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 Automatische Liegenschaftskarte: Digital Cadastral Map1

Automated interpretation of digital landscape models

KARL-HEINRICH ANDERS, Stuttgart

ABSTRACT

The purpose of this paper is to provide an overall view of the methods of spatial data mining and its applications to digital
landscape models. Spatial data mining can be defined as the deduction of information that is not explicitly stored in a given
spatial data model. The subject spatial data mining represents the integration of several fields, including machine learning,
database systems, data visualization, statistics, information theory and computational geometry. The automation of spatial
analysis functions has two main aspects. On the one hand it deals with the automation of spatial operators conventionally used
in a GIS-program for complex analysis applications, e.g. site planning. Such an application usually involves a sequence of
operations, e.g. classification, buffering, selection, etc. This process is controlled by the human operator according to a ''model''
he has in mind. Automation of such a process requires to make explicit this model and apply it to the data. In this way, e.g. a
model for site planning can be created. The second aspect concerns data mining. This approach is used to find connections in
the data which are not known in advance - therefore no model exists - which are however implicit in the data. 

1. INTRODUCTION

Nowadays there exist a huge amount of spatial data in digital form. All over the world governments
and companies capture spatial data in digital form or convert existing analogous map data. The
availability of these quantities of digital spatial data naturally leads to the questions of how these
amount of information can be handled in an effective way and how different data sets can be integrated
and maintained in a unifying way. Usually different data bases are established for different purposes:
as an example, national mapping agencies derive topographic information, urban planning institutions
capture data for city planning, traffic management companies demand detailed road information for the
autonomous navigation of cars - all of them are operating on the same physical reality, namely the
earth's surface, and sometimes even on the same type of objects. The problem is that usually the
underlying application drives both the data model and the level of detail. Thus although a huge amount
of spatial data is already available - the question remains whether the data can also be used beyond
their original purpose. This question is closely linked to the problem of derivation of information,
which is only implicitly given in the data set.
Imagine a data set representing topographic objects as visualized in Figure 1. The data - taken from the
German ALK  - describe legal aspects. Although in the data set primarily only lines and text symbols1

are stored, we as humans can easily read more information from it: we can identify individual parcels
(e.g. Figure 2) and road crossings, distinguish city area from rural region, detect the neighbourhood
between roads and built-up areas, .... Thus a human viewer can not only see the explicit information,
but also the implicit one. The paper deals with the problem to automate this functionality of exploiting
also implicit information in a spatial data base and making it explicit for different application areas.
The paper is organized as follows: First an overview of possible applications for the derivation of
implicit information from spatial data sets is given. After that the technological background for this is
described. Section 4 describes one application in detail. Finally a discussion and an overview of
possible extensions of the approach is given. 
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Figure 1: Digital cadastral map.

Figure 2: Extracted parcels.

2. MOTIVATION AND POSSIBLE APPLICATIONS

Looking for implicit information in data bases is a discipline called Data mining - up to now mainly
applied to descriptive data sets. An example is the prediction of the audience of BBC-customers based
on audience figures like type of program, time of showing, nature of competing programs (ISL, 1996).
The application of this technique to spatial data bases has been addressed only recently. Here however
there is a wide field of possible applications of this technique to spatial databases. 
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 Authoritative Topographic Cartographic Information System2

Models for Image Interpretation:
Automatic image interpretation heavily relies on models to guide the interpretation process. These
models are usually designed by hand and then applied to the image data. On the other hand huge
collections of object models are already available in terms of objects stored in digital databases
like CAD-systems or GIS. This information however cannot be used directly, because usually not
all the necessary information for image interpretation is stored explicitly. For example
(Plietker, 1994) uses ATKIS-data  to find roads in aerial orthophotos. In order to transfer the2

ATKIS-model to the image interpretation process the data has to be enriched by general knowledge
about it, e.g. the fact that roads are captured with their middle axis and with a predefined width.
(Haala & Anders, 1996) give another example of the use of individual object instances from a GIS
for image interpretation: the extraction of buildings from stereo data using 2D-building
groundplans. As only 2D information is available, hypotheses about the 3D-form and shape of the
buildings have to be inferred from the data set (Figure 3). Data interpretation can also be used to
derive an intensional, generic description from the extensional set of individual object instances
in the data base. Thus a generic object model can be achieved. This general model comprises not
only object attributes but also relations between objects. The latter being very important since they
specify the context (Sester, 1995).

