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0 Introduction |

Interpreting images is inverting the imaging process using a model of the scene and consists in
matching a description of the images with the description of the expected objects’ projections and
their relations. The classical distinction between object location, reconstruction and recognition
results from the simplicity of the objects dealt with or the ability to use human guide within
the interpretation process. The generally high complexity of objects or even scenes in Digital
Photogrammetry makes the distinction obsolete. ‘

The paper wants to discuss the technical approaches for object location, reconstruction and
recognition based on the underlying object models. Section 1 outlines the notion ”concept” taken
from the area of knowledge representation providing a general framework for modelling also in
image interpretation. Sections 2 and 3 provide some examples from object reconstruction and
recognition comparing the different techniques used so far. Section 4 finally gives an example for
an object model integrating object reconstruction and recognition which may be used in remote
sensing for land use mappmg

1 Ob ject Models

1.1 Concepts

We assume that a scene, i. e. a part of the world, can be described by the objects in the scene
and their relations in space and time. This implies that a symbolic description of a scene, thus
also of an image, is adequate for our task of image interpretation.

For computer supported image analysis we need a suitable representation and a general enough
notion about what we mean by ”object”. We want to use the notion of a concept, as it forms
the link to any type of knowledge or model based vision and seems to be used — possibly with
modifications — in various existing vision systems (cf. RISEMAN/HANSON 1984, NIEMANN et.
al. 1985, McKeown 1987).

According to REIMER (1991) a representation contains representationstructures and rules how
to map these structures to features of the real world. These rules are the interpretation of the
representation. The structures may be very simple, e. g. a raster or a list or more complicated,
e. g. a set of relations or a semantic net. The interpretation is necessary in order these structures
to have a unique meaning, e. g. the number, say z;, in an list {z;} to mean temperature z;°C.
Of course the choice of the representation is free, i. e. the same set of objects may be represented
in different structures. Often it even is meaningful to have multiple representations for the same
object in order to be efficient.

We want to distinguish between representation and description, a description having a certain
representation structure but fixed values, e. g. z; = 15, meaning the temperature 15° C, thus
describing a specific property of an object.
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We also want to use the notion of a concept to denote a certain piece of knowledge, and thus
generalize the term object. According to REIMER a concept is a 3-tupel {concept name, extension,
intension}. The extension contains all objects which belong to the concept. The intension contains
all features which an object must have in order to belong to the concept. Thus the intension of
the concept immediately gives the means for object recognition. The concept therefore contains
a model of an object class.

Often it is convenient and sufficient to just use the properties of an object for identification.
This is common practice in remote sensing where classes are represented by the mean and the
covariance of a (spectral) feature vector. The same technique often is used for identifying isolated
flat parts on a conveyor belt in industrial applications, using area, circumfence or EULER number
as features.

It is obvious that the intension of an object cannot be complete in general, but has to be seen
whithin the context of a specific task. In complex scenes the features, an object has to have, may
refer to other concepts (via their name), e. g. parts of an object, establishing semantic relations,
e. g. part-of, is-a, contains, happens-before etc., to name a few. The definition of a concept
therefore generally leads to recursive structures.

In addition, we may distinguish between class concepts and individual concepts, where the
extension of the concept contains several or only one object resp. Individual concepts thus are
equivalent to objects. The recursive structure of the definition makes the distinction between
classes and objects context dependent: The concept "tree” in the sentence " Trees are green” may
represent the single object "tree” within the class of plants or may represent the class of trees,
having palms as subclass. Individual concepts are said to be an instance—of a class concept, in
case they belong to this class. Together with the above mentioned relationships we are able to
build up rich descriptions of a scene, being of the structure of a semantic net. How to actually
represent the extension and especially the intension of a concept we do not want to discuss here.

1.2 Models for image interpretation

The object models used so far in Digital Photogrammetry now easily can be described within this
framework and also cover the imaging process itself. Examples are:

e Object points, image points and projection centres are concepts whose intension are (point-)
numbers and coordinates, possibly standard deviations and which are linked by the collinea-
rity relation. '

e Digital images may be represented as a matrix. The matrix format on the other hand may be
intensionally used to define a digital image, allowing digital elevation models (without break
lines) or a covariance matrix to be interpreted as an image. Such images may be concepts for
input and output of image processing routines, called by a certain algorithm, thus concepts
also may be procedures within a processing chain.

o Relational descriptions inherently link point-type, line-type and area~type concepts both in
image processing as well as in digital cartography. Such relational descriptions themselves
may be used for object location in case the object model is provided in such a form (cf.
GMUR/BUNKE 1988, VOSSELMAN 1991).

