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1.  INTRODUCTION 

Spatial data exhibits an outstanding value in a broad range of application areas. Waldo Tobler’s first 
law of geography highlights the phenomenon of spatial autocorrelation: “Everything is related to 
everything, but near things are more related than distant things.” In other words, the various properties 
of records of most data sources, such as meteorological data, health data, or even social media data, 
are frequently dependent variables of the spatial properties. It is thus no wonder that they also play 
an outstanding role in data visualization. If any feature can be visualized spatially, a visualization 
researcher will most probably implement a map view if he or she wants to find patterns, trends, and 
outliers in the data. Every visualization is based on placing graphical marks, such as points, lines, and 
areas with different properties, such as color, size, orientation, and shape into the so-called spatial 
substrate – the available space on the screen. Most of the features that can be perceived pre-attentively 
by a human observer relate to spatial position, spatial patterns, or the form of objects. Therefore, even 
if the data does not contain any spatial property, say a corpus of text documents, researchers still try 
to find means to visualize them in a spatial way. With a technique called multidimensional scaling, 
we can map text data into a two-dimensional pane such that near documents are more related than 
distant documents. 
 
In this paper, we demonstrate the relevance of spatial data by showing three examples, in which 
visualization approaches illustrate spatial data directly, or in which spatial data is used in order to 
drive and enhance visualization of other data properties. In the first part, we give an example of 
interactive visualization of digital elevation models used for systematic analyses of large distance 
correlations of geologic and geomorphic phenomena.  
 
In the second part, we turn to a different application domain and examine how geographic information 
can help to utilize social media as a source of sensor data for real world events. Every day, millions 
of tweets are provided with GPS-positions by the user. With the huge daily content information 
provided in this data, we have the unique possibility to enrich geographic context data with thoughts, 
opinions, knowledge, and observations from all over the world. We can thus examine the specifics of 
language use in certain locations, find unusual textual content based on statistical analysis, or even 
determine the geographic origin of a document by looking for correlating geographic frequencies in 
term usage and density. We will also show how such geo-textual enrichment can be used to detect 
natural disasters based on anomalous Twitter messages in a region. 
 
In the final part, we investigate how analysis challenges of temporal geographic data such as 
movement trajectories can be improved by incorporating Web 2.0 data. In services like Twitter and 
Foursquare, users also provide information about relevant Points of Interest (POI) in an environment. 
We can use this data to find out about the possible origin and destination of movements, their cause 
and effect, and to investigate how well people are supported in their mobility demands by given 
modes of transportation. In order to examine a large dataset of e-mobility trajectories we created a 
highly interactive visual analytics system that automatically collects social data from the Web to 
enrich trajectories with assumptions about the reasons for these movements. 
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2. TERRAIN 

2.1. History of mapping 

Early maps date back to about 2300 B.C. found at the ruins of Ga-Sur at Nuzi in present-day Iraq. 
The clay tablet shows some hills and watercourses or irrigation canals, one of them called Ra-hi-um 
[1, p. §11.3]. In 1570, Abraham Ortelius published the Theatrum Orbis Terrarum (“Theatre of the 
World”) which is considered one of the first true modern map of the world. Today, the most widely 
used cartographic map is Google Earth comprising satellite imagery, aerial photography and 
geographic information shown on top of digital elevation model on a 3D globe. The estimated data 
size is in the order of hundreds of terabytes. While the image data has resolutions down to 5-10 cm 
per pixel in some areas and about 15 m on average, the terrain model is based on the 90 m (30 m for 
North America) dataset produced by NASA's Shuttle Radar Topography Mission (SRTM) onboard 
the STS-99 Shuttle mission in February 2000. The freely available digital elevation model (DEM) 
dataset covers land surfaces between 60 degrees north and 54 degrees south latitude, which is about 
80% of all the land on earth (http://www2.jpl.nasa.gov/srtm/index.html). Nowadays, also other 
planets are mapped by means of satellite missions like the Magellan spacecraft orbiting Venus and 
the Mars Global Surveyor. 
The SRTM data gives already a good overview of the earth topography. Detailed studies of terrain 
structures in local areas, however, make it necessary to capture DEMs in the order of meters. To 
achieve this accuracy, Interferometric Synthetic Aperture Radar (InSAR), Light Detection And 
Ranging (LiDAR), or photogrammetric techniques are used. For geologic or geomorphic studies, 
forest vegetation, buildings and other obstacles have to be removed in a complex procedure. 