          

Figure 3: Generated 3D-building hypothese (right) based on the 2D digital cadastral map (left).

Multiscale Representation / Model Generalization:
Each data acquisition process starts with modeling the data to be captured. The model is
determined by the application, and thus describes that part of the reality, which is ''seen'' from the
system. In order to make use of data also for other applications than they were originally acquired
for, a transformation of the data has to be performed. This presumes to have rules for the transition
between different data models. The more different the models are, the more complex are the
relations between the data sets and thus is the derivation of the rules or transformations. This is
even more true for the case when the data stems from different resolutions of detail (in terms of
geometry, semantics and time). E.g. ATKIS specifies built-up areas - in order to derive them from
ALK (which describes legal boundaries graphically - including buildings) a relation of scales
1:1 500 with 1:25 000 has to be found. This can be achieved using grouping operations, which base
on spatial neighbourhood. See section 4 for an implementation of such an aggregation method.
(van Oosterom, 1995) describes a so-called reactive data structure - a data structure representing
levels of detail. His GAP (generalized area partitioning)-tree is successfully applied to perform a
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 Geographic Data File: standard for road data in Europe3

generalization on-the-fly - primarily for visualization purposes. His aggregation rule is defined a
priori and bases exclusively on object adjacency.
The approach given by (Molenaar, 1996) specifies a semantic model of the aggregation hierarchies
in advance. The aggregation itself then is based on spatial adjaceny. 

Use of data sets for different applications / map matching:
When the scales of the different applications are similar, map-matching techniques can be applied.
This process allows for a transformation of one data set into the other. Usually matching is based
on geometric similarity (e.g. position, form, ...); but also semantic similarity is of great use. An
example for such a matching is the link between GDF  road data and ATKIS roads. Although the3

data sets reflect the same physical reality (namely roads) and are based on the same resolution
(1:25 000), due to slightly different underlying data models different object instances are acquired.
The approach by (Walter & Fritsch, 1995) uses relational matching to find the correspondences
between the data sets. Another application is the integration of application dependent information
into existing data sets, e.g. the integration of environmental information into an official
topographic map.

Derivation of Meta-Data:
In order to allow for a more flexible, open and independent use of digital data, so-called meta-
information is of great importance. Meta-data specifies general knowledge about the data (e.g.
object types, extremal values, range of values, ...). The problem with meta-data is that it is usually
not stored explicitly with the data, but mostly is only known by its intelligent user. This
information can be derived from actual object instances of the data set, by spatial interpretation
techniques.

Extraction of High Level Structure:
City planners need information about typical structures in a city. In order to derive this knowledge,
an analysis and statistical evaluation of the facts and the relations between individual objects has
to be performed. This process can be automated based on a given dataset by spatial data
interpretation. This presumes to have a model of what is to be found. An example is a data set
consisting of roads; if road crossings have to be found, a model for a crossing has to be available.
This interpretation task can directly be compared to image interpretation, which also needs models
in order to find objects in an array of gray values.
Potentially also relations are interesting, which are not known or clear in advance, and kind-of
hidden in the data. Therefore techniques are necessary to automatically derive dependencies,
relations and statistical information from the data. For example a spatial and statistical analysis of
data in a city can reveal dependencies of certain buiding types and special regions, etc. Another
example are the requirements for regional planning purposes, where information about the
population density is very important. This should be derived relating to special regions, along
roads, .... (Koperski & Han, 1995) give an example of spatial data mining where they analyse the
adjacency of canadian cities and other topographic objects. The result is that huge cities tend to be
close to the sea.

