogrammetrisch	ext-ori-xxx	camera-frame,
	(2.4)		camera-ccd
image-frame-ext	erweitert photogram-	ext-ori-xxx	camera-frame,
	metrisch (10.6) –		camera-ccd
	(10.8)		
image-dlt	DLT (2.7)	dlt-params	camera-frame,
			camera-ccd
image-affine-transf	affine Transformation	affine-transf-	camera-frame,
	(2.17)	params	camera-ccd
image-scanner	DGR für Zeilenbilder	Orientierungsdatensatz	camera-pushbroom,
			camera-pushbroom-
			calib, camera-ads

Allgemeine Dateistruktur:

```
<image_type> <image_id> <station_id> <camera_id>
...
[stop-dep]
```

Das Schlüsselwort stop-dep am Ende der Datei ist optional.

Parameter	Datentyp	Beschreibung
<image_type></image_type>	string	Abbildungsmodell. Schlüsselwort siehe Tabelle 13.14
<image_id></image_id>	string	Bild-ID zur Identifizierung des Bildes
<station_id></station_id>	string	Stations-ID zur Identifizierung der Station
<camera_id></camera_id>	string	Kamera-ID zur Identifizierung der Kamera

Tabelle 13.15: Bilddefinition

Listing	13.6:	Beispiel	test.im
Listing	15.0.	Denspier	test.mi

1	image-frame	1	1	101
2	image-frame	2	2	101
3	stop-dep			

13.7 Bildkoordinaten-Datei

Die Bildkoordinaten-Datei (.ic) enthält die Bildkoordinaten und ihre Standardabweichungen. Die Bildkoordinaten und ihre Standardabweichungen werden in Abhängigkeit von dem zuvor definierten Kameratyp erwartet (siehe 13.9). Die (metrischen) Bildkoordinaten können mit einem Maßstabfaktor <scale> skaliert werden⁴. Bei den Pixelkoordinaten kann eine Verschiebung (Offset) in Spalten- $<off_x>$ und Zeilenrichtung $<off_y>$ angegeben werden.

 $^{^4}$ Oft werden die Bildkoordinaten in μm angegeben.

Außerdem wird zwischen individueller (indiv-sdev) und gemeinsamer (common-sdev) Standardabweichung unterschieden.

Kameratyp	Bildkoordinaten
Rahmenkameras	metrische Bildkoordinaten
Digitalkameras	Pixelkoordinaten
Zeilenkameras	Pixelkoordinaten

Am Ende jeden Bildes steht das Schlüsselwort stop-dep oder -1. Danach folgen die Daten für das nächste Bild. Das zweite Schlüsselwort stop-dep am Ende der Daten ist optional.

Allgemeine Dateistruktur für Bildkoordinaten bei individueller Standardabweichung:

```
indiv-sdev
<image_id> <scale>
<point_id> <x> <y> <sx> <sy>
...
stop-dep
```

Allgemeine Dateistruktur für Bildkoordinaten bei gemeinsamer Standardabweichung:

```
common-sdev <sx> <sy>
<image_id> <scale>
<point_id> <x> <y>
...
stop-dep
[stop-dep]
```

Allgemeine Dateistruktur für Pixelkoordinaten bei individueller Standardabweichung:

```
indiv-sdev
<image_id> <off_x> <off_y>
<point_id> <x> <y> <sx> <sy>
...
stop-dep
```

Allgemeine Dateistruktur für Pixelkoordinaten bei gemeinsamer Standardabweichung:

```
common-sdev <sx> <sy>
<image_id> <off_x> <off_y>
<point_id> <x> <y>
...
stop-dep
[stop-dep]
```

Parameter	Datentyp	Beschreibung	Einheit
<image_id></image_id>	string	Bild-ID	-
<off_x> <off_y></off_y></off_x>	double	Offset nur für die Pixelkoordinaten	Pixel

Fortsetzung auf der nächsten Seite

<scale></scale>	double	Maßstabfaktor nur für die Bildkoordinaten	ohne
<point_id></point_id>	string	Punktname	-
<x> <y></y></x>	double	Bild- oder Pixelkoordinaten	m oder Pixel
<sx> <sy></sy></sx>	double	Standardabweichungen	m oder Pixel

Tabelle 13.16: Bild-/Pixelkoordinaten

1 indiv-sdev 2 1 1e-3 3 11 16.012 79.963 0.006 0.006 88.560 4 81.134 13 0.006 0.006 13.362 -79.370 5 0.006 31 0.006 6 33 82.240 -80.027 0.006 0.006 7 12 51.758 80.555 0.006 0.006 8 21 14.618 -0.231 0.006 0.006 9 22 49.880 -0.782 0.006 0.006 10 23 86.140 -1.346 0.006 0.006 1132 48.035 -79.962 0.006 0.006 stop-dep 12 13 14 2 1e-3 15 11 -73.930 78.706 0.006 0.006 16 13 -5.252 78.184 0.006 0.006 17 31 -79.122 -78.879 0.006 0.006 18 33 -9.887 -80.089 0.006 0.006 19 12 -39.953 78.463 0.006 0.006 20 21 -76.006 0.036 0.006 0.006 21 22 -42.201 -1.022 0.006 0.006 22 23 -7.706 -2.1120.006 0.006 23 32 -44.438 -79.736 0.006 0.006 24 stop-dep 25 stop-dep 26 27 4711 0.962 0.035 0.006 0.006

Listing 13.7: Beispiel test.ic

13.8 Orientierungsparameter-Datei

In der Orientierungsparameter-Datei (.eo/.or) werden, abhängig vom gewählten Abbildungsmodell, die unbekannten Orientierungs- bzw. Transformationsparameter sowie ihre Standardabweichungen angegeben:

Abbildungsmodell	Orientierungs-/Transformationsparameter
photogrammetrisches Modell	Elemente der äußeren Orientierung: $X_o, Y_o, Z_o, z.B. \omega, \phi, \kappa$
DLT	DLT-Parameter: L_1, \ldots, L_{11}
affine Transformation	Transformationsparameter: A_1, \ldots, A_8

Das DGR-Modell für Zeilenbilder besitzt in diesem Sinne keine unbekannten Orientierungsparameter. Generell wird zwischen zwei Eingabeformaten unterschieden:

indiv-type – Für alle Stationen ist der Typ der Parametrisierung und die Orientierungsparameter mit ihren Standardabweichungen einzeln anzugeben.

common-type – Die Orientierungsparameter sind für alle folgenden Stationen vom gleichen Typ und haben die gleiche Standardabweichung.

Das Schlüsselwort in der ersten Zeile der Datei bestimmt das Eingabeformat.

Allgemeine Dateistruktur für die äußere Orientierung mit Drehwinkel um die Koordinatenachsen:

```
indiv-type
<eo_type>
<station_id> <uangle> <time>
<Xo> <Yo> <Zo>
<sXo> <sYo> <sZo>
<al> <a2> <a3>
<sal> <sa2> <sa3>
...
[<stop-dep>]
```

Allgemeine Dateistruktur für die äußere Orientierung mit Quaternion-Parametrisierung:

```
indiv-type
ext-ori-quaternion
<station_id> <time>
<Xo> <Yo> <Zo>
<sXo> <sYo> <sZo>
<q0> <q1> <q2> <q3>
<sq0> <sq1> <sq2> <sq3>
...
[<stop-dep>]
```

Allgemeine Dateistruktur für die DLT-Parameter:

```
indiv-type
dlt-params <station_id>
<Ll> <sLl>
<L2> <sL2>
...
<L11> <sL11>
...
[<stop-dep>]
```

Allgemeine Dateistruktur für die affine Transformation:

```
indiv-type
affine-transf-params <station_id>
<A1> <sA1>
<A2> <sA2>
...
```

```
<A8> <sA8>
...
[<stop-dep>]
```

Allgemeine Dateistruktur für die äußere Orientierung mit Drehwinkel um die Koordinatenachsen:

```
common-type
<eo_type> <unit_angle> <time_flag> <matrix_flag> <sXo> <sYo> <sZo>
<sal> <sa2> <sa3>
<station_id> [<time>] <Xo> <Yo> <Zo> <a1> <a2> <a3>
```

... [<stop-dep>]

Bei gesetzten Matrix-Flag werden die Elemente der Drehmatrix erwartet:

```
<station_id> [<time>] <Xo> <Yo> <Zo> <r11> ... <r33>
...
```

Parameter	Datentyp	Beschreibung Einheit	
<eo_type></eo_type>	string	Parametrisierung der Drehwinkel. Schlüssel-	-
		worte siehe Tabelle 13.29	
<uangle></uangle>	string	Einheit für die Drehwinkel. Schlüsselworte	-
		siehe Tabelle 13.5	
<time_flag></time_flag>	bool	Flag ob (GPS-)Zeit nicht vorhanden (0) oder	-
		vorhanden (1)	
<matrix_flag></matrix_flag>	bool	Flag ob Drehwinkel (0) oder Drehmatrix (1)	-
		gegeben: <r11>, <r12>, <r33></r33></r12></r11>	
<station_id></station_id>	string	Stations-ID zur eindeutigen Identifizierung	-
		der Orientierungsparameter	
<time></time>	double	Optionale (GPS-)Zeit	8
<xo> <yo> <zo></zo></yo></xo>	double	Koordinaten des Projektionszentrums	m
<sxo> <syo> <szo></szo></syo></sxo>	double	Standardabweichungen der Koordinaten des	m
		Projektionszentrums	
<al> <a2> <a3></a3></a2></al>	double	Drehwinkel	<uangle></uangle>
<sal> <sa2> <sa3></sa3></sa2></sal>	double	Standardabweichungen der Drehwinkel	<uangle></uangle>
<q0> <q1> <q2> <q3></q3></q2></q1></q0>	double	Quaternionelemente	1
<sq0> <sq1> <sq2></sq2></sq1></sq0>	double	Standardabweichungen der Quaternionele- 1	
<sq3></sq3>		mente	
<l1> <l11></l11></l1>	double	DLT-Parameter	m bzw. 1
<sl1> <sl11></sl11></sl1>	double	Standardabweichungen der DLT-Parameter	m bzw. 1
<a1> <a8></a8></a1>	double	affine Transformationsparameter	m bzw. 1
<sa1> <sa8> double</sa8></sa1>		Standardabweichungen der affinen Transfor-	m bzw. 1
		mationsparameter	