The models discussed so far have in common that the number of features and relations is
fixed, either being of continuous type (e. g. length, coordinate) or discrete (e. g. EULER number,
predicate connected). These models of concepts may be termed specific or even parametric, in case
only continuous features are involved.
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Complex objects require generz’?models or concepts where in addition to unknown para
or predicates the structure is free 1o a certain degree. Examples are:

e The generic model of FuA and HANSON (1987) states (the appearance of) a house to ,
homogeneous area in an image bounded by a closed polygon containing only rectangles. T,
the number of the sides remains unspecified. :

® A generic model for 3D-houses with flat roofs may be described by general polyhedra with
faces having normals only parallel to the three coordinate axes. This "Legoland” model
frequently is also used to model the interior of buildings (cf. e. g. STAFORINI et al. 1990).
In this case not only the number of faces is free but also their geometrical relations,

The distinction between specific and parametric models on one hand and generic models on
the other hand is essential when developing techniques for ob ject extraction: ‘

1. The location or reconstruction of objects for which parametric models are adequate can be’
reduced to parameter estimation. We must, however, be aware that the given (image) data
are by no means clean, i. e. generally no unique relation between observations and parameters
exist. This is due to the unavoidable background noise, image features which do not belong
to the object to be extracted. Therefore efficient robust techniques have to be developed
and applied. The establishment of parametric models can be based on the broard knowledge
of geometry and physics. Thus a large arsenal of techniques is available for dealing with
parametric models. The same holds for the recognition task, where in case of specific models
Maximum-Likelihood classification can be used to advantage.

2. For objects described by generic models these methods cannot be used at all, except at
the very end of the analysis. Already in case of occlusions heuristic search techniques may
have to be applied in order to achieve the link between observed features and model variables

- (observations). Implicitly occlusions transform specific models into generic ones, as the visible
parts have to beidentified first. Therefore optimization techniques which can handle all
types of relations (parametric features, predicates, weak and crisp conditions etc.) and large,
generally discrete search spaces have to be used.

3. Besides these technical reasons, the distinction between specific and generic models is made
purposive: Nearly all objects we want to extract from aerial or satellite images are of such
a complex nature that only generic models are able to adequately represent them. But
practically no such model is available today. It is one of the major tasks of photogrammetric
research to develop such models in order to start solving the interpretation problem.

An example for such a model is given in section 4.

2 Object Location and Reconstruction

Object location and reconstruction deal with individual concepts and aim at instanciating, i.
e. determining the parameters of a specific object namely datum and/or form parameters resp.
The following examples ~ sorted according to increasing complexity of the models ~ want to
representatively demonstrate the different estimation techniques. Special emphasis is layed upon
the description what type of model for the background (non-object) is assumed and how object
and background are separated, in case this is necessary.
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e Classical area based image matching, using cross correlation or least squares matching, refers
to a low level representation and to a global or local (gradient) search for determining the
parallaxes. The object is fully described by the given intensity array. This explains the
difficulty such low level techniques’ have with illumination changes or varying background.
A typical — up to now nonsolved — problem is the low level and therefore (!) high precision
location of targeted points in aerial images, especially targeted control points, which is due
to the unability to reliably model the varying background.

e The surface reconstruction method proposed by HELAVA (1988), EBNER et. al. (1987) and
WROBEL (1987) aims at detemining the fixed number of grid heights of a digital elevation
model and the also fixed number of the reflectance parameters of the unknown surface using
classical least squares. It is a closed model which allows all types of generalizations as long as
no occlusions occur. Again, in case of occluding contours these are part of a generic model,
as their number and structure is not known. The approach of the MATCH-T-Program
(KRZYSTEK 1991) at least is able to deal with local disturbancies (trees etc.) via a robust
estimation. Such a robust estimation can be interpreted as a parametric tool to determine
the — in principle unknown — number of outliers (cf. BLAKE/ZISSERMANN 1987). In case
breaklines explicitely are to be determined a generic model, going with a more complex data
structure, has to be established.

e The control point location technique used in the program AMOR (cf. SCHICKLER 1991,
SESTER/FORSTNER 1989) contains a parametric model for the orientation of the image and
the form of the control points. The model is represented by a list of straight line segments.
A clustering algorithm is used to cope with the background noise and robust estimation
techniques are applied to handle matching errors. ’ '

e The location of three dimensional objects of a given structure needs to explicietely take
occlusions into account in case no or poor approximate values are available. In this case the
pose determination has to be preceeded by a heuristic search for the correct correspondencies,
which is due to the perspective projection and the unknown lighting conditions. It has to
rely on a relational description including low-level features (points, lines and areas) and
their mutual, mainly topological, relations. Heuristic search techniques therefore can be seen
to be the most robust techniques for paramter estimation — of course also the most costly
ones, because of the exponential algorithmic complexitiy. The identification of the correct
correspondencies may on the other hand be interpreted as feature recognition, as the search
process consists of a sequence of doing and undoing decisions. Therefore more powerful
evaluation techniques than the average sum of the squared residuals have to be applied (cf.
VOSSELMAN 1991).