3. SPATIAL DATA MINING

Data mining or knowledge discovery in databases (Piatetsky-Shapiro & Frawly, 1991), (Holsheimer
& Siebes, 1994), (Fayyad et al., 1996) can be defined as the discovery of interesting, implicit, and
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previously unknown knowledge from large databases (Frawley et al., 1991). The subject spatial data
mining is the extension of data mining from relational and transactional databases to spatial databases.
Nowadays huge amounts of spatial data have been captured in various applications, ranging from
remote sensing, to geographic information systems, environmental  and planning. The human ability
to analyse this large spatial databases manually is far exceeded. That makes it necessary to automate
the information (knowledge) discovery to support a human operator. 
The subject spatial data mining represents the integration of several fields, including machine learning
(Michalski et al., 1984), database systems, data visualization, statistics, information theory and
computational geometry. Spatial data mining techniques have wide applications in geographic
information systems and remote sensing. These methods can be used for understanding spatial data,
discovering relationships between spatial and nonspatial data, construction of spatial knowledge-bases,
query optimization, characterization of spatial data, etc. There are different forms of knowledge
discovery in spatial databases, like:

� Spatial object characteristics
Description of spatial objects at a high level of abstraction. To find such types of description
concept hierarchies and generalization operators are needed.

� Spatial object clusters
Classification of spatial objects based on their spatial neigbourhood which has to be defined
in a suitable way. A possible information in a building database can be clusters of buildings
including mainly industrial buildings.

� Spatial association rules
Knowledge about the correlation between spatial objects based on topologic (adjacency,
intersection, ...) and geometric (distance between objects, size of objects, ...) relations.

� Spatial patterns
A spatial pattern describes the characteristic structure of the distribution of the spatial objects.
For example a group of buildings can have a linear structure or the structure of a cluster.
Spatial patterns can be used for a spatial trend analysis of spatial objects.

which all needs their own spatial data mining method.

3.1 Spatial data mining methods

Spatial data mining methods can be divided into five classes:

Statistical methods:
Statistical analysis of spatial data is the most common approach for analyzing spatial data
((Fotheringham & Rogerson, 1994), (Shaw, 1994)). It handles very well numerical data and
usually comes up with realistic models of spatial phenomena. The major disadvantage of the
statistical approach is the assumption of statistical independence among the spatially distributed
data. This causes problems as many spatial data are in fact interrelated, i.e., spatial objects are
influenced by their neighbour objects (Koperski et al., 1996).

Knowledge generalization methods: 
Generalization-based methods are used to find characteristic and discriminant rules in a database.
The method of generalization-based knowledge discovery requires the existence of background
knowledge which is represented in the form of concept hierarchies. A widely used technique for
discovering generalized knowledge is the machine learning technique learning from examples
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combined with methods for knowledge generalization(e.g., decision-tree induction). An extension
and modification of these techniques to spatial databases is described in (Lu et al., 1993).

Cluster analysis:
Cluster analysis is a branch of statistics that has been studied for many years. The goal of this
method is to cluster objects into classes, based on their features, which maximize the similarity of
class objects and minimize the similarity of objects from different classes. There are probability-
based and distance-based clustering methods. Cluster analysis represents a type of unsupervised
learning. The advantage of this method is that interesting structures or clusters can be found
directly from the data without any background knowledge. Modified clustering techniques are
described by (Ng & Han, 1994), (Ester et al., 1995) and (Ester et al., 1996).

Search for spatial associations rules:
These methods look for characteristic rules that link one or more spatial objects to other spatial
objects. Spatial association rules are of the form X � Y (s%,c%), where X and Y are spatial or
nonspatial predicates, s% the support and c% the confidence of the association rule ((Koperski &
Han, 1995), (Bollinger, 1996)). There are various kinds of spatial predicates that could constitute
a spatial association rule, e.g. neighbourhood (distance) information, topologic relations
(intersection, overlap, etc.) or spatial orientation (right_of, north_of, etc.). 