2.2. Terrain visualization 

Terrain data given in form of scalar raster data consist of height values sampled at a uniform grid. If 
only elevation is of interest, color-coding assigns to each height value a particular gray value or a 
color by means of a color table. However, this mapping is only of minor relevance because it hardly 
shows any topographical structures. Contour lines depict not only lines of equal height but also 
indicate the direction of steepest slopes, which depends on how close contour lines are placed. 
Hachures are strokes that show the direction of the steepest slope where the strength is encoded in 
the stroke thickness. They also can give some impression of shading. Skeletal lines reveal 
geomorphologic details like rivers, ridges and valleys. The most appealing visualization of height 
fields make use of relief shading. For that, a light source commonly pointing from northwest to 
southeast and the normal map of the height field are used to simulate the sun illuminating the terrain 
but without any shadows. 
Systematic analyses of large-distance correlations of geologic and geomorphic phenomena require 
highly accurate data covering large connected areas. Previous commercial tools for digital terrain 
model (DTM) processing like ArcGIS, Rivertools, SCOP++ as well as free software like GRASS GIS 
are able to handle only a limited subset of a huge dataset at once. Hence, interactive explorations and 
morphological studies for large areas, where the complete dataset must be available to ensure detailed 
height information throughout, become cumbersome. Hence, we developed TerrainView, which is an 
OpenGL-based rendering platform for visualizing DTMs in orthographic and perspective projection 
with interactive navigation on very large datasets and special tools for geomorphologic analysis. To 
overcome memory limitations, the original dataset is resampled once in a preprocessing step into a 
quadtree data structure, which decomposes the spatial domain into uniform quads. Recursive bilinear 
interpolation from the full resolution down to the root tile of the quadtree yields a discrete set of level 
of details (LODs). Among these LODs, the user can freely navigate without any delay. Dynamic 
loading of tiles reduces memory usage and prevents jerking while navigating with the mouse. Color-
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coding, relief shading and other visualization features are calculated at interactive frame rates directly 
on the GPU. Light direction and vertical exaggeration can be adapted to produce optimal shading and 
relief effects. Gradients are instantly available in normal and inverse mode and can be exaggerated to 
enhance steepness; contours can be spaced on individual criteria and draped as overlays on all types 
of view. Morphometric data (longitudinal sections, cross-sections, gradients) can be derived placing 
polygons and/or serial sections. 

2.3. Geomorphic analysis of large terrains 

The digital terrain model of Baden-Württemberg provided by the Landesamt für Geoinformation und 
Landentwicklung (LGL, Stuttgart) has a resolution of 1 m in horizontal and 0.15 m in vertical 
direction. It is based on LiDAR data and delivered as 1001 x 1001 m2 tiles consisting of Gauss-Krüger 
coordinates and height values stored in ASCII format, where each data entry (easting, northing, 
height) covers 26 Bytes. The complete raw dataset with 37,676 tiles needs about one TB of disk space. 
Quadtree resampling reduces the memory footprint of the BaWü dataset down to 189 GB. This model 
is ideally suited for systematic geomorphological analyses, as it is extremely accurate and allows 
reliable large-distance correlation of geological and geomorphological phenomena. 
The figure below shows post-glacial recessional terraces in the Argen valley. The Argen is the third 
largest tributary to the Lake Constance in the southeast of Baden-Württemberg. It incised into a terrain 
of high-relief drumlins (gray-shaded regions), which are elongated hills in the shape of an inverted 
spoon formed by glacial ice acting on underlying unconsolidated till. Here, the drumlins are 
interspersed with peat swamps or small lakes. For detailed an explanation we refer the reader to [2]. 
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3. TWEETS 

The advent and recent popularity of location-enabled social media services like Twitter and 
Foursquare has brought a dataset of immense value to researchers in several domains ranging from 
theory validation in computational sociology, over market analysis, to situation awareness in disaster 
management. Based on this data, we nowadays have the unique capability of enriching traditional 
geographic data with situation-aware text, images, and video. In this section, we show two examples 
from recent research to demonstrate how the unique properties of location-information can be used 
to improve the understanding of geographic context based on aggregated social media data and to 
recognize unusual events in social media based on spatial relationships. 