The examples are representative with respect to the model types and the estimation techniques

used. This indicates that already for objects, described by specific models, e. g. a relational
description, classical estimation techniques and the corresponding evaluation techniques are no
longer applicable, but techniques to deal with large discrete search spaces together with more
general optimization criteria have to be used.

This directly forms the link to the methods applied in object recognition.
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3 Object Recognition

Object or pattern recognition aims at instanciating, i. e. determining the class of a given object.
Here the above mentioned intension of a concept is used explicitely. In most cases a set of concepts,
i. e. classes is given from which the unknown object may be taken. .

The intension of the concept may be given by the designer of a system, but in many cases has
to be learned from training sets, i. e. extensions of the different concepts. The criterion then is
to find decisive features, which enable to distinguish between the different classes.

There is a vast amount of literature on statistical pattern recognition (e. g. FUKUNAGA 1972,
ToU/GONZALEZ 1974), dealing with objects which adequately may be represented by (stocha-
stic) feature vectores, i. e. lists of attribute value pairs describing their properties. Structural
pattern recognition (e. g. FU 1982) resulted from the unability of adequately representing com-
plex patterns , e. g. road networks, buildings or hand written letters using feature vectors alone. -

Whereas statistical pattern recognition relies on multivariate distributions, often reduced to
GAUSSIAN, being the basis for the current implementation of most multispectral classification
schemes, structural pattern recognition provides a rich arsenal of tools to describe and identify
complex patterns. In practice both methods are used in intimate combination (e. g. Fu 1982,
NIEMANN 1989).

In statistical pattern recognition BAYES’ rule plays the central role:

Pl = TR (1)

as it allows to combine a priori knowledge probability P(w) about the occurance of class w and
the uncertainty P(x | w) of the obseved features x for a given class to determine the likelihood
of the class w occuring in presence of the observed values x. For P(x) being constant and gene-
rally unknown, maximizing (1) over all classes w; is the same as choosing the class w; where the
probability

P(x,w;) = maz (2)

of the class w; and the given data x occuring simultaneously is maximum. This reveals two
important consequences:

1. In case of feature vectors x = (z;) containing (independent) discrete and continuous variables,
BAYES’ rule can still be applied. E. g. for two variables z; being continuous, z; being discrete,
P(z1,z2,w;) = P(z1,w;) P(z3,w;) = p(z1,w;) dz1 P(z2,w;) can be maximized with respect to
w; where p(z1,w;) = p(z1 | wi)P(w;) is the density function of (z,,w;), showing that the
choice of the size of dz; does not influence the decision. This e. g. allows to mix geometric
parameters and relations within the classification.

2. In case the classes w; represent more complex objects, w; may be split into two parts w; =
(p:i, m;) where m; is the class type and p; the parameter vector describing the class more
in detail. The size of p; may depend on the class. Then BAYES’ rule still can be applied.
FUA and HANSON (1989) e. g. use a generic model for man made objects (cf. above) where
m; may be related to the number of polygon sides circumscribing the object, and p; to the
parameters describing the polygon in detail. Then maximizing

P(x,pi,m;) = maz. (3)
consists of choosing the most likely description of the intensity data x, the geometry p; and

the polygon type m;.
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Taking negative logarithms (base 2) and rewriting leads to
I(x,pi,m;) = I(x | pi,mi) + I(pi | mi) + I(m;) — min. (4)

representing the minimum description length principle. The three terms on the right side
can easily be determined by experiment or by using a model. Moreover, as I(z) can be
interpreted to be the number of bits to describe z, no probability needs to be associated with
z explicitely (cf. RISSANEN 1989).

Therefore a close link can be formed between statistical and structural pattern recognition
techniques, as far as the evaluation is concerned.

