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KNOWLEDGE BASED IMAGE PROCESSING

H. Niemann, Erlangen

1. INTRODUCTION

There are simple images — like the Necker cube shown in Figure 1 — where the same gray level
distribution allows two different interpretations because both of them are consistent with a priori know-
ledge. There are examples of more complex images or image sequences — like the one shown in Figure 2
— where the non-expert in the field cannot give an interpretation because he does not have the relevant
task-specific knowledge.

From these examples it is evident that processing of an image up to a reasonable level of abstraction
not only considers the input image pixels, but also relies on a priori knowledge. In general, a system for
knowledge based image processing (or image analysis, or image understanding) tries to obtain a symbolic
description B (or an interpretation) of an image f which

o optimally fits to the observed data (or pixels)
¢ and is maximally consistent with internally represented task-specific knowledge.

A more formal definition of the symbolic description is given at the end of Section 3.

Of course, any type of automatic processing requires specialized knowledge on the side of the designer
to write some type of program, for example, for linear filtering or camera calibration; this is not termed
knowledge-based processing in this paper. The relevant point here is that at least some part of the
task-specific knowledge is represented explicitly within the processing system and is used by it.

There are quite a few publications on knowledge based processing, for example the papers [4, 8, 29,
34, 32, 49] or the books [2, 17, 28, 33, 31].

In this paper we will not give an overview of proposed and implemented techniques, but rather will
outline a particular approach in some detail (as allowed by the length of the paper) and refer to alternative
or related approaches by means of references. The general modules of a system for knowledge based image
processing are shown in Figure 3. The four essential modules are the methods for performing an initial
segmentation, the representation of intermediate results, the knowledge representation and utilization,
and the control of an analysis process (or the determination of a processing strategy). In addition the
three modules for knowledge acquisition, explanation, and user interface may be desirable depending on
the intended use of the system.

Figure 1: The Necker cube is a simple example of an
image allowing two interpretations
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Figure 2: An example of an image whose interpretation requires specialized knowledge (it is a scintigraphic
image sequence covering one cycle of the beating heart; it shows normal motility of the left ventricle)

input: image or output: task-specific
image sequence | user commands symbolic description
USER INTERFACE
RESULTS
METHODS KNOWLEDGE LEARNING EXPLANATION
CONTROL

Figure 3: The main modules of a system for knowledge based image analysis

The modules in Figure 3 do not imply a certain order for performing the processing steps; rather
these steps are determined depending on the stored knowledge and on the intermediate results by the
control module. On the other hand, certain typical processing steps can be stated as shown in Figure 4.
Processing starts with an initial phase of mainly data-driven (or bottom-up) processing involving no or
little (explicitly represented) task-specific knowledge. The result is an initial segmentation of the image,
and this phase is considered only very briefly in Section 2. It follows a phase of mainly model-driven
(or bottom-up) processing incorporating task-specific knowledge; this phase is treated in Section 3. In
Section 4. we consider the use of a knowledge base to interprete an image. Finally, a conclusion is given
in Section 5. : ‘

Examples of applications of knowledge based image analysis are autonomous vehicles [1,12], document
understanding [20, 27], industrial applications including robotics {7, 22}, medical image understanding
(19, 47), and remote sensing (21, 40].
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KNOWLEDGE BASED IMAGE UNDERSTANDING

mainly model-driven processing using explicit task specific knowledge

4. INFERENCE, ACTION

state description . actions, inferences
mapping to knowledge base -| |inferences, interpretations
search space |:.|plan or answer generation
present state, goal state, difference planned action

3. RECOGNITION OF OBJECTS

objects attributes

volumes, surfaces symbolic names, attrib., relations
physical objects for objects, facts, and so on,
facts, events, situations in space and time, quality

mainly data-driven processing using no task-specific knowledge

2, INITIAL SEGMENTATION

segmentation objects attributes

line elements, lines gray level, color, texture
regions, surfaces, volumes position, depth, motion
vertices, recognition elements symmetry, shape, quality

1. PREPROCESSING
| coding, thresholding, filtering, morphology, normalization, restauration

Figure 4: Typical processing levels in a system for knowledge based image analysis

2. INITIAL SEGMENTATION

The goal of initial segmentation is to decompose the image into segmentation objects O without the use
of explicitly represented task-specific knowledge. The ideal case is that segmentation objects correspond
to meaningful objects and parts of objects as percieved by a human observer. However, it seems that this
ideal cannot be achieved without the use of task-specific knowledge and hence can only be approximated
during initial segmentation. A consequence of this is that segmentation errors may occur in general and
must be accounted for in subsequent processing.