3.1. Geo-textual knowledge 

Every time Twitter users write a message on their GPS-enabled mobile device, they can attach precise 
location information. Each day more than 3 million small documents are produced this way. Within 
one year, people from all over the world have generated a corpus comprising more than 1.3 billion 
geo-located messages. Such location-enriched text data has tremendous value for researchers and 
analysts in several fields ranging from theory validation in computer sociology to location aware 
market analysis. Most notably, this data source has opened important application domains for research 
in situation awareness and disaster management, since the community of social media users can serve 
as a global ‘sensor network’ of potential incident reporters of critical events [3]. 
 
In addition to that, the large communities of location-enabled social media networks have generated 
a unique dataset mapping language and content to geographic coordinates, thereby forming a digital 
sociocultural landscape of unprecedented richness and extent. Because of the high value of the 
provided data, social media mining has also become an important topic in different research areas 
ranging from practical applications of traditional NLP methods over computational sociology to stock 
market analysis and many more interesting developments are expected for in the near future.  
 
To utilize the unique richness of geo-enabled text we created a new method to map and aggregate 
large-scale online streaming content to respective GPS coordinates [4]. Thereby we created a 
geographic dictionary that works both ways: Given a coordinate, one can determine how common, 
frequent, or anomalous any word or combination of words in a sentence is at this location and we will 
see how this capability can be used to detect unusual events in social media. Given a term or a 
combination of terms, one can even find the most probable location of the origin of the text and thus 
augment tweets, which were generated with GPS turned off. 

3.1.1.  A map of thoughts, language, and opinion 

Based on a combination of a common linguistic measure, the term-frequency inverse-document-
frequency (tf-idf), with kernel density methods, a complete one-year corpus of geo-located Twitter 
messages was evaluated to determine the a priori probability that a given term is contained in a 
document composed at a given location. The intuition behind our measure is quite simple: In the idf-
part of the tf-idf measure, the number of documents in which a term appears is counted in order to 
put the term frequency in relation to the sum of documents in the corpus. Similarly, our measure sums 
for a given location the derived probabilities that a document containing the term could have appeared 
at this point and puts it in relation to the sum of derived probabilities that any document could have 
appeared at this point. The outcome of this is the probability (and improbability) that a term is 
contained in a message appearing at any given point, allowing to assess the abnormality of observed 
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term occurrences in examined document sets as well as finding the most probable location of origin 
for a given term. 
 
To estimate this inverse document density for arbitrary map locations from the sparsely distributed 
message corpus, we utilize kernel-based density estimation (KDE), which approximates probability 
distributions from discrete point data, and integrate it with the traditional tf-idf measure. The basic 
measure of the inverse term density for a term ݐ at geo-coordinate ݔ hence reads 
 

݅݀݀௧ሺݔሻ ൌ log
∑ ,ݔൣ݀൫ܭ ሺ݉ሻ൯൧∈ீ݈ܿ

∑ ,ݔൣ݀൫ܭ ீ∋ሺ݉ሻ൯൧݈ܿ
 

 
where ܩ is the corpus of messages, ܩ௧ is the subset messages that contain term ݐ, ݀ is the geographic 
distance, ݈ܿሺ݉ሻ is the geo-coordinate of message ݉, and ܭ is a Kernel function. 
In order to allow very fast computation of the densities for all terms in a given dictionary (e.g. all 
words of the English language), we employ a technique that originates from volume rendering and 
3D graphics. First, we create a population-adaptive (non-regular) grid over the world map – i.e. the 
grid has a high resolution in densely populated areas and low resolution in sparsely populated areas. 
For each term, one grid is created in memory and serves as container for the values. Therefore, we 
reduce the number of locations for which we have to compute the ݅݀݀ from conceptually infinity to 
a number of cells somewhere between 200.000 and 300.000 for each term. Finally, we apply kernel 
splatting instead of direct kernel density estimation to compute the actual values. Thus, instead of 
calculating the kernel-weighted sums over the whole corpus for each cell, we only iterate through the 
messages in the corpus once and add values of a Gaussian (or similar) kernel at the respective location 
and for all terms in the message to the corresponding grid. An example result, in which the terms 
“love” and “amore” have been merged into one grid, can be seen in the following figure. 
 