Aggregation-, approximation-methods :
These methods use spatial relations (topologic or geometric) to create new complex objects
(Knorr & Ng, 1995) or to find patterns, structures (Regnauld, 1996) in the spatial database. The
geometry of complex objects is described by an appropriate approximation of the aggregated
geometries (e.g. convex hull). This type of spatial data mining methods often use concepts of
computational geometry (Preparata & Shamos, 1985). An example for that kind of information is
a created rule as the following: 80% of all houses in that cluster have a saddle roof.

3.2 Spatial neighbourhood

A basic relation in spatial data mining is the spatial neighbourhood relation between spatial objects.
This relation is important for spatial aggregation and spatial approximation operators. But there is no
common definition for the subject spatial neighbourhood because the definition depends on the
application. Generally one can define three types of spatial neighbourhood:

topologic neighbourhood
The neighbourhood is defined through the topology between the geometry of spatial objects. In the
most cases the adjacency relation is used for that, but also relations intersection or is_inside are
possible.

metric neighbourhood
The neighbourhood is defined through the distance between spatial objects. In this case there are
three possibilities:

� Distance buffer 
All objects with a distance to a given object smaller than a given value are neighbours.

� Nearest neighbour 
Only the object with the smallest distance to a given object is called a neighbour. In this
case no value for the distance is necessary and only one neighbour object is possible.

Contents
'Photogrammetric Week '97' D. Fritsch & D. Hobbie, Eds., Wichmann Verlag, Heidelberg, 1997.



Anders 19

� Delaunay triangulation 
A given value for the distance is also not necessary if the neighbourhood is defined
through the Delaunay Triangulation (Preparata & Shamos, 1985) of all points which
describes the geometry of the spatial objects. In this case more than one neighbour object
is possible.

semantic neighbourhood 
The neighbourhood of spatial objects is defined through their semantic and not through their
spatial attributes. Two objects are neighbours when their semantic is similar. For example a tree
and a hedge can be neighbours because both belongs to the semantic vegetation. But the used
definition depends on the application like the definition of spatial neighbourhood in general.

4. EXAMPLE: ALK/ATKIS - FROM PARCELS TO SETTLEMENT AREAS

4.1 Basic assumptions and available data

In Germany the ATKIS data base is established in three levels of detail, namely 1:25 000, 1:200 000,
1:1000 000. This data set comprises topographic objects of seven different classes (e.g. settlement,
traffic, vegetation, ...). On the other hand, cadastral information in scales 1:1500 ...1:2000 is acquired
for the ALK. In ALK legal boundaries, as well as useage or type of objects are specified. In order to
facilitate and automate the time consuming update process, the idea arises to derive ATKIS data from
ALK. In this way only the more detailed data set (ALK) would have to be updated manually - whilst
the other can be deduced from it. Currently the update is done separately for each data set; ATKIS is
acquired (in Baden-Württemberg) based on a manual interpretation of orthophotos, while ALK stems
from direct geodetic measurement. Using ALK for ATKIS update involves generalization or
aggregation operations, respectively. First of all the links between the data sets have to be established.
In the following, an approach will be demonstrated showing the derivation of built-up areas in ATKIS
from ALK data. A so-called object-catalogue of ATKIS specifies, how the objects are to be created and
captured. The following ''rule'' describes how built-up areas (object id 2111) have to be acquired
(ATKIS-Objektartenkatalog, n.d.).