According to Figure 4 we assume that this phase works mainly data-driven. The initial segmentation
A is a network of segmentation objects

A=(0). , (1)

Examples of segmentation objects are vertices, lines, regions, or surfaces. They have attributes like loca-
tion, color, depth, or motion. Since, for example, a surface or a region is surrounded by a contour line and
the contour may be broken into smaller lines, we consider a segmentation object as a recursive structure

0 = (D:To, (A:(Ta, RUVL)), (P:0)*, (K :0)*, (V:0),
(S(Ao, Ap, Ax) : R)*, G : R™) @)
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having attributes A, parts P, concretes K, specializations V, structural relations S, and a judgment G.
This definition has been chosen to account for the representation of complicated segmentation results and
to provide a suitable interface to knowledge-based processing, in particular to the concept C in (3). An
object-oriented specification and implementation of O is described in [38]. Text books treating various
approaches to segmentation are, for example, (2, 31, 39, 41].

Segmentation may treat only the two-dimensional (2D) image or try to recover, for example, lines
and surfaces in a 3D scene; it may work on one static image or on a time sequence of imagéé; Hence,

there is a large variety of problems and an even larger variety of approaches which cannot be covered in
this paper.

3. KNOWLEDGE REPRESENTATION

In a knowledge-based system a suitable formalism has to be specified and implemented for storing
the relevant task-specific knowledge. In addition, it is very useful if at least parts of this knowledge can
be obtained automatically. Various approaches to knowledge representation have been suggested and are
in use, for example, predicate logic [37, 48], fuzzy logic [3, 50], and non-monotonic logic [5], frames [25]

- and semantic networks [14, 24, 36}, production systems and expert systems [9, 28, 30], relational data
bases [13], syntactic and structural methods [10, 15, 26], and (artificial) neural networks [42]; not all of
them have been tried for image analysis.

Basically, a formalism for knowledge representation in an image analysis system should allow one to
represent in the computer a certain conception denoting an entify in the real (physical) world, for example,
a ‘highway’, a ‘car’, an ‘accident on a highway’, and so on; (in this paper we ignore the representation
of abstract conceptions like ‘honor’ or ‘happiness’). The first idea might be to just attach a symbol, like
A, to a conception. Obviously, this is insufficient in general because one also would like to represent for
a conception its attributes (see above), its relations to other conceptions (like ‘behind’, ‘after’, ‘parallel
to’), its parts (like ‘wheels of a car’, ‘head of a person’), its specializations (like ‘sportscar’, ‘convertible’),
and perhaps additional elements. Therefore, we represent a conception by a recursive structure C' and
call this internal representation a concept

C = (D : Te, (A : (Ta ~ F))*, [Hosr, Hopt, Hinal",(V : C),
(M:C), (L:1), (S(Ag,Ap,Ak) — F)*, (G — F)) ,
H = ((Pai:CH)*, (Pa:C*), (K:CHY). (3)

A detailed description of a concept in this sense is given in [36]; here we outline only some basic properties
by means of the example in Figure 5

According to the above definition a concept C has a set of attributes (or features, properties) A each
one referencing a function F' which can compute the value of the corresponding attribute. The notation
(A:...)* indicates that there may be an arbitrary number (including zero) of attributes in a concept.

A concept has obligatory, optional, and inherent components denoted by Hopr, Hopr, and Hing,
respectively, which in turn consist of context-independent and context-dependent parts Pe; and Pq as well
as of concretes K. In the figure only one obligatory, context-independent part is shown. The notation
(P : C*)* indicates that there may be an arbitrary number (including zero) of context-independent
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Figure 5: A pictorial example of the concept ‘ventilator’ and its links to other concepts

parts; each part is related to the concept by a link; each link in turn references an arbitrary number of
concepts (but at least one).