The actual classification procedures, however, essentially use search techniques, whatever op-
timization function is used:

e Using BAYES’ rule (1) or (2) to identify the optimal class corresponds to complete search.

e In case the number of classes is large hierachical schemes are frequently applied leading to

- decision trees which reduce the effort for determining the probabilities. The setup of such
trees within the learning/training phase may use various clustering algorithms, which aim
at a high separability whithin the first levels of the decision tree, assuming that superclasses
are more easily to be distinguished than the final classes. In object recognition decision trees
often are based on view classes, such view classes representing sections of the parameter
space where certain features of the silhouettes or the visible faces have common or similar
properties (cf. e. g. IKEUCHI 1987, Liu/TsA1 1990).

¢ Identifying complex objects which only can be described by generic models is the main issue of
image understanding research. No commonly accepted overall approach is available. Though
heuristic search techniques, especially the A*-Algorithm with its modifications, are widely
used as a search tool, the problem is the still too large search space which enforces stepwise
procedures, namely based on grouping image features and pieces of derived knowledge about
the scene using sophisticated control structures.

Probably the most advanced system for extracting buildings from stereo images has been
developed by D. MCKEOWN and his group (cf. = SHUFELT/MCKEOWN 1990). Their
approach is based on the assumption that no single algorithm is able to extract buildings
“reliably, but several methods have to be combined in a cooperative manner. They link
procedures for extracting buildings based on line-corners and shadows whose results are then
grouped to set up hypothesis for buildings. The quantitative check against ground truth
reveils errors on an average less than 0.1 to 0.2 mm at an image scale of approx. 1: 13
000. The system combines recognition techniques, e. g. for evaluating rectangles between
neighbouring line segments, and reconstruction techniques for deriving 3D-coordinates in an
intimate manner. An evaluation of the overall performance of the system however has to rely
on such tests, as no formalization of the implemented strategy is available.

4 Modelling Land Use Maps for Remote Sensing

This section describes an ongoing effort to recover land use maps from remotely sensed data. The
object model integrates the multispectral and multitemporal data and the parcel structures in
“order to be able to jointly evaluate reflectance and geometry data in image interpretation. The
object model is presented and the key problems to be solved are discussed.
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Fig. 1 shows the assumed relation between map, topography and image

Fig. 2 shows an example for the recursive partitioning of an area and its generation tree
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4.1 The object model

The aim is to build a land use map from several digital images, either digitized aerial photographs
or scanner imagery.

The model consist of several parts (cf. Fig. 1):

¢ A map.

It is assumed to be a planar graph of a certain structure where each area belongs to a class.

o A model for the structure of the graph.

The structure of the planar graph generally shows regularities, which may be modelled using
a stochastic tree grammar (cf. FU 1982) describing the recursive partitioning of larger par-
cels into smaller ones during reallotment. The reason for this type of generic model is its
natural representation and the possibility to derive the probability P(w;) of a segmentation
w;, which itself has a complex structure. This probability can be combined with the con-
ditional probability P(x | w;) derived from the homogeneity of the regions defined by this
segmentation according to (FUA/HANSON 1987). The geometric model of the land use map
therefore is a generalization of their model. The selection of the best interpretation, based on
intensity, colour or texture and geometry, thus is based on the minimum discription length
principle.

¢ A model for the dependencies of the reflectance properties on time, in case this is available
and necessary.

- o A digital elevation model.

Together with the above mentioned model parts it forms a generic model of the topography.

e Images of the scene.

They generally will be multispectral, multitemporal and reveal different pixel sizes.

The model is a generalization of the one by HELAvA (1988), EBNER et. al. (1987) and
- WROBEL (1987) with respect to modelling the surface into homogeneous regions.

Fig. 2 shows an example for the recursive partitioning of a large parcel into smaller ones
representable by a generation tree, starting from area fy, partitioned into f; and f;, and then into
2 and 3 smaller areas. The way how a node in the tree is splitted is assumed to be independent
on a.) the parent node and b.) on the cousin nodes within the same level. It will however depend
on the form, the area, possibly orientation or other properties of the partitioned parcel. The
probability distribution of the number of child nodes and their geometric properties has to be
learned from real data.

The probability in this special case can be written as

P(wi) = P(fo, fu, far fa, fa, f5: for f1) | | (5)
= P(fs, fa, fs, fo, f7 | fo, fr, f2)P(fo, fr, f2) (6)
P(f3, fa | fo, fr, f2)P(fs, fe, f1| fo, f1, F2) P(f1, f2 | fo) P(fo) (M

P(f3, fa | f1)P(fs, fos f2 | £2)P(f1, f2 | fo) P(fo)- (8)

In case the forms f; can be split into the geometries g; common to all child nodes of the same
“parent node and their individual deviations d;, thus f; = (¢;,d;) and assuming that the geometry
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of the region splittet into n parts is describable by the n — 1 first boundaries in the lists we can -
split the conditional probabilities further, e. g.