“Built-up areas are areas that are exclusively or mainly used for living. Besides buildings,
there are also objects serving for the provision of needs of the whole area like small
workshops, organizations of clerical, cultural, social, or sanitary purpose.
The boundaries between a built-up area and neighbouring areas is given by the boundaries of
the parcels of land the buildings are standing on.
Only areas greater than 10 hectars have to be captured; if the area is smaller, it has to be
acquired only in special cases.
The geometric object type is a point (for areas less than 10 hectars) or an area for those greater
than 10 hectars.''

The first step is to implement such a rule. The specification above reveals a link between the data sets,
namely the fact that built-up areas consist of adjoining residential areas. Residential areas are parcels
of land comprising building objects like houses, garages, .... This however is information which is
stored (explicitly and implicitly) in ALK. As the rule implies to aggregate neighbouring building-
objects to a settlement area, the question is how to define neighbourhood in this application. First of
all, in order to come from ALK to ATKIS, the underlying data models have to be examined in detail
in order to make them explicit and thus usable. This will be revealed in the following semantic
modeling process.
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Figure 4: Semantic model of parcels and residential areas.

4.2 Semantic modeling, data structures, and implementation

The digital cadastral map (ALK) is provided by the landsurvey administration. Possible formats the
user can get the data are SICAD/open data exchange format (SQD) or DXF. In these formats these data
sets contain only geometric features and text elements. These elements are points, lines, areas and text
features. SICAD/open additionally provides the feature parcel number. Thus the data is a mere
graphical representation (cf. Figure 1). But in high level functions in GIS we need more complex
objects with a specific meaning. For an human operator it is no problem to extract spatial objects from
this data set when it is displayed on the computer screen.
In order to describe how spatial objects are represented in a digital cadastral map, we use semantic
modeling as a conceptual method to analyse how a human operator detects such kinds of objects.
Figure 4 shows the semantic model which we use to describe parcels of land and residential areas. To
represent the spatial objects in the computer we use an object oriented data model presented in
(Anders & Fritsch, 1996), (Fritsch & Anders, 1996). Spatial objects are aggregates of thematic objects
which describe the semantics of an object, and geometric objects which represent the spatial position
and form of an object. This structure directly allows to compute the topological relation adjacent_to
among the features, because the incidence relations for the topological objects point, line and area are
stored explicitly in our data model. As every line object ``knows'' to which area it belongs, the
adjacency between areas can be computed. The whole implementation bases on an object oriented
database in conjunction with an object oriented programming language. The advantage is that we are
able to represent semantic relations like is_a and part_of directly in our data model. 

The first problem is that in the given representation of the digital cadastral map parcels are not stored
as area features. Only the borderlines of the parcels are stored as line features. The buildings are
directly stored as area objects - but this is only true for most of the cases. Therefore the first step in our
approach is to compute all possible areas based on the given list of line features. An area is represented
through a simple polygon which is a cycle of line features in the net of lines.
In the next step the relation between geometric objects parcels and the corresponding parcel number
features have to be established. This can be achieved by geometric calculations of a point-in-polygon
test between all possible combinations of parcels and numbers. This results in the following figure 2.
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Figure 5: Built-up areas generated from ALK.

Then we have to choose all that parcels which probably have a residential use. Therefore we take all
text features which are instances of  'Whs', 'Gar', 'Bpl' (building, garage, building lot) and again make
a point-in-polygon test for all possible combinations to find the relations to the corresponding areas.
In the last step we have to group all computed parcels with residential use to create residential area
objects. The semantic rule for grouping of these areas is the adjacency principle (see right hand side of
Figure 4). I.e. all residential areas which are connected via a common border are merged. This can
easily be performed using the topological relations between the areas which is directly extractable from
our data model.
Figure 5 gives the result of the grouping and shows the built-up areas in that region. This result was
achieved only based on the assumption of a spatial aggregation of adjoining residential objects.
Comparing these ATKIS-objects with original ATKIS-data reveals the following differences (see
Figure 6):

� The main source of the difference are: possibly different acquisition dates, different
acquisition rules, ... 