A concept may have concretes K which are on another level of abstraction or in another conceptual
system. In our example the ‘parts of electric motors’ are determined from ‘lines’ which are more concrete
(or closer to the level of pixels).

In general there may be structural relations S between the attributes A¢ of a concept or of attributes
Ap and Ak of its parts and concretes, respectively. For example, there are certain constraints on the
angles of ventilator blades. Since in image processing noise and processing errors are inevitable, relations
usually can only be established with limited precision. Therefore, each relation references a function F'
computing a measure of the degree of fulfilment of this relation, for example, in the sense of a fuzzy
relation.

In order to define hierarchies of conceptions it is possible to introduce a concept as the specialization
V of some other (more general) concept. It is assumed that all attributes, relations, parts, and concretes
of the more general concept are inherited by the specialized one, unless this is explicitly excluded. This
enhances the compactness of a knowledge base. For example, the ‘line’ is inherited to all concepts which
are specializations of ‘parts of electric motors’.

In order to support the automatic acquisition of knowledge it is possible to state certain a priori
knowledge in a model-scheme and reference this by the link model M. For example, the model-scheme
may state that a view of an object consists of surfaces and holes.

In knowledge-based image analysis one tries to determine which objects and so on are actually present
in the image. The occurrence of an object or so on is represented by an instance I(C') of the corresponding
concept C. The relation between the concept and its instance is represented by a link L from C to I(C).
An instance is represented by ’aisvtfuctulje identical to (8) except that references to functions are replaced
by the actual values computed by those functions from the image.

Since due to noise and processing errors the occurrence of an instane can only be infered with limited
certainty and precision, a judgment G is attached to each concept. The judgment is a vector of numbers
measuring the degree of confidence in the actual occurrence of the instance and its expected contribution

to the success of analysis.
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There may be the situation that some instances have been computed and allow the restriction of
attribute values of a concept C' which cannot yet be instantiated. In this case a so called modified concept
Q(C) is created. This way constraints can be propagated bottom-up and top-down.

The implementation results in a special type of a semantic network [36, 43]. Related work is found,
for example, in [6, 23, 24, 46].

The available task-specific knowledge is represented in a model M which is network of concepts

M=(C). @)

Hence, knowledge is represented homogeneously by concepts related to each other by the various links.

In particular we assume that the goal of image analysis is itself represented by one or more concepts
which we denote as the goal concepts C;. The goal concepts might be ‘recognition and localization of
industrial parts’ or ‘interpretation of an aerial image’. The description of an image then is represénted
by an instance I(C,) of the goal concept. Since every concept has an attached judgment G, there is also
a judgment G(C,). A formalization of knowledge-based image analysis as stated in the introduction is
to request the computation of an optimal instance I* and define

G(I*(Cg)lM’A) = {%%}{G(I(CQ)IM’A)}’ ('5)
B(f) = I'(Cy). i (6)

The dependence on A expresses the fit to image data, and the dependence on M expresses the consistency
with task-specific knowledge required in the introduction.
The essential assumptions here are that it is possible to

e compute a sufficiently reliable initial segmentation A,
¢ acquire the relevant task-specific knowledge in the model M,
¢ specify adequate judgments G.

It has been demonstrated in several applications that this can be done, see for example, [34, 35, 32, 43].
An important task is the automatic construction at least of parts of the model M. However, this
point has to be omitted due to space limitations. Examples of work in this direction are {11, 44].

4. KNOWLEDGE UTILIZATION

The success of knowledge-based processing depends on the efficient and robust utilization of the
available knowledge taking into account the observed image data. In general, inferences have to be made
depending on A and M. This can be done in any of the approaches mentioned in the first paragraph of
the last section. .

With respect to the above discussion and the equations in (5,6) it remains to demonstrate that it is
feasible to compute an optimal instance I*(Cy). The idea of optimization is natural to semantic networks
using graph search [31], to neural networks using the iterative optimization of an error or energy function
[42], or to synergetic computers using the optimization of a potential function [16]. We outline the
optimization in a semantic network.

The fundamental processing activity in a semantic network is the computation of instances. An

instance can be computed either if the concept does not have parts and concretes or if there are already
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Figure 6: An example of a model M and a section of the search tree G generated by modification of
concepts and computation of instances

instances of all of its parts and concretes. In the former case we have a so called atomic concept and we
assume that it can be instantiated using results from the initial segmentation A. In the latter case an
instantiation process proceeds from more concrete instances to more abstract ones. A set of rules defining
precisely the conditions for instantiation and modification of concepts is given in [36].