Tabelle 13.17: Orientierungs-/Transformationsparameter

Schlüsselwort	Parametrisierung	Anzahl der	siehe
		Parameter	Gleichung
ext-ori-opk-fix	Drehwinkel mit Reihenfolge ω - φ - κ	3	(6.1)
	um feste Achsen		
ext-ori-opk-rot	Drehwinkel mit Reihenfolge ω - φ - κ	3	(6.2)
	um mitgedrehte Achsen		
ext-ori-pok-rot	Drehwinkel mit Reihenfolge φ - ω - κ	3	(6.3)
	um mitgedrehte Achsen		
ext-ori-australis	Drehwinkel mit Reihenfolge α -v- κ	3	(6.4)
ext-ori-quaternion	Quaternion	4	(6.5)

Tabelle 13.18: Schlüsselwörter für die Parametrisierung der Drehmatrix

Listing 15.8. Detspier test.e0		
indiv-type		
ext-ori-pok-rot 1 5000.765 5027.343 1e+31 1e+31	gon 0. 1997.357 1e+31	
0.00000 0.00000 le+31 le+31	6.56071 1e+31	
ext-ori-pok-rot 2 5918.253 5134.023	gon 0. 2022.014	
1e+31 1e+31 0.00000 0.00000	1e+31 6.89616	
le+31 le+31	1e+31	

Listing	13.8:	Beispiel	test.eo
---------	-------	----------	---------

Soll die Ein- und Ausgabe äquivalent zum Programm PATB sein, ist für die äußere Orientierung die Parametrisierung ext-ori-opk-fix zu wählen. Die Kombination der Vorzeichen für die Kamerakonstante und Bildkoordinaten ist der Tabelle 13.19 zu entnehmen. Das Problem entsteht dadurch, dass in PATB die x-Achse der Bildkoordinaten entgegen der Flugrichtung definiert ist.

Kamerakonstante	Bildkoordinaten
С	x, y
_	+
+	_

Tabelle 13.19: Vorzeichen von Kamerakonstante und Bildkoordinaten bei PATB äquivalenter Ein-/Ausgabe

13.9 **Objektkoordinaten-Datei**

Mit der Objektkoordinaten-Datei (.oc) werden alle bekannten Objektpunktkoordinaten und ihre Standardabweichungen eingelesen. Dazu gehören die Pass- bzw. Kontrollpunktkoordinaten, und wenn vorhanden auch Näherungswerte von Neupunkten. Sind von den Neupunkten keine Näherungswerte vorhanden werden sie durch mehrfachen Vorwärtseinschnitt in einer Ausgleichung bestimmt. Die Standardabweichung kann entweder für einzelne Punkte individuell oder für alle Punkte gemeinsam gewählt werden. Die Steuerung erfolgt mit den
Schlüsselworten indiv-sdev und common-sdev. Die Dateistruktur für individuell Standardabweichungen ist

```
indiv-sdev
<point_id> <Xo> <Yo> <Zo> <sX> <sY> <sZ>
...
[stop-dep]
```

und für gemeinsame Standardabweichungen

common-sdev
<sX> <sY> <sZ>

```
<point_id> <Xo> <Yo> <Zo>
...
[stop-dep]
```

Parameter	Datentyp	Beschreibung	Einheit
<point_id></point_id>	double	Punkt-ID zur Identifizierung des Objektpunk-	-
		tes	
<x> <y> <z></z></y></x>	double	Objektpunktkoordinaten	m
<sx> <sy> <sz></sz></sy></sx>	double	Standardabweichungen der Objektpunktkoor-	m
		dinaten	

Tabelle 13.20: Objektkoordinaten

Listing 13.9: Beispiel test.oc

1	indiv-	sdev					
2	11	5083.205	5852.099	527.925	1e-31	1e-31	1e-31
3	13	5780.020	5906.365	571.549	1e-31	1e-31	1e-31
4	31	5210.879	4258.446	461.810	1e-31	1e-31	1e-31
5	33	5909.264	4314.283	455.484	1e-31	1e-31	1e-31
6							
7	12	5430.762	5877.971	504.192	le+31	1e+31	1e+31
8	21	5145.744	5040.026	504.192	1e+31	1e+31	1e+31
9	22	5495.459	5070.680	504.192	1e+31	1e+31	1e+31
10	23	5855.069	5102.227	504.192	1e+31	1e+31	1e+31
11	32	5558.274	4284.780	504.192	1e+31	1e+31	1e+31
12							
13	stop-d	lep					
14							
15	111	5550.000	4284.000	504.000	1e+31	1e+31	1e+31

13.10 Control-Support-Datei

Mit der Control-Support-Datei (.cs) können Objektpunkte zu Neu- oder Kontrollpunkten erklärt werden. Die Dateistruktur ist

[#] <point_id> <cs> <cs_in>
...
[stop-dep]

Parameter	Datentyp	Beschreibung	Einheit
<point_id></point_id>	string	Punkt-ID zur Identifizierung des Objektpunk-	-
		tes	
<cs></cs>	string	CS-Typ. Schlüsselworte siehe Tabelle 13.22	-
<cs_in></cs_in>	string	CS in XYZ-Koordinate: $x = X$ -, $y = Y$ -, z	-
		= Z-Koordinate	

Tabelle 13.21: Control-Support

Schlüsselwort	Objektpunkttyp
in	Neupunkt (intersection point)
CO	Passpunkt (control point)
ch	Kontrollpunkt (check point)

Tabelle 13.22: Schlüsselwörter für den Objektpunkttyp

Die Änderung des Objektpunkttyps geschieht durch überschreiben der Standardabweichungen. Die gegebenen Koordinaten werden als Näherungwerte benutzt. Für Kontrollpunkte werden die gegebenen Koordinaten als Soll-Werte verwendet. Durch Angabe der Control-Support-Koordinate kann die Kontrolle für die einzelne Koordinate spezifiziert werden, z.B.:

- xyz Lage- und Höhenkontrollpunkt
- xy Lagekontrollpunkt
- z Höhenkontrollpunkt.

Die Control-Support-Datei muss nach der Objektkoordinaten-Datei gelesen werden.

Die Datei wird zeilenweise gelesen. Mit einem # als erstes Zeichen in einer Zeile wird die gesamte Zeile ignoriert.

Listing 13.10: Beispiel test.cs

1 11 CO xyz 2 13 CO xyz 3 31 ch xyz 4 33 CO xyz 5 stop-dep

13.11 Zusatzparameter-Datei

Mit der Zusatzparameter-Datei (.ap) können verschiedene Sätze von Zusatzparametern definiert werden. Die Verknüpfung zwischen den Bildern und den Zusatzparametersatz erfolgt über die Kamera-IDs. Die Liste der

Kamera-IDs wird mit dem Schlüsselwort stop-dep abgeschlossen. Sollen z.B. für eine Aerotriangulation die Zusatzparameter streifenweise angesetzt werden, so ist für jeden Streifen eine eigene Kamera zu definieren.

Die einzelnen Modelle können miteinander kombiniert werden. Durch Vergabe verschiedener Zusatzparameter-IDs sind die Modelle zu unterscheiden. Dabei ist zu beachten, dass einzelne Parameter mehrfach auftreten können. Die überflüssigen Parameter sind dann im voraus durch entsprechende Gewichtung mit $\sigma_i = \sigma_{min,u}$ zu eliminieren.

Die Dateistruktur ist abhängig vom Zusatzparameter-Modell.

Allgemeine Dateistruktur Zusatzparameter-Modell:

```
<ap_set_type>
<ap_set_id>
<camera_id>
...
stop-dep
<ap> <sap>
...
[stop-dep]
```

Als zusätzliche Information wird für die orthogonalen Polynom-Modelle die Basis im Bildraum *b* benötigt. Allgemeine Dateistruktur für orthogonale Polynom-Modelle:

```
<ap_set_type>
<ap_set_id>
<camera_id>
...
stop-dep
<b>
<ap> <sap>
...
[stop-dep]
```

Parameter	Datentyp	Beschreibung	Einheit
<ap_set_type></ap_set_type>	string	Zusatzparameter-Modell. Schlüsselworte sie-	-
		he Tabelle 13.24	
<ap_set_id></ap_set_id>	string	Zusatzparameter-ID zur Identifizierung des	-
		Parametersatzes	
	double	Basis im Bildraum. Dieser Parameter wird	mm
		nur bei den orthogonalen Polynom-Ansätzen	
		p12 und p44 verwendet.	
<camera_id></camera_id>	string	Kamera-ID zur Identifizierung der zugehöri-	-
		gen Kamera	
<ap> <sap></sap></ap>	double	Koeffizient des Zusatzparameters und zu-	
		gehörige Standardabweichung. Die Anzahl	
		der Parameter ist abhängig vom gewähl-	
		ten Zusatzparameter-Modell (siehe Tabelle	
		13.24)	

Schlüsselwort	Modell	Anzahl	Reihenfolge	Gl.
inner-or	Modell der inneren Orientierung	3	$\Delta x_p, \Delta y_p, \Delta c$	(9.3)
radial-dist	radiale Verzeichnung	3	K_1, K_2, K_3	(9.4)
decentering-dist	tangentiale Verzeichnung	2	P_1, P_2	(9.5)
in-plane	Deformationen in der Abbildungsflä-	12	a_1, a_2, \ldots, a_{12}	(9.6)
	che			
out-of-plane	Unebenheiten der Abbildungsfläche	3	a_{13}, a_{14}, a_{15}	(9.7)
brown-eqn-22	Modell nach Brown Gl. 22	29	$\Delta x_p, \Delta y_p, \Delta c,$	(9.8)
			K_1 , K_2 , K_3 , P_1 ,	
			$P_2, a_1, a_2, \ldots, a_7,$	
			$b_1, b_2, \ldots, b_7,$	
			c_1, c_2, \dots, c_7	
brown-eqn-23	Modell nach Brown Gl. 23	21	$\Delta x_p, \Delta y_p, \Delta c,$	(9.9)
			$K_1, K_2, K_3,$	
			a_1, a_2, \ldots, a_{15}	
p12	orthogonales Polygon nach Ebner	12	a_1, a_2, \ldots, a_{12}	(9.12)
p44	orthogonales Polygon nach Grün	44	a_1, a_2, \ldots, a_{44}	(9.13)
(gap	GAP-Implementierung	10	$\Delta x_p, \Delta y_p, \Delta c, s_x, a_1,$	(9.10)
			K_1, K_2, K_3, P_1, P_2	
australis	Australis-Implementierung	10	$\Delta x_p, \ \Delta y_p, \ \Delta c, \ K_1,$	(9.11)
			$K_2, K_3, P_1, P_2, b_1,$	
			b_2	