 

3.2. Geo-textual anomalies 

Increasing amounts of situation reports in social media also establish an additional real-time 
information channel for situational awareness, as it is required in disaster management or general 
public safety. However, in contrast to structured sensor data and directed communication from 
emergency managers and responders the major challenge here is to separate relevant information 
from unrelated chatter and to allow a scalable overview and exploration of large amounts of data. In 
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this section, we show how relevant anomalies can immediately be detect in the data-stream by 
utilizing the presented geographic language normalization. 

3.2.1.  Automated local event identification 

In analysis situations where the complexity of events and the sheer amounts of real-time data hinder 
a straightforward analysis of available information, means for automated identification and display 
of possibly relevant trails can be a key element in successful crisis management. In case of social 
media data, it is particularly important to find the few first-hand accounts (e.g. eyewitness 
information) of the on-going situation hidden below large amounts of irrelevant chatter and to provide 
visual aggregations of the provided topics and observations.  
 
In our approach, demonstrated first in [5], we build on the assumption that messages concerning local 
events are often of similar content and structure and that they are furthermore in close spatial and 
temporal proximity to each other. This ultimately leads to spatiotemporal clusters of messages 
reporting on the same situation related topics and keywords. With the ݅݀݀-measure presented in the 
previous section, we can then evaluate whether these topics and keywords are particularly unusual 
(meaning improbable) for the region and whether they might thus indicate a relevant or even critical 
event. For example, a power outage in a distinct part of a city might lead to a cluster of messages 
containing the keyword “outage”. Since such clusters are not occurring frequently and are often a 
good indicator for unusual situations, we refer to them as spatiotemporal anomalies.  
 
Based on a modified X-means cluster analysis approach, which was adapted to the specifics of real-
time data, we automatically detect spatiotemporal anomalies in the continuous data stream. As soon 
as a timeframe and a geographic region is interactively selected by the analyst, the system generates 
a map of detected anomalies within that region and timeframe by finding representative keywords in 
the message clusters and place them as labels at the corresponding cluster locations on the map. In 
order to avoid overlapping labels and at the same time show the analyst as much information as 
possible, we apply a collision avoidance technique that allows overlapping labels to move small 
distances from their designated locations. If a certain maximum distance for that zoom level is 
exceeded, the label is hidden from the selected zoom level. 
 

 
Overview Visualization of crisis related 
topics based on automated anomaly 
identification. The image shows 
anomaly visualization during severe 
floodings that happened in March 2013 
in the southern and eastern parts of 
Germany. The observation of flood-
related events leads to several larger 
“hochwasser”-clusters in many cities 
throughout Germany. Zooming into the 
map shows more tags in the respective 
area and reveals smaller sub-events that 
were connected to the larger event. For 
example, in the area of Magdeburg (box 
on the right) people were building dikes 
and requested more help. Also, a 
transformer station (“umspannwerk”) 
was affected by the flood, which is 
indicated by the event labels. 
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Our technique provides a broad overview of all events that occur in a given geographic region and, 
more importantly, an indication of keywords and topics that might be a good starting point for further 
investigation. This is particularly helpful if the analyst does not know in advance, what to search for, 
or to draw his attention to an unknown ongoing situation. By zooming into the map, our layout 
technique automatically provides more labels for the given area, as more screen space becomes 
available for the given region. The analyst thus receives more detailed indication of possible sub-
events connected to a larger event and can use this as a basis to extend his investigation with 
traditional textual search, content analysis and focus and context visualizations. 
 