The basic idea is to adapt the A* graph search algorithm to this problem. Figure 6 shows that the
computation of instances of concepts in a model generates a search tree G because for each concept
there may be several competing instances due to processing ambiguities. In the figure it is assumed that
the goal is to instantiate the concept A. Initially the search tree only contains the empty root node.
Since A is not atomic, it is modified to Q(4) (this modification may be emtpy if no intermediate results
are available) and appended to the root. Next the model is expanded top-down and the concept B is
modified and appended to the search tree. Since B is atomic it can be instantiated which is done next.
It is assumed that two instances I;(B), I(B) can be computed which are appended to the search tree.
In addition new modifications Q(A), @3(A) are computed and added to the corresponding search tree
nodes. This way the instantiation and modification of concepts proceeds until A is instantiated. Every
node v in the search tree has a judgment @(vg). An estimate (vx) is computed using the judgments
of available instances and modified concepts in this node. At every step of analysis the judgment of the
goal node Cj is assumed to be equal to the current estimate of the judgment of the corresponding search
tree node.

Since there may be multiple instances, the problem is to find a path in the search tree leading to
an optimal instance I*(Cy) with minimal expenditure. The main steps of an algorithm for doing this
are shown in Figure 7. It has a strictly modular representation. The two main classes of modules are
task-independent shell functions and task-dépendent application functions. The former can be written
once and provided in a system shell. The latter have to be adapted to the task domain and must be
written by the system designer. However, some useful default functions can often be defined. At first
an application function provides a list of goal concepts; possible default functions are to provide a set of
atomic concepts (enforcing an initial data-driven phase of analysis), a set of concepts in the top level
of concretes (enforcing an initial model-driven phase of analysis), or a set of concepts on a medium
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Input: application function to provide a list of goal concepts Cyi, i =1,...,n

Initialize: application function and shell function to provide list OPEN with nodes vy, ¢ = 1,...,7n
and their judgments ¢(vg;)

WHILE OPEN is not empty DO:

select from OPEN the best scoring node v; by application function select( OPEN) , remove
v from OPEN

IF user function end-analysis(vg) decides that an analysis goal has been achieved
THEN [STOP - successful end of search or end of resource
IF application function goal.conc(vy) defines nonempty set S of new goal concepts

THEN |shell function gen-goal(vg, S) generates new goals and corresponding nodes on OPEN
ELSE |IF one object in v can be instantiated

THEN |shell function instant(vi) to instantiate vy

ELSE (IF there is one object in v with an unfulfilled premise

THEN |shell function ezpand(vy) to expand v

ELSE |shell function opt-spec(vi) to consider optional parts and specializati-
ons

STOP - unsuccessful end of search

- Figure 7: An outline of the main steps of a general control algorithm; it distinguishes actions which
are task-independent and can be supplied in a system shell (shell-functions) and actions which are task-
dependent and have to be specified by the system designer (application functions)

level of concretes (e. g. the level of individual objects in image understanding). Then an application and
an shell function initialize the search space. In particular the judgment of nodes is task-dependent, the
initialization of the search tree nodes is task-independent.

After the initialization phase the algorithm starts processing nodes on the list OPEN. A application
function selects the best scoring node vy from this list. Processing stops if either the list OPEN becomes
empty, that is a failure of search occurs, or an application function detects that a successful end of
analysis occurred. A possible default function is to stop if a concept on a specified level of abstraction
was instantiated and at least p% of the image are interpreted. Alternatively, one may require that at
most m regions in the image, each one not larger than p pixels, are left uninterpreted. The function may
include a limit on computing time and/or number of nodes inspected.

If the best node selected from OPEN is not a goal node, the option is offered to provide a set § of
new goal concepts by an application function. This is useful to focus the search in the case that the initial
list of goal concepts is on a lower level. A purely bottom-up approach in this case might unnecessarily
expand large portions of the model. Possible default functions are to define superior concepts (superior
with respect to the hierarchy of concretes) in a look-up table or to go s steps in the inverse direction of
part and/or concrete links. If new goal concepts are defined, a shell function generates the list of concepts
on an instantiation path from the new goal concept to the current goal of the search tree node vy.