P(fs,fs, f7 I f2) = P(gSad51gﬁad6 I f2) (9)
= P(ds,ds | g5, 96, 2) P(g5, 96 | f2) (10)
= P(ds Igs)P(ds | 96)P(gs, 96 | f2) (11)

We assumed that only the local geometry, say gs, e. g. the length of a side, influences the
deviations, say ds. The first two terms describe the probabilities of the individual deviations, e. g
from pa.rallehty, and the last term describes the probability of a certain regular decomposmon of
the area f; with the geometric boundaries of g5 and ge, . g. depending on the side lengths.

The example demonstrates, that under certain independence conditions the probability of the
segmentation can be split into the product of easily calculatable conditional probabilities.

The probability P(w;) finally may be used to decide between two segmentations w; and w;, say,
based on the total probabilities P(x | w;)P(w;) and P(x | w;)P(w;) where the first factors are to
be derived from the homogeneities of the image data in the segments.

4.2 Steps toward building the map
The reconstruction of the map requires several steps, which have to be worked out in detail:

e As the evaluation of the final interpretation highly depends on the probability of the geo-
metry of the segmentation the grammar of natural partitionings has to be learned from real
data. This especially covers the statistics of the numbers of divisions, of the geometry, the
dependencies on certain features as well as the check of the independence assumptions. Here
statistical and structural learning techniques are applied to map data.

¢ An initial segmentation based on intensity, colour or texture gradients leads to a polygon
network which generally will have also non—closed loops. The process is purely data driven
and requires no knowledge about the scene, thus works without user specified thresholds (cf.
WEIDNER 1991).

e Grouping the line segments into rectangular, rhomboid or other low order closed polygons uses
proximaty and continuity conditions and model knowledge about the likelihood of parallel
lines, number of polygon sides etc. Conflicting hypothesis or complex nodes may be resolved
using the minimum description length principle. The result will be a set of — generally still
conflicting — hypothesis about homogeneous areas.

A second grouping process can be used to find sets of parcels of common orientation which
will reduce the number of hypothesis used in the final interpretation step. An example of
successful grouping in a hierachical manner is given by MOHAN and NEVATIA (1987).

The final step has to use the assumed structure (grammar) and select the most likely in-
terpretation, based on the probability of the segmentation and the homogeneity within the
parcels of that segmentation. In all cases stochastic optimization and/or heuristic search
techniques have to be applied.

In case several images are available the information will be joined in object space using the
vector representation of the map. This may include the determination of a digital elevation model,
if it is not available. The vector representation of the map in object space has severe advantages:
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o The classification of the areas refers to land use units not to pixels. Thus resampling of the
images can be avoided. On the contrary, each pixel can contribute to those areas where it gets
its spectral information from. This solves the problem with mixed pixels. It also significantly
increases the quality of the classification (cf. JANSSEN/MIDDELKOOP 1991).

o Images taken at different times serve finding the real boundaries which can be assumed to
be stable within one growth period. A growth model may be derived or used to increase the
reliability of the classification. Temporal knowledge about sequences of land use may be used
(cf. JANSSEN/MIDDELKOOP 1991).

o Information about the legal boundaries of the parcels may, if available, be used as an ap-
proximation for the land use boundaries. In this case only small modifications of the initial
segmentation are required, namely splitting inhomogeneous segments and merging segments
with the same class. In case of satellite imagery with negligible texture within the parcels
the estimation of the geometry and reflectance properties can be made simultaneously with
the classification using the given image data as original observations.

The limitations of the model are to be found in areas where the third dimension plays a decisive
role due to occlusions. The value of the structural model also depends on how regular the field
structures really are.
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Abstract: The paper discusses the modelling of objects for image analysis and their use in
object location reconstruction and recognition. A concept for land use mapping is presented which
is based on a joint model for image data and field structures.

OBJEKTERKENNUNG IN DIGITALEN BILDERN

Zusammenfassung: Der Beitrag diskutiert die Modellbildung, die fiir die automatische In-
terpretation von Luftbild- und Fernerkundungsdaten erfoderlich ist, und wie sie bei der Lokali-
sierung, Rekonstruktion und Erkennung von Objekten verwendet wird. Es wird ein Konzept fiir
die Landnutzungskartierung vorgestellt, das eine gemeinsame Modellierung von Bilddaten und
Feldstrukturen enthalt.
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