Tabelle 13.23: Z	usatzparameter
------------------	----------------

Tabelle 13.24: Schlüsselwörter und Reihenfolge der Parameter für die Zusatzparameter-Modelle

Listing	13.11:	Beispiel	test.ap
---------	--------	----------	---------

1	austra	alis
2	ap_set	tl
3	caml	
4	stop-o	dep
5	0.0	1e+31
6	0.0	1e+31
7	0.0	1e+31
8	0.0	1e+31
9	0.0	1e+31
10	0.0	1e+31
11	0.0	1e+31
12	0.0	1e+31
13	0.0	1e+31
14	0.0	1e+31
15	stop-o	dep

Im folgenden Beispiel sind drei Parametersätze für eine Kamera definiert:

1	inner-or
2	subset_inner
3	caml
4	stop-dep
5	0.0 le+31
6	0.0 le+31
7	0.0 le+31
8	
9	set_io
10	radial-dist
11	subset_radial
12	caml
13	stop-dep
14	0.0 le+31
15	0.0 le+31
16	0.0 le+31
17	
18	decentering-dist
19	subset_decenter
20	caml
21	stop-dep
22	0.0 le+31
23	0.0 le+31
24	
25	in-plane-dist
26	subset_in_plane
27	caml
28	stop-dep
29	0.0 le+31
30	0.0 le+31
31	0.0 le-31
32	0.0 le-31
33	0.0 le-31
34	0.0 le-31
35	0.0 le-31
36	0.0 le-31
37	0.0 le-31
38 20	U.U 1e-31
39 40	U.U IE-31
40 41	U.U 16-31
41 42	aton dor
42	scop-aep

Г

Listing 13.12: Beispiel test2.ap

13.12 Positionskorrektur-Datei

In der Positionskorrektur-Datei (.pcor) werden die Polynomkoeffizienten für die Positionskorrektur definiert. Die Verknüpfung zwischen den Bildern und der Positionkorrektur erfolgt über die Bild-IDs. Die Liste der Bild-IDs wird mit den Schlüsselwort stop-dep abgeschlossen.

Allgemeine Dateistruktur für die Positionskorrektur:

<pos_cor_id>

```
<image_id>
...
stop-dep
<num_coeff>
<coeff> <sdev>
...
[stop-dep]
```

Parameter	Datentyp	Beschreibung	Einheit
<pos_cor_id></pos_cor_id>	string	Positionskorrektur-ID	-
<image_id></image_id>	string	Image-ID	-
<num_coeff></num_coeff>	int	Anzahl der Polynomkoeffizienten	-
<coeff> <sdev></sdev></coeff>	double	Polynomkoeffizient und zugehörige Stan-	-
		dardabweichung	

Tabelle 13.25: Positionskorrektur

13.13 Lagekorrektur-Datei

In der Lagekorrektur-Datei (.acor) werden die Polynomkoeffizienten für die Lagekorrektur definiert. Die Verknüpfung zwischen den Bildern und der Lagekorrektur erfolgt über die Bild-IDs. Die Liste der Bild-IDs wird mit dem Schlüsselwort stop-dep abgeschlossen.

Allgemeine Dateistruktur für die Lagekorrektur:

```
<att_cor_id>
<image_id>
...
stop-dep
<num_coeff>
<coeff> <sdev>
...
[stop-dep]
```

Parameter	Datentyp	Beschreibung	Einheit
<att_cor_id></att_cor_id>	string	Lagekorrektur-ID	-
<image_id></image_id>	string	Image-ID	-
<num_coeff></num_coeff>	int	Anzahl der Polynomkoeffizienten	-
<coeff> <sdev></sdev></coeff>	double	Polynomkoeffizient und zugehörige Stan-	-
		dardabweichung	

Tabelle 13.26: Lagekorrektur

13.14 IMU-Fehlausrichtung-Datei

In der IMU-Fehlausrichtung-Datei (.mis) werden die Rotationsparameter zur Beschreibung der Fehlausrichtungsmatrix definiert. Die Verknüpfung zwischen den Bildern und der IMU-Fehlausrichtung erfolgt über die Bild-IDs. Die Liste der Bild-IDs wird mit dem Schlüsselwort stop-dep abgeschlossen. Es werden zwei Parametrisierungen unterstützt: Drehwinkel-Parametrisierung $\omega - \varphi - \kappa$ um feste Achsen und (angles-opk-fix) Quaternion-Parametrisierung (unit-quaternion). Die Dateistruktur ist abhängig von der Parametrisierung der Fehlausrichtungsmatrix.

Allgemeine Dateistruktur für die IMU-Fehlausrichtung mit Drehwinkel-Parametrisierung um die Koordinatenachsen:

```
<type>
<image_id>
...
stop-dep
<matrix_flag> <uangle>
<al> <a2> <a3>
<sa1> <sa2> <sa3>
...
[stop-dep]
```

Allgemeine Dateistruktur für die IMU-Fehlausrichtung mit Quaternion-Parametrisierung:

```
imu-ori-quaternion
<image_id>
...
stop-dep
<matrix_flag>
<q0> <q1> <q2> <q3>
<sq0> <sq1> <sq2> <sq3>
...
[stop-dep]
```

Alternativ zu den Rotationsparametern kann auch die Rotationsmatrix eingelesen werden:

```
<r11> <r12> ... <r33>
```

Parameter	Datentyp	Beschreibung	Einheit
<type></type>	string	Parametrisierung der Drehmatrix. Schlüssel-	-
		worte siehe Tabelle 13.29	
<image_id></image_id>	string	Image-ID	-
<uangle></uangle>	string	Einheit für die Drehwinkel. Schlüsselworte	-
		siehe Tabelle 13.5	
<matrix_flag></matrix_flag>	bool	Flag ob Drehwinkel (0) oder Drehmatrix (1)	-
		gegeben: <r11>, <r12>, <r33></r33></r12></r11>	
<al> <a2> <a3></a3></a2></al>	double	Drehwinkel	<uangle></uangle>
<sa1> <sa2> <sa3></sa3></sa2></sa1>	double	Standardabweichungen der Drehwinkel	<uangle></uangle>
<q0> <q1> <q2> <q3></q3></q2></q1></q0>	double	Quaternionelemente	1

Fortsetzung auf der nächsten Seite

<sq0> <sq1> <sq2></sq2></sq1></sq0>	double	Standardabweichungen der Quaternionele	1
<sq3></sq3>		mente	

Tabelle 13.27: IMU-Fehlausrichtung

13.15 Orientierungsdatensatz-Datei

Die Orientierungsdatensatz-Datei (.ori) enthält die Elemente der äußeren Orientierung für Zeilenbilder. Ein ganzzahliger Zeilen-Offset <offset> zwischen den Orientierungsdatensatz und dem Zeilenbild kann hier berücksichtigt werden.

Allgemeine Dateistruktur für Orientierungsdatensätze:

```
<ods_id>
<offset>
<rtype>
<uangle>
<trn_flag>
<size>
<time> <Xo> <Yo> <Zo> <a1> <a2> <a3> [... <a9>]
...
```

ADS40-Orientierungsdaten im ODF-Format (Leica, 2002) können direkt eingelesen werden. Dateiname und Datensatz-ID <ods_id> müssen in der Projektdatei direkt spezifiert werden:

Parameter	Datentyp	Beschreibung	Einheit
<ods_id></ods_id>	string	Datensatz-ID	-
<offset></offset>	int	ganzzahliger Zeilen-Offset Δr_j zwischen den	Pixel
		Orientierungsdatensatz und dem Zeilenbild	
<rtype></rtype>	string	Parametrisierung der Drehmatrix. Schlüssel-	-
		worte siehe Tabelle 13.29	
<uangle></uangle>	string	Einheit für die Drehwinkel. Schlüsselworte	-
		siehe Tabelle 13.5	
<trn_flag></trn_flag>	bool	Flag ob die Drehmatrix transponiert (1) oder	-
		nicht transponiert (0) werden soll	
<size></size>	int	Anzahl der äußeren Orientierungen	-
<time></time>	double	(GPS-)Zeit	S
<xo> <yo> <zo></zo></yo></xo>	double	Koordinaten des Projektionszentrums	m
<a1> <a9></a9></a1>	double	Rotationsparameter	

orientation-data-odf <Dateiname> <ods_id>

Tabelle 13.28: Orientierungsdatensatz

Schlüsselwort	Parametrisierung	Anzahl der	Gleichung
		Parameter	
angles-opk-fix	Drehwinkel ω - φ - κ um feste Achsen	3	(6.1)
angles-pok-fix	Drehwinkel φ - ω - κ um feste Achsen	3	
angles-opk-rot	Drehwinkel ω - φ - κ um mitgedrehte Achsen	3	(6.2)
angles-pok-rot	Drehwinkel φ - ω - κ um mitgedrehte Achsen	3	(6.3)
ext-ori-australis	Drehwinkel α -v- κ	3	(6.4)
unit-quaternion	Quaternionelemente q_0, q_1, q_2, q_3	4	(6.5)
rotation-matrix	Rotationsmatrix $r_{11}, r_{12}, \ldots, r_{33}$	9	

Tabelle 13.29: Schlüsselwörter für die Parametrisierung der Drehmatrix

13.16 Orientierungsdatensatz-Parameter/Optionen-Datei

Die Datei enthält die allen Orientierungsdatensätzen gemeinsamen Parameter und Optionen.

Allgemeine Dateistruktur:

<shift>

<interpol>

Parameter	Datentyp	Beschreibung	Voreinst.
<shift></shift>	double	globale Verschiebung Δr für Orientierungsda-	0.
		ten (in Zeilen)	
<interpol></interpol>	string	Schlüsselwort für die Interpolationsmethode:	linear
		trunc = Rundung durch abschneiden der	
		Nachkommastellen, linear = lineare Inter-	
		polation	

Tabelle 13.30: Orientierungsdatensatz-Parameter/Optionen

13.17 Programmaufruf

Der Programmaufruf erfolgt auf der Konsole mit Angabe der Projektdatei:

```
dirk@dhcppc1:~> ~/dgap/main/dgap test.cfg
```

Ohne Angabe von Argumenten oder mit der Option -help wird der Hilfstext angezeigt:

Listing 13.13: DGAP-Hilfstext

```
Usage: dgap [options] cfg_file [stem]
1
2
 Arguments:
3
    cfg_file
                   Configuration file.
4
    stem
                     Stem name for output files.
5
 Options:
6
                   Check input only.
    -chk_in
7
    -corr
                     Evaluate correlation coeffs. of parameters.
```

8	-corr_matrix	Evaluate correlation coeffs. of parameters.
9	-covar	Print covariances of parameters.
10	-db_upari	Print upari-table.
11	-help	Show this text.
12	-nointersec	Don't try intersection to calc. object point coords.
13	-ori_from_dlt	Calculate EO from DLT parameters.
14	-pr_ic	Print image coords.
15	-pr_input	Print all input data.
16	-pr_oc	Print object points after initialization.
17	-prec	Evaluate precision of parameters.
18	-resec	Try resection to calc. transf. params.
19	-update_cams	Update cameras by AP sets.
20	-verb	Gives more information.
21	-version	Show program version.
22	-wr_aps file	Write adjusted AP sets.
23	-wr_cam file	Write cameras in file.
24	-wr_eos file	Write adjusted EOs.
25	-wr_mis file	Write adjusted IMU misalignment.
26	-wr_ocs file	Write adjusted object coords.
27	-wr_opa file	Write object point analysis.
28	-wr_res file	Write residuals in file.