" Finally the algorithm takes one of three actions. At first it tries to instantiate some object on node
vk. An object as used here is a concept, a modified concept, or an instance. It is mentioned that a node
in the search tree conceptually contains all instances and modified concepts generated so far and also
the uninstantiated concepts. If possible, the instantiation is done by a shell function. If no object can be
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instantiated, the node is expanded by a shell function. If no more expansions can be done, it is checked

whether optional parts and concretes can be added or whether more special concepts can be included.
This is done by a shell function.

5. REMARKS

Knowledge based image processing takes into account the observed pixels as well as the available
task-specific knowledge in order to obtain a symbolic description (or an interpretation) on a level of
abstraction suited to the requirements of an application or a user. A general definition has been given in
the form of an optimization problem. It was mentioned that optimization can be done, for example, in
semantic networks and in neural networks. o

Computations in a semantic network are symbolic and sequential; however, by means of the attached
functions F in (3) also numerical procedures can be integrated and various steps of analysis can be
carried out in parallel. Computations in a neural network are numerical and parallel; however, it has
been demonstrated that also symbolic computations can be carried out (see, for example, [18]) and
presently simulations of neural networks usually are carried out on a sequential machine.

A semantic network allows the specification of a general model (e.g., a model of ‘images with streets
and cars’) specifying only the type of objects (e.g., ‘street’, ‘car’) and their relations (e.g. ‘cars are on
streets’, ‘streets may intersect’), but leaving open their number, relative position, and actual location.
Two different images then may have two different descriptions with respect to the represented streets
and cars, but nevertheless they can be obtained using the same model and the same control algorithm of
the type shown in Figure 7. This requires, among others, the dynamic allocation of new storage space to
hold results of a size depending on the content of the image (not on the number of pixels or on the size
of the model alone). We do not see this possibility in the neural networks of today.

The A*-algorithm used above is known to have exponential complexity. Hence, the above control
algorithm cannot be just extended to very complex situations, but requires special modifications like
pruning or beam-search. It seems that the iterative optimization in a neural network offers advantages
here.

Learning from observations is common in neural networks through training algorithms, but requires
fairly involved procedures in semantic networks. On the other hand, representing ‘textbook knowledge’
in the concepts of a semantic network is easily possible, although it has to be done manually since no
machine so far can read and understand a textbook; it requires the careful preparation of a training set
in neural networks.

The above remarks outline some of the strengths and weaknesses of semantic networks as used in
our present work. Of course, in future work we hope to overcome at least some of the weaknesses and
add some additional strengths. The work in [45) shows that a special type of a semantic net may be
transformed to a neural net, indicating that there is no fundamental difference.
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ABSTRACT

The goal of knowledge-based image analysis is to determine a symbolic description of an image which
is consistent with available a priori knowledge and optimally fits to the observed data. An approach is
outlined which consists of the computation of an initial segmentation and of a symbolic description. It
is suggested that knowledge is represented in concepts. Knowledge-based processing then amounts to
the computation of instances of concepts. The symbolic description is defined to be the optimal (or best
scoring) instance of a goal concept. It is outlined how such an optimal instance can be computed.
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WISSENSBASIERTE BILDVERARBEITUNG
ZUSAMMENFASSUNG

Das Ziel der wissensbasierten Bildverarbeitung ist die Berechnung einer symbolischen Beschreibung,
die konsistent mit dem vorhandenen a priori Wissen ist und -optimal zu den Bilddaten paSt. Es wird
ein Ansatz beschrieben, in dem zunéichst eine initiale Segmentierung berechnet wird und dann die sym-
bolische Beschreibung. Wissen wird in Konzepten reprasentiert. Die wissensbasierte Verarbeitung liuft
dann auf die Berechnung von Instanzen der Konzepte hinaus. Die symbolische Beschreibung wird als die

bestbewertete Instanz eines Zielkonzepts definiert. Es wird dargelegt, wie eine solche Instanz berechnet
werden kann.
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Lehrstuhl fiir Informatik 5 (Mustererkennung)
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D-8520 Erlangen

Niemann 12