� The boundaries of the areas do not exactly correspond: this is due to the fact that in ATKIS the
roads are stored as line objects only by their middle axis - the adjacent objects then meet at
that axis; in our case as we take the road model from ALK (which is area based), the built-up
areas consequently border the ALK roads. An extension would be to also generalize the roads
(find middle axis from road areas) and then generalize both data types in common.

� In the current approach only a subset of all possible building objects have been modeled. Thus
industrial areas or areas with mixed usage (like industrial buildings and residential buildings
in the same parcel) are included in our result - in ATKIS however they should belong to a new
class. Therefore the model has been modified reflecting these facts. Figure 7 shows the
improved result. 
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Figure 6: Overlay of the original ATKIS built-up areas
(black lines) and automatically derived areas (shaded areas).

Figure 7: Built-up areas generated from ALK categorized
in: residential area (light grey), area of mixed use (grey)

and industrial area (dark grey).

4.3 Extensions

The result of the previous steps shows, which aggregation level is achievable based on an initial
semantic modeling of the knowledge implicitely given in the data and explicitely given in terms of an -
rather abstract - object description catalogue. In order to compensate for possible exceptions to this,
different strategies have to be applied depending on the type of relation to be modeled. 
If the relations are mainly geometric, a triangulation structure can be used to determine the
neighbourhood. This process can be followed by a spatial clustering operation, e.g. minimal spanning
trees (Regnauld, 1996). In the same way e.g. higher level structures of ATKIS can be derived by
application of further aggregation procedures. E.g. the boundary of a city (ATKIS object id 2101) is
described in the object catalogue as comprising all the built-up and industrial areas, and also including
the traffic and vegetation areas. In this case the aggregation cannot base on the adjacency principle

Contents
'Photogrammetric Week '97' D. Fritsch & D. Hobbie, Eds., Wichmann Verlag, Heidelberg, 1997.



Anders 23

alone, but has also to consider possible gaps in between. This can be solved with a triangulation of the
settlement objects, followed by a spatial clustering. The hull around these clustered objects then
represents the boundary of a city.
If however the relations between the objects are not known explicitely, machine learning techniques
(Michalski et al., 1984) can be applied. This approach should be used, when examples for such
relations in the data set exist - when however their reasons or explanations are not known. Then the
input to an ML-program is a set of examples specifying the data sharing the relations, together with a
corresponding classification (the type or name of a relation). The ML-system is then able to reveal the
underlying links and describe them in terms of semantic concepts or rules.

5. CONCLUSION

The scope of the paper was to motivate the usefulness and the need for techniques of spatial data base
interpretation. Because of the increasing amount of spatial information in digital form and the
importance of data actuality and data quality for economy, industry and commerce it will become more
important to automize the interpretation and revision of digital landscape models. Spatial data mining
techniques are one tool to make the data re-use possible and also allow for a utilization of the data
beyond their original purpose. A list of possible applications and methods for spatial data mining have
been presented.
The example showed the usefulness of such techniques in the domain of data abstraction (model
generalization) for the update of digital databases like ATKIS with the help of existing ones of a higher
level of detail, namely ALK. The result shows that the fusion of two databases can very efficiently be
implemented based on a semantic data model and on spatial proximity operators. In the example the
transfer of the semantic rules for object generation into an aggregation scheme is straightforward.
Already the implementation of these first steps reveal the great potential of such techniques for data re-
use. In other cases however, these links might not be that direct. Then the above described spatial data
mining techniques related to machine learning techniques have to be applied.
The automated interpretation of digital landscape models is far from being solved, but in times when
more and more spatial data bases are build up indepentently to (enormously) costs, there is a strong
need for having tools and methods to use them in a unifying way. It is obvious that no general purpose
data base can ever be generated. Also, it is getting more and more clear that each geographic process
has its own level of detail where it is best understood - and at this level it should be monitored and
managed. Thus there is a basic need for techniques to analyse spatial data in an automatic way. 
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