Option	Beschreibung			
-chk_in	Zum Testen der Eingabedaten. Die Eingabedaten werden nur eingelesen. In			
	Verbindung mit den Optionen -pr_input und -pr_ic kann überprüft			
	werden, ob die Eingabedaten richtig eingelesen werden.			
-corr	Berechnung und Ausgabe der Korrelationskoeffizienten. Die Anzahl der Ko-			
	effizienten die ausgegeben werden wird durch das Ausgabelimit ccoef_lim			
	beeinflusst werden. Die Ausgabe erfolgt in Tabellenform.			
-corr_matrix	Berechnung und Ausgabe bestimmter Korrelationskoeffizienten. Es werden			
	nur Korrelationen innerhalb und zwischen den Klassen: Orientierungsparame-			
	ter und Zusatzparameter berechnet. Die Ausgabe erfolgt in Matrixform.			
-covar	Berechnung und Ausgabe bestimmter Kovarianzen. Es werden nur Kovarian-			
	zen innerhalb und zwischen den Klassen: Orientierungsparameter und Zusatz-			
	parameter berechnet. Die Ausgabe erfolgt in Matrixform.			
-db_upari	Drucken der UPARI-Tabelle.			
-help	Anzeige des Hilfstextes.			
-nointersec	Kein Vorwärtsschnitt zur Berechnung von Näherungswerten für die Objekt-			
	punktkoordinaten.			
-ori_from_dlt	Berechnung der äußeren Orientierung aus DLT-Parametern.			
-pr_ic	Drucken der Bildkoordinaten. Die Option hat nur Wirkung in Kombination mit			
	der Option -pr_input.			
-pr_input	Drucken aller Eingabedaten ohne die Bildkoordinaten.			
-pr_oc	Drucken der Objektpunkte nach der Initialisierung.			
-prec	Berechnung der inneren Genauigkeit.			
-resec	Rückwärtssschnitt zur Berechnung von Näherungswerten für die			
	Orientierungs-/Transformationsparameter.			
-update_cams	Update der Kameradaten (innere Orientierung und Kamerakonstante) durch			
	Zusatzparameter.			

-version	Anzeige der Programmversion.
-wr_aps file	Ausgabe der ausgeglichenen Zusatzparameter in Datei file.
-wr_cam file	Ausgabe der Kameradaten in Datei file.
-wr_eos file	Ausgabe der ausgeglichenen Orientierungsparameter in Datei file.
-wr_mis file	Ausgabe der ausgeglichenen Fehlausrichungsparameter in Datei file.
-wr_ocs file	Ausgabe der ausgeglichenen Objektkoordinaten in Datei file.
-wr_opa file	Ausgabe der Objektpunktanalyse-Daten (OPA) in Datei file.
-wr_res file	Ausgabe der Verbesserungen einschliesslich der beobachteten Bildkoordinaten
	in Datei file.

Tabelle 13.31: Optionen beim Programmaufruf

Für die Berechnung der inneren Genauigkeit und der Kovarianzen und Korrelationskoeffizienten ist die Inversion des Normalgleichungsmatrix notwendig.

13.18 Programmausgabe

Die Ausgabe erfolgt auf der Standardausgabe der Konsole. Für längere Ausgaben und zur Dokumentation ist es sinnvoll die Standardausgabe mit dem Operator > auf eine Datei umzuleiten. Ein Beispiel für die Programmausgabe (s. Verzeichnis: test/schw_ack_dpe) ist in Anhang A zu finden. Das Beispiel wurde mit folgendem Programmaufruf erzeugt:

```
dirk@dhcppc1:~> ~/dgap/main/dgap -pr_input -prec -wr_ocs test.aoc
-wr_eos test.aeo -wr_res test.res test.cfg > test.out
```

13.19 Objektpunktanalyse-Daten

Objektpunktanalyse-Daten (OPA) ...

Kapitel 14

Installation

14.1 Verzeichnisstruktur

Verzeichnis	Inhalt
doc	Dokumentation
libdep	DEP-Bibliothek
main	Hauptprogramm
tests	Testbeispiele
tools	Hilfsprogramme, Werkzeuge

Tabelle 14.1 zeigt die Struktur des Hauptverzeichnisses von dgap-name-X.X.X:

Tabelle 14.1: Hauptverzeichnis-Struktur

14.2 LAPACK/BLAS-Bibliotheken

Zur schnelleren Lösung des Gleichungssystems und Inversion der Normalgleichungsmatrix können die LA-PACK-Routinen verwendet werden. LAPACK (Linear Algebra PACKage) ist eine Bibliothek von FORTRAN-77-Unterprogrammen zur

- Lösung linearer Gleichungssysteme (systems of linear equations),
- kleinsten-Quadrate-Ausgleichung (least squares adjustment),
- Lösung von Eigenwertproblemen (eigenvalue problems) und
- Singulärwertzerlegung (Singular Value Decomposition (SVD)).

Für die elementaren Operationen verwendet LAPACK das BLAS-Softwarepaket (Basic Linear Algebra Subprogram). Die BLAS-Routinen sind eine schnelle Implementation von elementaren Matrix- und Vektor-Operationen. Die LAPACK/BLAS-Routinen sind bei NETLIB (http://www.netlib.org/lapack/) frei erhältlich. Außerdem werden die LAPACK/BLAS-Routinen von den Hardwareherstellern, auf den unterschiedlichen Rechnerplattformen optimiert, zur Verfügung gestellt.

Auf Linux-basierten Systemen, z.B. openSUSE, und unter Cygwin (http://www.cygwin.com/) stehen die LAPACK/BLAS-Routinen als statische Bibliotheken im Verzeichnis /usr/lib zur Verfügung:

liblapack.a und libblas.a.Auf Debian-basierten Systemen, z.B. KNOPPIX, wird das ATLAS-Paket
(Automatically Tuned Linear Algebra Software) (http://math-atlas.sourceforge.net/) verwendet:
liblapack_atlas.a, libblas.a und libatlas.a.

Bei der Verwendung der LAPACK-Routinen muss das Programm entsprechend übersetzt und montiert (gelinkt) werden. Beim Übersetzen des Hauptprogramms dgap werden die LAPACK/BLAS-Bibliotheken im Verzeichnis /usr/lib erwartet. Sollen andere Biblotheken verwendet werden, ist das Makefile im Verzeichnis main entsprechend anzupassend (siehe Kommentare im Makefile).

Literaturverzeichnis

- Y. I. Abdel-Aziz und H. M. Karara. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In *International Archives of Photogrammetrie*, Band 62, Seiten 1–18, 1971. Proceedings of the ASP Symposium on Close-Range Photogrammetry, Urbana, Illinois.
- F. Ackermann. Geo-Kodierung ohne Passpunkte. GEO-Informations-Systeme, 10(2):28–32, April 1997.
- Jög Albertz und Walter Kreiling, Herausgeber. *Photogrammetrisches Taschenbuch*. Herbert Wichmann Verlag, Karlsruhe, 2. Auflage, 1975.
- K. B. Atkinson, Herausgeber. Close Range Photogrammetry and Machine Vision. Whittles Publishing, 2001.
- Horst A. Beyer. *Geometric and Radiometric Analysis of a CCD-Camera Based Photogrammetric Close-Range System*. Doktorarbeit, Eidgenössische Technische Hochschule Zürich, Institut für Geodäsie und Photogrammetrie, ETH Hönggerberg, 8093 Zürich, May 1992. Diss. ETH Nr. 9701.
- H. Bopp und H. Krauss. Ein Orientierungs- und Kalibrierungsverfahren für nichttopographische Anwendungen der Photogrammetrie. *Allgemeine Vermessungs–Nachrichten*, 85(5):182–188, August 1978a.
- H. Bopp und H. Krauss. An Orientation and Calibration Method for Non-Topographic Applications. *Photo-grammetric Engineering and Remote Sensing*, 44(9):1191–1196, 1978b.
- H. Bopp und H. Krauss. Extension of the 11-parameter solution for on-the-job calibrations of non-metric cameras. In *International Archives of Photogrammetrie*, Band XXII, Part V, Commission V, Seiten 7–11, 1978c. ISP Inter-Congress Symposium, 14–17 August, Stockholm.
- Duane C. Brown. Close-Range Camera Calibration. *Photogrammetric Engineering*, 37(8):855–866, August 1971.
- Duane C. Brown. The bundle adjustment progress and prospects. In *International Archives of Photogrammetrie*, Band XXI, Part 3, Commission III, Seiten 1–33, 1976. XIII ISP Congress, Helsinki, Finland.
- M. A. R. Cooper und P. A. Cross. Statistical concepts and their application in photogrammetry and surveying. *Photogrammetric Record*, 12(71):637–663, April 1988.
- H. Ebner. Self calibrating block adjustment. In *International Archives of Photogrammetrie*, Band XXI, Part 3, Commission III, Seiten 1–17, 1976. XIII ISP Congress, Helsinki, Finland.
- R. Finsterwalder und W. Hofmann. Photogrammetrie. Walter de Gruyter Verlag, Berlin, 3. Auflage, 1968.
- C. S. Fraser. Digital camera self-calibration. *ISPRS Journal of Photogrammetry and Remote Sensing*, 52(4): 149–159, April 1997.
- John G. Fryer. Recent developments in camera calibration for close-range applications. In *International Archives of Photogrammetrie and Remote Sensing*, Band XXIX, Part B5, Commission V, Seiten 594–599, 1992. XVII ISPRS Congress, 2–14 Aug., Washington, D.C., USA.

Herbert Goldstein. Klassische Mechanik. Akademische Verlagsgesellschaft, Frankfurt a. M., 1963.

- E. W. Grafarend. Dreidimensionaler Vorwärtsschnitt. Zeitschrift für Vermessungswesen, 115(10):414–419, 1990.
- E. W. Grafarend, P. Lohse und B. Schaffrin. Dreidimensionaler Rückwärtsschnitt. Zeitschrift für Vermessungswesen, 114:61–67, 127–137, 172–175, 225–234, 278–287, 1989.
- S. I. Granshaw. Bundle adjustment methods in engineering photogrammetry. *Photogrammetric Record*, 10 (56):181–207, 1980.
- F. Sebastian Grassia. Practical Parametrization of Rotations Using the Exponential Map. *The Journal of Graphics Tools*, 3(3):29–48, 1998.
- W. Großmann. *Geodätische Rechnungen und Abbildungen in der Landesvermessung*. Verlag Konrad Wittwer, Stuttgart, 3. Auflage, 1976.
- Armin Grün. Die simultane Kompensation systematischer Fehler mit dem Münchner Bündelprogramm MBOP. In *International Archives of Photogrammetrie*, Band XXI, Part 3, Commission III, Seiten 1–23, 1976. XIII ISP Congress, Helsinki, Finland.
- Armin Grün. Accuracy, reliability and statistics in close-range photogrammetry. In *International Archives of Photogrammetrie*, Band XXII, Part V, Commission V, Seiten 1–24, 1978. ISP Inter-Congress Symposium, 14–17 August, Stockholm.
- Armin Grün. Photogrammetrische Punktbestimmung mit der Bündelmethode. Technischer Report 41, Institut für Geodäsie und Photogrammetrie an der Eidgenössischen Technischen Hochschule Zürich, 1986.
- B. Heck. *Rechenverfahren und Auswertemodelle in der Landesvermessung*. Wichmann Verlag, Karlsruhe, 1987.
- Tobias Heuchel. Rotation matrix in PATB, 1994. Fax, Inpho GmbH, Smaragdweg 1, 70174 Stuttgart.
- Otto Hofmann. Dynamische Photogrammetrie. Bildmessung und Luftbildwesen, 54(3):105-121, 1986.
- H. M. Karara. Non-metric Cameras. In K. B. Atkinson, Herausgeber, *Developments in Close Range Photo*grammetry - 1, Kapitel 4, Seiten 63–80. Applied Science Publishers Ltd, London, 1980.
- H. M. Karara, Herausgeber. *Non-topographic Photogrammetry*. American Society for Photogrammetry and Remote Sensing, 2. Auflage, 1989.
- H. M. Karara und Y. I. Abdel-Aziz. Accuracy Aspects of Non-Metric Imageries. *Photogrammetric Engineering*, 40(9):1107–1117, Sep. 1974.
- John F. Kenefick, Maurice S. Gyer und Bill F. Harp. Analytical Self-Calibration. *Photogrammetric Engineering*, 38(11):1117–1126, Nov. 1972.
- E. H. Knickmeyer und M. Nitschke. Rotationsparameter Grundlagen für die Praxis. Zeitschrift für Vermessungswesen, 119(9):455–464, 1994.
- G. Konecny und G. Lehmann. Photogrammetrie. Walter de Gruyter Verlag, Berlin, 4. Auflage, 1984.
- V. Kratky. On-line Non-Topographic Photogrammetry. In H. M. Karara, Herausgeber, Non-Topographic Photogrammetry, Kapitel 9, Seiten 107–127. American Society for Photogrammetry and Remote Sensing, 1989.
- Karl Kraus. *Photogrammetrie, Band 1*. Walter de Gruyter, Berlin, New York, 7. Auflage, 2004. Vollständig bearbeitete und erweiterte Auflage.

Karl Kraus. Photogrammetrie, Band 1. Dümmler Verlag, Bonn, 5. Auflage, 1994.

- Karl Kraus. Photogrammetrie, Band 2. Dümmler Verlag, Bonn, 3. Auflage, 1996.
- Karl Kraus. *Photogrammetrie, Band 1.* Dümmler Verlag, Bonn, 6. Auflage, 1997. Unveränderter Nachdruck der Vorauflage.
- Leica. *ADS40 Information Kit*. Leica Geosystems, Division for Mapping and GIS, 10840 Thornmint Road, San Diego, CA 92127, USA, April 2002. http://www.gis.leica-geosystems.com.
- Thomas Luhmann. Nahbereichsphotogrammetrie, Grundlagen, Methoden und Anwendungen. Wichmann Verlag, Heidelberg, 2000.
- Scott O. Mason. Expert System-Based Design of Photogrammetric Networks. Doktorarbeit, Eidgenössische Technische Hochschule Zürich, Institut für Geodäsie und Photogrammetrie, ETH Hönggerberg, 8093 Zürich, May 1994. Diss. ETH Nr. 10475.
- J. Chris McGlone, Edward M. Mikhail und James Bethel, Herausgeber. *Manual of Photogrammetry*. American Society for Photogrammetry and Remote Sensing, 5. Auflage, 2004.
- E. M. Mikhail, J. S. Bethel und J. C. McGlone. *Indroduction to Modern Photogrammetry*. John Wiley & Sons, Inc., New York/Chichester/Weinheim/Brisbane/Singapore/Toronto, 2001.
- Franz Müller. *Photogrammetrische Punktbestimmung mit Bilddaten digitaler Dreizeilenkameras*. Doktorarbeit, Technische Universität München, 1991. DGK Reihe C: Dissertationen, Heft Nr. 372.
- H. Pelzer, Herausgeber. *Geodätische Netze in Landes- und Ingenieurvermessung II*, Band 13. Verlag Konrad Wittwer, Stuttgart, 1985. Vorträge des Kontaktstudiums Februar 1985 in Hannover.
- Karl Rinner. Über räumliche Drehungen. Technischer Report, Deutsche Geodätische Kommission, 1957. DGK Reihe A: Höhere Geodäsie, Heft 25.
- W. Rüger, J. Pietschner und K. Regensburger. *Photogrammetrie, Verfahren und Geräte*. VEB Verlag für Bauwesen, Berlin, 4. Auflage, 1978.
- Hellmut Schmid. Eine allgemeine analytische Lösung für die Aufgabe der Photogrammetrie. *Bildmessung und Luftbildwesen*, 26/27(4+1):103–113, 1–12, 1958/59. Teil 1 in 4/1958, Teil 2 in 1/1959.
- G. H. Schut. Construction of orthogonal matrices and their application in analytical photogrammetry. *Photogrammetria*, 15(4):149–162, 1958/59.
- K. P. Schwarz. Integrated Airborne Navigation Systems for Photogrammetry. In D. Fritsch und D. Hobbie, Herausgeber, *Photogrammetric Week '95*, Seiten 139–153, Heidelberg, 1995. Herbert Wichmann Verlag.
- K. Schwidefsky und F. Ackermann. Photogrammetrie. B. G. Teubner Verlag, Stuttgart, 7. Auflage, 1976.
- Ken Shoemake. Euler Angle Conversion. In Paul Heckbert, Herausgeber, *Graphics Gems IV*, Seiten 222–229. Academic Press, 1994.
- C. C. Slama, C. Theurer und S. W. Henriksen, Herausgeber. *Manual of Photogrammetry*. American Society for Photogrammetry and Remote Sensing, 4. Auflage, 1980.
- Bill Triggs, Philip McLauchlan, Richard Hartley und Andrew Fitzgibbon. Bundle Adjustment A Modern Synthesis. In W. Triggs, A. Zisserman und R. Szeliski, Herausgeber, *Vision Algorithms: Theory and Practice*, LNCS, Seiten 298–375. Springer Verlag, 2000.

- Kam Wong. Mathematical Formulation and Digital Analysis in Close-Range Photogrammetry. *Photogrammetric Engineering and Remote Sensing*, 41(11):1355–1373, November 1975.
- B. Wrobel und D. Klemm. Über die Vermeidung singulärer Fälle bei der Berechnung allgemeiner räumlicher Drehungen. In *International Archives of Photogrammetrie and Remote Sensing*, Band 25, Part A3b, Seiten 1153–1163, 1984. ISPRS XV Congress, 17–29 June, Rio de Janeiro, Brazil.
- Senlin Zhang. Anwendung der Drehmatrix in Hamilton normierten Quaternionen bei Bündelblockausgleichung. Zeitschrift für Vermessungswesen, 119(4):203–210, 1994.

Anhang A

Beispiel

Vgl. Schwidefsky und Ackermann (1976), Seite 191, Tab. 191.1 Zahlenbeispiel für die räumliche Doppelpunkteinschaltung (direkte analytische Orientierung eines Bildpaares nach der Bündelmethode). Siehe auch Testbeispiel im Verzeichnis dgap-name-X.X.X/tests/schw_ack_dpe.

Programmname, Version, ...

```
1 dgap version 3.2.2 system Linux compiler GNU C++ 4.1.2 20061115 (prerelease) (SUSE
Linux) compiled Dec 9 2007 22:47:41
2
```

Anzahl der eingelesenen Objekte: Bilder, Kameras, Objektpunkte, ...

```
3 Start: 2007-12-10 00:21:23
4
5 Input data
6 ========
7 Number of ...
                     : 2
8
    - images
9
                      :
                         1
    - cameras
    - image points : 18
10
11
    - object points
                     : 9
12
    - stations
                     : 2
    - AP sets
13
                     : 0
    - position corrs. : 0
14
                     :
15
    - attitude corrs.
                        0
16
    - IMU misalignments :
                         0
17
    - orientation data : 0
18
```

Parameter und Optionen.

19	Parameters/Options			
20				
21	Print check approximations	:	off	
22	Print check rays	:	off	
23	Print intersection results	:	on	
24	Print image coords.	:	on	
25	Print unknown parameters			
26	- object coords.	:	off	

27	- exterior orientations	:	on
28	- additional parameter sets	:	off
29	- position corrections	:	off
30	- attitude corrections	:	off
31	- IMU misalignments	:	off
32	Debug UPARI table	:	off
33	Debug intersection	:	off
34	Print AP set corrections		
35	- number of grid points in x and y	:	0 x 0
36	Output of normal equations. Filename	of	
37	- normal matrix structure	:	none
38	- normal matrix	:	none
39	- right hand side vector	:	none
40	- solution vector	:	none
41			

Kleinste-Quadrate-Parameter und -Optionen.

42	Least-squares parameters/options					
43						
44	Standard deviation of unit weight	:	6.00	um		
45	Maximum number of iterations	:	10			
46						
47	General convergence check	:	off			
48	Convergence limit	:	1.00e-16			
49	Unknowns used for iteration criteri	Lon				
50	- object point coords.	:	off			
51	- perspective centre coords.	:	off			
52	- rotation parameters	:	on			
53	Convergence limits					
54	- object point coords.	:	0.0010	m		
55	- perspective centre coords.	:	0.0010	m		
56	- rotation parameters	:	1.57e-06			
57	Limit of std. dev. to indicate that	-				
58	- unknown should be eliminated	:	1.00e-30			
59	- value is an unknown	:	1.00e+30			
60	Value of std. dev. to indicate that	5				
61	- unknown is fixed	:	1.00e-31			
62	- unknown is free	:	1.00e+31			
63	Weight for suppression of unknowns	:	1.00e+10			
64	Weight for constraints	:	1.00e+10			
65	Output limit of correlation coeffs	:	0.80			
66	Increment for num. derivatives					
67	- object point coordinates	:	1.00e+00	m		
68	- rotation angles	:	1.00e-03	rad		
69	Limit for single significance test	:	1.96			
70	Limit for A'Pv-check	:	1.00e-04			
71	Limit for printing residuals	:	0.00	um		
72						
73	Unit of object space coords.	:	m			
74	Unit of rotation angles	:	gon			
75						
76	Adjustment interface	:	lapack			
77	Partial derivatives of APs from	:	image co	ords.	plus	APs
78						

Aufstellung aller Bilder, mit zugehörigen Stationen, Kameras und Bildkoordinaten mit Standardabweichungen (nur bei gesetzter Option).

88	Image confi	iguration				
89						
90						
91	Image ID		:	1		
92	Image type		:	frame		
93	Station ID		:	1		
94	Camera ID		:	101		
95						
96	Image ID		:	2		
97	Image type		:	frame		
98	Station ID		:	2		
99	Camera ID		:	101		
100						
101						
102	Image coord	linates				
103						
104						
105	Image ID :	1				
106	Number of p	points		: 9		
107						
108	ID	x/mm	-	y/mm	sx/mm	sy/mm
109						
110	11	16.0120	7	9.9630	0.0060	0.0060
111	13	88.5600	8	1.1340	0.0060	0.0060
112	31	13.3620	-7	9.3700	0.0060	0.0060
113	33	82.2400	- 8	0.0270	0.0060	0.0060
114	12	51.7580	8	0.5550	0.0060	0.0060
115	21	14.6180	-	0.2310	0.0060	0.0060
116	22	49.8800	-	0.7820	0.0060	0.0060
117	23	86.1400	-	1.3460	0.0060	0.0060
118	32	48.0350	-7	9.9620	0.0060	0.0060
119						
120	Image ID :	2				
121	Number of p	points		: 9		
122						
123	ID	x/mm	-	y/mm	sx/mm	sy/mm
124						
125	11	-73.9300	7	8.7060	0.0060	0.0060
126	13	-5.2520	7	8.1840	0.0060	0.0060
127	31	-79.1220	-7	8.8790	0.0060	0.0060
128	33	-9.8870	-8	0.0890	0.0060	0.0060
129	12	-39.9530	7	8.4630	0.0060	0.0060
130	21	-76.0060		0.0360	0.0060	0.0060
131	22	-42.2010	-	1.0220	0.0060	0.0060
132	23	-7.7060	-	2.1120	0.0060	0.0060
133	32	-44.4380	-7	9.7360	0.0060	0.0060

134 135

Kameras

```
136 Cameras
137
   =======
138
139
   Camera ID
                       : 101
140 Camera type
                       :
                         frame
141 Comment
                       : RMK
142 Coord. system type : image
143 Principal distance :
                         c =
                                 150.0000 mm
                    : xp =
144 Principal point
                                                           0.0000 mm
                                   0.0000 mm
                                                  yp =
145
   Image format
                       :
                          sx =
                                 230.0000 mm
                                                  sy =
                                                         230.0000 mm
146
147
```

```
Gegebene Objektkoordinaten mit Standardabweichungen. Aufrund der Standardabweichungen werden die Punkte gekennzeichnet: Schnitt-/Verknüpfungspunkte (in), Passpunkte (co) und Kontrollpunkte (ch).
```

```
148 Object point coordinates
149
   _____
150 Object point type:
   in=intersection, co=control point, ch=check point
151
152
153
   Point ID
                   X/m
                               Y/m
                                           Z/m
                                                    sX/m
                                                              sY/m
                                                                        sZ/m
154
155
          11
               5083.205
                            5852.099
                                         527.925
                                                   1.0e-31
                                                             1.0e-31
                                                                       1.0e-31
                                                                                 CO
                                                  1.0e-31
156
          13
               5780.020
                            5906.365
                                         571.549
                                                             1.0e-31
                                                                       1.0e-31
                                                                                 CO
157
          31
               5210.879
                            4258.446
                                         461.810
                                                 1.0e-31
                                                             1.0e-31
                                                                       1.0e-31
                                                                                 CO
158
          33
                5909.264
                            4314.283
                                         455.484
                                                 1.0e-31
                                                             1.0e-31
                                                                       1.0e-31
                                                                                 co
159
          12
                5430.762
                            5877.971
                                         504.192
                                                 1.0e+31
                                                             1.0e+31
                                                                       1.0e+31
                                                                                 in
          21
                5145.744
                                                 1.0e+31
160
                            5040.026
                                         504.192
                                                             1.0e+31
                                                                       1.0e+31
                                                                                 in
161
          22
                5495.459
                            5070.680
                                         504.192
                                                   1.0e+31
                                                             1.0e+31
                                                                       1.0e+31
                                                                                 in
162
          23
                5855.069
                            5102.227
                                         504.192 1.0e+31
                                                             1.0e+31
                                                                       1.0e+31
                                                                                 in
163
                5558.274
                                         504.192 1.0e+31
          32
                            4284.780
                                                             1.0e+31
                                                                       1.0e+31
                                                                                 in
164
   Number of object points with type
165
      intersection : 5
166
                    : 4
167
      control
168
                    :
      check
                      0
169
      total
                    : 9
170
171
```

Parameter der äußeren Orientierung mit Standardabweichungen.

```
172 Stations
173
    ========
174
175
   Station ID
                  : 1
176 Exposure time :
                            0.0000 s
177
    Subtype
                   : phi-omega-kappa, rotated, ccw
178
179
                 State
                                Value
                                             Std.dev.
      Param.
```

180 181 unk 5000.765 1.0e+31 Хо 182 Yo unk 5027.343 1.0e+31 183 unk 1997.357 1.0e+31 Zo 184 phi unk 0.00000 1.0e+31 185 omega unk 0.00000 1.0e+31 186 6.56071 1.0e+31 kappa unk 187 188 Rotation matrix: 189 0.9946945 -0.1028731 0.000000 190 0.1028731 0.9946945 -0.0000000 191 0.0000000 0.0000000 1.0000000 192 193 Station ID : 2 0.0000 s 194 Exposure time : 195 Subtype : phi-omega-kappa, rotated, ccw 196 197 Param. State Value Std.dev. 198 199 Хо unk 5918.253 1.0e+31 200 Yo 5134.023 1.0e+31 unk 201 Zo unk 2022.014 1.0e+31 202 phi unk 0.00000 1.0e+31 203 0.00000 unk 1.0e+31 omega 204 kappa unk 6.89616 1.0e+31 205 206 Rotation matrix: 207 0.9941386 -0.1081129 0.0000000 0.1081129 0.9941386 -0.0000000 208 0.0000000 0.0000000 209 1.0000000 210

Bestimmung von Näherungswerten durch Vorwärtsschnitt. Sofern keine Näherungswerte gegeben wurden, werden ausgehend von den gegebenen äusseren Orientierungen die Neupunkte durch räumlichen Vorwärtsschnitt bestimmt.

Löschen nicht verwendeter Objektpunkte, äußerer Orientierungen, Kameras, etc.

```
221 Clean up
222 -----
223 (Remove unused object points, stations, AP sets, etc.)
224
225
226 Number of removed ...
227 - images : 0
228 - cameras : 0
```

229	- object points	:	0
230	- stations	:	0
231	- AP sets	:	0
232	- position corrs.	:	0
233	- attitude corrs.	:	0
234	- IMU misalignments	:	0
235	- orientation data set	:	0
236			

(GPS-)Zeitintervall. Anfangs-, Endzeit und Zeitdauer mit der äußeren Orientierung evtl. gegeben. Nur für die Positions- und Lagekorrektur unbedingt erforderlich.

```
237 Time interval
238 -----
            =
239 t_min
                   0.0000 s
240 t_max =
                  0.0000 s
241 duration dt = 0.0000 s
242
243 Reference time t0 (= t_min) = 0.0000 s
244
```

Anzahl der Bilder, Kameras, Objektpunkte, etc. die an der Ausgleichung teilnehmen.

245	Data defined for adjustment		
246		-	
247	Images	:	2
248	Cameras	:	1
249	Stations	:	2
250	Additional parameter sets	:	0
251	Position corrections	:	0
252	Attitude corrections	:	0
253	IMU misalignments	:	0
254	Object points (total)	:	9
255	Control points	:	4
256	Check points	:	0
257			

Anzahl der Beobachtungen, Bedingungen (constraints) und Unbekannten. Getrennt nach Art der Unbekannten und die jeweilige Anzahl der beobachteten (obs) und eliminierten (eli) Unbekannten.

0

0

259 -----260 Observations: Image point coordinates : 261 18 262 Total number of observations : 36 263 264 Unknowns: total thereof 265 obs. eli. Object point coordinates : Station parameters : 27 266 0 12 267 12 0 Additional parameters 268 : 0 0 Position corrections 269 : 0 0 0 270 Attitude corrections : 0 0 0 IMU misalignments 271 : 0 0 0 Total number of unknowns : 39 272 0 12 273 274 Constraints : 0 275 276 Redundancy : 9 277 278 Elapsed cpu time to initialize adjustment: 0.00 s 279

Beginn der Iterationsschleife. 1. Iterationsschritt.

280 *** Start iteration loop
281
282 Iteration number 1
283 ----284

Änderungen der unbekannten Parameter. Hier der Änderung der äußeren Orientierung. Jeweils mit Näherungswert (Approx), Änderung (Change) und ausgelichene Unbekannte (Adjusted).

285	Stations					
286						
287						
288	Station ID	:	1			
289	Subtype	:	phi-o	mega-kappa, rotat	ed, ccw	
290	Index	:	27			
291						
292	Param.		State	Approx.	Change	Adjusted
293						
294	Хо		unk	5000.765	-1.292	4999.473
295	Уо		unk	5027.343	-27.303	5000.040
296	Zo		unk	1997.357	2.832	2000.189
297	phi		unk	0.00000	-0.01236	-0.01236
298	omega		unk	0.00000	1.83967	1.83967
299	kappa		unk	6.56071	-0.49527	6.06544
300						
301	Station ID	:	2			
302	Subtype	:	phi-o	mega-kappa, rotat	ed, ccw	
303	Index	:	33			
304						
305	Param.		State	Approx.	Change	Adjusted
306						
307	Хо		unk	5918.253	-21.508	5896.745
308	Уо		unk	5134.023	-63.894	5070.129
309	Zo		unk	2022.014	10.247	2032.261
310	phi		unk	0.00000	-0.94009	-0.94009
311	omega		unk	0.00000	2.93746	2.93746
312	kappa		unk	6.89616	0.13674	7.03290
313						
314						

Mittlere Änderungen der Unbekannten. Getrennt für die Objektkoordinaten, die Lage des Projektionszentrums und die Drehwinkel.

315	Average change of unknown parame	eters		
316	- object point coords.	:	1.213e+01 r	m
317	- perspective centre coords.	:	2.118e+01 r	m
318	- rotation parameters	:	1.665e-02	
319				

Anzahl der Beobachtungen, Unbekannten und Bedingungen, Redundanz und die Standardabweichung der Gewichtseinheit a posteriori $\hat{\sigma}_0$.

```
320 Number of observations : 36
321 Number of unknowns : 39 (thereof: 0 obs. 12 elim.)
322 Number of constraints : 0
323 Redundancy : 9
324 Sigma 0 a posteriori : 22.91 um
325
```

Die Summen $\mathbf{v}^{\mathrm{T}}\mathbf{P}\mathbf{v}$, $\mathbf{l}^{\mathrm{T}}\mathbf{P}\mathbf{l}$ und $\mathbf{x}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{l}$ zur allg. Information und Beurteilung des Konvergenzverhaltens.

326	v'Pv	:	4.724e-09	m^2
327	l'Pl	:	6.996e-05	m^2
328	x'A'Pl	:	6.995e-05	m^2
329				

Kommentar, in welcher Unbekannten der Konvergenz-Test nicht erfüllt wurde.

```
330 Convergence check failed at
331 class/type : EO, phi-omega-kappa, rotated, ccw
332 ID : 1
333 parameter : phi
334
```

Rechenzeit für den Iterationsschritt.

```
335\, Elapsed cpu time per iteration: 0.00 s, solution only: 0.00 s 336\,
```

2. Iterationsschritt.

337	Iteration r	un	ıber 2			
338						
339						
340	Stations					
341						
342						
343	Station ID	:	1			
344	Subtype	:	phi-omega-	-kappa, rotated	, CCW	
345	Index	:	27			
346						
347	Param.		State	Approx.	Change	Adjusted
348						
349	Хо		unk	4999.473	0.284	4999.757
350	Yo		unk	5000.040	-0.206	4999.834
351	Zo		unk	2000.189	-0.195	1999.994
352	phi		unk	-0.01236	-0.00189	-0.01424
353	omega		unk	1.83967	0.00773	1.84739
354	kappa		unk	6.06544	-0.00317	6.06226
355						
356	Station ID	:	2			
357	Subtype	:	phi-omega-	-kappa, rotated	, CCW	
358	Index	:	33			

359								
360	Param.	State	Aj	pprox			Change	Adjuste
361								
362	Хо	unk	589	96.74	5		0.085	5896.83
363	Yo	unk	50'	70.12	9		0.152	5070.28
364	Zo	unk	20	32.26	1		-1.811	2030.44
365	phi	unk	-0	.9400	9		0.02122	-0.9188
366	omega	unk	2	.9374	б	-	-0.00908	2.9283
367	kappa	unk	7	.0329	0		0.00057	7.0334
368								
369								
370	Average chang	e of unkno	wn 1	param	eters	5		
371	- object poi	nt coords.				:	8.396e-0	1 m
372	- perspectiv	e centre c	oor	ds.		:	4.555e-0	1 m
373	- rotation p	arameters				:	1.143e-0	4
374								
375	Number of obs	ervations	:	36				
376	Number of unk	nowns	:	39 (there	eof:	0 obs. 1	2 elim.)
377	Number of con	straints	:	0				
378	Redundancy		:	9				
379	Sigma 0 a pos	teriori	:	5.65	um			
380								
381	v'Pv		:	2.87	6e-10) m^2	2	
382	l'Pl		:	9.40	8e-08	3 m^2	2	
383	x'A'Pl		:	9.37	9e-08	3 m^2	2	
384								
385	Convergence c	heck faile	ed at	t				
386	class/type	: EO, phi-	ome	ga-ka	ppa,	rota	ated, ccw	
387	ID	: 1						
388	parameter	: phi						
389								
390	Elapsed cpu t	ime per it	era	tion:	0.00) s,	solution	only: 0.00 s
391								

3. Iterationsschritt.

```
392 Iteration number 3
393 -----
394
395 Stations
396 -----
397
398 Station ID : 1
399Subtype:phi-omega-kappa, rotated, ccw400Index:27
401
402
   Param. State
                       Approx. Change Adjusted
403
404
             unk
                       4999.757
                                       0.000
                                                 4999.757
   Хо
405
   Yo
                       4999.834
                                       0.000
                                                  4999.834
              unk
406
                                       0.000
     Zo
              unk
                        1999.994
                                                  1999.994
    phi
                                                  -0.01423
407
              unk
                        -0.01424
                                     0.00001
408
                        1.84739
                                                  1.84739
     omega
             unk
                                    -0.00000
409
                                     0.00000
                                                  6.06227
              unk
                        6.06226
     kappa
410
411 Station ID : 2
412 Subtype : phi-omega-kappa, rotated, ccw
413 Index : 33
414
```

415	Param. State		Approx.			Change	Adjusted	
416								
417	Хо	unk	589	96.830		-0.001	5896.82	29
418	Yo	unk	50	70.281		-0.002	5070.27	19
419	Zo	unk	203	30.449		0.002	2030.45	51
420	phi	unk	-0	.91887		-0.00004	-0.9189	92
421	omega	unk	2	.92838		0.00006	2.9284	4
422	kappa	unk	7	.03346		-0.00002	7.0334	ł5
423								
424								
425	Average ch	ange of unkno	wn r	parameter	S			
426	- object	point coords.	:	1.740e-03	m			
427	- perspec	tive centre c	oor	ds.	:	9.398e-04	m	
428	- rotatio	n parameters			:	3.653e-07		
429								
430	Number of	observations	:	36				
431	Number of	unknowns	:	39 (ther	eof:	0 obs. 12	elim.)	
432	Number of	constraints	:	0				
433	Redundancy		:	9				
434	Sigma O a	posteriori	:	5.64 um				
435								
436	v'Pv		:	2.864e-1	0 m^	2		
437	l'Pl		:	2.868e-1	0 m^	2		
438	x'A'Pl		:	4.020e-1	3 m^	2		
439								
440	Elapsed cp	u time per it	erat	cion: 0.0	0 s,	solution	only: 0.00 s	3
441								
442								

Iterationskriterien wurden erfüllt. Anzahl der benötigten Iterationsschritte und Rechenzeit.

```
443 *** Iteration criterion limit has been reached.
444
445 Number of iterations: 3
446 Total cpu time for iterations : 0.00 s
447
```

Ausgleichungstest $\mathbf{A}^{\mathrm{T}}\mathbf{P}\mathbf{v} = \mathbf{0}$

```
448 Check adjustment on A'Pv = 0
449 -----
450 A'Pv limit: 1.0e-04
451
452 Number of A'Pv-values > limit : 0
453
```

Verbesserungen (Residuen) in den Bildkoordinaten. Die Passpunkte werden extra gekennzeichnet mit "control point for". Mittelwert und RMS-Wert getrennt nach x/y-Komponente für das Einzelbild.

```
      454
      Residuals of image coords.

      455
      ==========================

      456
      Limit for printing residuals: 0.00 um

      457
      458

      458
      Image ID : 1

      459
      460

      Point ID
      vx/um
      vy/um
      v/um
```

461											
462	11	-3.23		2.28	3.95	control	point	for	Х	Y	Ζ
463	13	-0.41		-1.03	1.11	control	point	for	Х	Y	Ζ
464	31	6.38		1.58	6.57	control	point	for	Х	Y	Ζ
465	33	-2.76		-5.19	5.88	control	point	for	Х	Y	Ζ
466	12	0.00		-0.21	0.21						
467	21	0.04		2.54	2.54						
468	22	0.04		2.46	2.46						
469	23	-0.07		-4.10	4.10						
470	32	0.06		1.74	1.74						
471											
472	Number of p	oints	:	9							
473	RMS of resid	duals	:	2.56		2.75					
474	Average of :	residuals	:	0.01		0.01					
475											
476	Image ID :	2									
477											
478	Point ID	vx/um		vy/um	v /um						
479						_		_			
480	11	3.95		1.58	4.25	control	point	for	Х	Y	Z
481	13	-0.56		1.94	2.02	control	point	tor	Х	Y	Z
482	31	3.97		-4.70	6.15	control	point	tor	Х	Y	Z
483	33	-7.33		3.53	8.14	control	point	İor	Х	Y	Ζ
484	12	0.01		0.22	0.22						
485	21	-0.08		-2.56	2.57						
480	22	-0.08		-2.49	2.49						
48/	23	0.13		4.1/	4.1/						
488	32	-0.07		-1./4	1./4						
409	Number of p	ointa		0							
490	Rumber of rogi	duala	:	2 00		2 07					
492	Average of	regiduale		-0.01		-0.01					
493	merage or .	- CDIGUGID	•	0.01		0.01					
494											

Mittelwert und RMS-Wert getrennt nach x/y-Komponente für alle Bilder. Anteil der Verbesserungen an der Standardabweichung der Gewichtseinheit.

495 Summary for all image points of all images -----496 497 vx/um vy/um 498 499 Total number of points : 18 : 18.00 2.83 2.83 500 Sum of weights (e'Pe) 18.00 18.00 501 RMS of weighted residuals : 2.81 502 RMS of residuals : 2.83 2.81 503 Average of residuals : -0.00 0.00 504 505 Contribution to v'pv and sigma 0: 2.864e-10 m^2 5.64 um 506 Redundancy : 9 507 508

Hinweis, dass die Verbesserungen in eine Datei geschrieben wurden.

```
Ausgabe der ausgeglichenen Parameter.
```

```
510 *** Final (adjusted) unknown parameters ***
511
512 Object point coordinates
514 Object point type:
515 in=intersection, co=control point, ch=check point
516
517 Point ID
                X/m
                            Y/m
                                       Z/m
                                               sX/m
                                                        sY/m
                                                                 sZ/m
518
519
         11
              5083.205
                         5852.099
                                     527.925 1.0e-31
                                                        1.0e-31
                                                                1.0e-31
                                                                           co
520
         13
            5780.020
                         5906.365
                                     571.549 1.0e-31
                                                        1.0e-31
                                                                1.0e-31
                                                                           CO
                                                                1.0e-31
521
            5210.879
                         4258.446
                                     461.810 1.0e-31 1.0e-31
         31
                                                                           co
522
         33
            5909.264
                         4314.283
                                    455.484 1.0e-31 1.0e-31 1.0e-31
                                                                           co
523
         12
            5431.489
                       5879.359
                                    549.739 1.0e+31 1.0e+31
                                                                1.0e+31
                                                                           in
524
         21
              5147.387
                                     484.995 1.0e+31
                         5055.564
                                                        1.0e+31
                                                                1.0e+31
                                                                           in
                                     506.668 1.0e+31
525
         22
               5495.786
                         5082.741
                                                        1.0e+31
                                                                 1.0e+31
                                                                           in
526
         23
              5844.172
                         5109.875
                                    528.423 1.0e+31
                                                        1.0e+31
                                                                1.0e+31
                                                                           in
527
         32
            5559.944
                         4286.174
                                     463.499 1.0e+31
                                                        1.0e+31 1.0e+31
                                                                           in
528
529 Number of object points with type
     intersection : 5
530
                  : 4
531
     control
                  : 0
532
     check
533
     total
                  : 9
534
535
536 Stations
537 ======
538
539 Station ID : 1
540 Exposure time :
                         0.000 s
541 Subtype : phi-omega-kappa, rotated, ccw
542 Index
               : 27
543
544
    Param.
             State
                        Initial
                                     Adjusted
                                                   Change
                                                              Std.dev.
545
546
     Хо
              unk
                        5000.765
                                     4999.757
                                                   -1.008
                                                               1.0e+31
547
              unk
                        5027.343
                                     4999.834
                                                  -27.509
                                                               1.0e+31
     Yo
548
              unk
                        1997.357
                                     1999.994
                                                    2.637
                                                               1.0e+31
     Zo
549
     phi
              unk
                        0.00000
                                     -0.01423
                                                 -0.01423
                                                               1.0e+31
550
              unk
                        0.00000
                                     1.84739
                                                  1.84739
                                                               1.0e+31
     omega
551
     kappa
              unk
                        6.56071
                                     6.06227
                                                  -0.49844
                                                               1.0e+31
552
553 Rotation matrix:
554
       0.9954688 -0.0950885 -0.0002235
555
       0.0950420 0.9950503 -0.0290147
556
       0.0029813 0.0288620
                            0.9995790
557
558 Station ID : 2
559
   Exposure time :
                         0.000 s
           : phi-omega-kappa, rotated, ccw
560 Subtype
561 Index
               : 33
562
563
     Param.
             State
                        Initial
                                     Adjusted
                                                   Change
                                                             Std.dev.
564
565
                        5918.253
                                                   -21.424
                                                               1.0e+31
     Хо
              unk
                                     5896.829
566
     Yo
               unk
                        5134.023
                                     5070.279
                                                   -63.744
                                                               1.0e+31
567
     Zo
              unk
                        2022.014
                                     2030.451
                                                    8.437
                                                               1.0e+31
```

ANHANG A. BEISPIEL

568	phi	unk	0.00	000	-0.91892	-0.91	.892	1.0e+31
569	omega	unk	0.00	000	2.92844	2.92	2844	1.0e+31
570	kappa	unk	6.89	616	7.03345	0.13	3729	1.0e+31
571								
572	Rotation ma	trix:						
573	0.99372	65 -	0.1109047	-0.014418	5			
574	0.11013	99	0.9928518	-0.045983	7			
575	0.01941	53	0.0441071	0.998838	1			
576								
577								

Verbesserungen in den Passpunkten. Alle Passpunkte werden aufgeführt. Komponenten ohne Verbesserung werden mit --- gekennzeichnet. Absoluter Maximalwert, Mittelwert und RMS-Wert werden für die Komponenten getrennt berechnet.

578	Control point residuals												
579	===========												
580													
581	Point ID	X/m	Y/I	m	Z/m	vX/m	vY/m	vZ/m					
582													
583	11	5083.205	5852.	099	527.925								
584	13	5780.020	5906.	365	571.549								
585	31	5210.879	4258.	446	461.810								
586	33	5909.264	4314.	283	455.484								
587													
588	Std. dev. f	from control po	int rea	siduals									
589													
590				vX/m	vY/m	vZ/m							
591													
592	Number of r	residuals	:	0	0	0							
593	Maximum of	:	0.000	0.000	0.000								
594	Average of residuals			0.000	0.000	0.000							
595	6 RMS of residuals			0.000	0.000	0.000							
596													

Differenzen in den Kontrollpunkten. Komponenten ohne Differenz werden mit --- gekennzeichnet. Absoluter Maximalwert, Mittelwert und RMS-Wert werden für die Komponenten getrennt berechnet.

597	Check point analysis									
598										
599										
600	Point ID X-new/m Y-	new/m	Z-ne	w/m	DX/m	DY/m	DZ/m			
601										
602										
603	Summary of check point analysis									
604										
605	Empirical accuracy in object space.									
606										
607			DX/m	DY/m	DZ/m					
608										
609	Number of differences	:	0	0	0					
610	Maximum of abs. differences	:	0.000	0.000	0.000					
611	Average of differences	:	0.000	0.000	0.000					
612	RMS of differences	:	0.000	0.000	0.000					
613	Std. devs. of differences	:	0.000	0.000	0.000					
614										
615										

Start der Matrizeninversion und benötigte Rechenzeit.

```
616 *** Matrix inversion ... Done
617
618 Elapsed cpu time for inversion: 0.00 s
619
```

Ausgabe der ausgeglichenen Parameter mit ihren Standardabweichungen.

*** Preci	sion from.	Qxx and Sigma	0 a posterio	ori ***			
Object po	int coord	inates					
Object pe	int type:	=====					
in-intera	eation a	-control point	ah-aheak r	oint			
III-IIICEI S			, chi-chieck p	Joine			
Point ID	X/m	Y/m	Z/m	sX/m	sY/m	sZ/m	
11	5083.20	5852.099	527.925	1.0e-31	1.0e-31	1.0e-31	co
13	5780.02	20 5906.365	571.549	1.0e-31	1.0e-31	1.0e-31	co
31	5210.87	4258.446	461.810	1.0e-31	1.0e-31	1.0e-31	co
33	5909.20	4314.283	455.484	1.0e-31	1.0e-31	1.0e-31	CO
12	5431.48	5879.359	549.739	0.049	0.103	0.158	in
21	5147.38	5055.564	484.995	0.056	0.060	0.159	in
22	5495.78	5082.741	506.668	0.046	0.060	0.152	in
23	5844.17	72 5109.875	528.423	0.062	0.061	0.150	in
32	5559.94	44 4286.174	463.499	0.051	0.095	0.170	in
Number of	object po	oints with type	:				
interse	ection :	5					
control	. :	4					
check	:	0					
total	:	9					
		C 1 1 1 1					
Average p	recision d	of object coord	s.				
Dominad f		less of goowdin	eter of non	aontwol na	-int a		
Dellved I	Tom Sta. C	lev. or coordin	ates of non-	Concror po	JIILS.		
			gX/m	gV/m	97./m		
			677/ tit	51/11	52711		
Number of	std. devs	s. :	5	5	5		
Maximum o	of std. dev	/s. :	0.062	0.103	0.170		
Average o	of std. dev	/s. :	0.053	0.078	0.158		
5							
Stations							
Station I	D : 1						
Exposure	time :	0.000 s					
Subtype	: pł	ni-omega-kappa,	rotated, co	ZW			
Index	: 27	7					
Param.	State	Initial	Adjusted	Cha	ange	Std.dev.	
Хо	unk	5000.765	4999.757	-1.	.008	0.209	

669	Yo	unk	5027.343	4999.834	-27.509	0.215		
670	Zo	unk	1997.357	1999.994	2.637	0.088		
671	phi	unk	0.00000	-0.01423	-0.01423	0.00845		
672	omega	unk	0.00000	1.84739	1.84739	0.00674		
673	kappa	unk	6.56071	6.06227	-0.49844	0.00275		
674								
675	Rotation m	matrix:						
676	0.9954688 -0.0950885 -0.0002235							
677	0.0950420 0.9950503 -0.0290147							
678	0.0029	9813 0.0	288620 0.999	5790				
679								
680	Station II) : 2						
681	Exposure t	ime :	0.000 s					
682	Subtype : phi-omega-kappa, rotated, ccw							
683	Index	: 33						
684								
685	Param.	State	Initial	Adjusted	Change	Std.dev.		
686								
687	Хо	unk	5918.253	5896.829	-21.424	0.220		
688	Yo	unk	5134.023	5070.279	-63.744	0.220		
689	Zo	unk	2022.014	2030.451	8.437	0.078		
690	phi	unk	0.00000	-0.91892	-0.91892	0.00874		
691	omega	unk	0.00000	2.92844	2.92844	0.00696		
692	kappa	unk	6.89616	7.03345	0.13729	0.00259		
693								
694	Rotation m	matrix:						
695	0.9937265 -0.1109047 -0.0144185							
696	0.1101399 0.9928518 -0.0459837							
697	0.0194153 0.0441071 0.9988381							
698								
699								

Hinweis, dass die ausgelichenen Objektpunktkoordinaten und die äußeren Orientierungen in eine Datei geschrieben wurden.

701 *** Adjusted object coords. written: test.aoc
702
703 *** Adjusted station data written: test.aeo

Ende der Bündelausgleichung mit gesamter Rechenzeit.

```
704 *** Processing completed ***
705
706 End: 2007-12-10 00:21:23
707
708 Total cpu time (all included): 0.01 s
```