4. MOVEMENT 

In this final part, we will investigate how temporal 
geographic information like trajectory data can be enhanced 
by using knowledge that we can gather from the new Web 
2.0 data sources [6] [7]. A better understanding of urban 
dynamics and consumer acceptance of new products and 
services has fostered an increasing interest in why and how 
people move. For example, in 2011 we received a large 
dataset from a regional power company, in which movement 
data from an e-mobility project in Stuttgart was recorded. 
The dataset was generated by tracking 527 GPS-enabled 
electric scooters. These vehicles logged their movements every 30 seconds for two years, leading to 
an overall amount of about 150,000 trips and more than 8,200,000 timestamped GPS measurements. 
The company wanted to understand why people are moving, where they are going, for what purposes 
they used the vehicles and what they were doing at their destinations. However, such information 
cannot be derived easily. If a user stops at a specific point and time, there can be several reasons for 
this behavior and the recorded GPS positions are often not enough to come up with an explanation. 
They need to be enriched with further information to support the data analyst in the sense making 
process. As location-enabled Web 2.0 data volumes are growing and more and more people are using 
location-based social media services to give information about POIs (points of interest), this can be a 
suitable source for the necessary context data.  
 
Foursquare, for example, offers a web service providing detailed geo-located information of several 
POIs, called venues, such as restaurants, bars, business locations, universities, sport parks, and public 
transport stations. Mainly used for ’What is here’ user-centered navigation applications, the services 
can also be used to enrich geospatial data with context information. In case of movement behavior 
analysis, one can enrich the movement data with POI information and investigate destinations of 
movements, i.e. which POIs the users visited, and thereby gain more insights of movement reasons.  

4.1. Finding origin and destination endpoints 

When datasets get larger containing more moving objects, more trips, and longer time periods with 
repetitive behavior, it can be interesting to look at frequent 
destinations only. By visualizing the trips’ destinations, we 
found that most destinations build dense clusters over time 
surrounded with some noise. Noise can occur due to 
several reasons: First, there are destinations only visited a 
few times and thus no clear cluster appears. Second, there 
are measuring inaccuracies due to GPS signal interference, 
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deficient receiver performance, data logging, or broadcasting issues. For an automated destination 
cluster detection, we apply DBScan [8], a density-based clustering technique with a geospatial 
distance measure. As a result, we detect 1,215 clusters containing 105,808 of the 150,000 total trip 
endpoints. Thus, about two of three endpoints have been often visited by a single user or have been 
visited at least once by several users. We assume that this will frequently be places of employment, 
shopping centers, homes, and service stations. 

4.2. Semantic enrichment 

To query up-to-date context information about the detected destinations, we employ Foursquare as 
an additional data source. Foursquare is a location-based social networking service with dense 
information about POIs in city areas. Venue information from Foursquare is often quite recent as the 
data is regularly updated by users, who can always add, delete, or update POIs (in Foursquare called 

venues). Furthermore, it delivers additional information such 
as the number of users that visited a venue and the number of 
individual check-ins from users, which can help to determine 
the recent prominence of a location. While there are other 
providers offering similar services like Google, Microsoft 
and Facebook, the Foursquare API has fewer query 
limitations and the second highest POI density. These POIs 
are categorized into 3 hierarchical levels, which aggregate its 
child categories to more comprehensive ones. The highest 
level contains 9 overview categories, as shown in the figure 
to the left. Every POI belongs to one of these categories.  
 

4.3. Interactive visual reasoning 

Based on the data preprocessing and automated extraction of Foursquare POI data we provide a highly 
interactive system that can be used to evaluate and understand the movements in the dataset. As we 
want to characterize movements, we have to deal with the spatial and temporal dimensions at the 
same time. We therefore developed two components and integrated them in our movement analysis 
system: a geographic map view and a temporal view. The geographic map view shows routes and 
destinations for identified POIs, while the temporal view shows frequent temporal behavior patterns. 
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To visualize POI categories we use the Foursquare item-set and a gradient color mapping, which 
corresponds to the certainty of the POI. The closer it is to an endpoint that was detected by the 
clustering and the more frequently it is visited by Foursquare user, the higher is the certainty that the 
POI is the actual reason for peoples’ movements. Simply visualizing the most detailed POI 
information (420 different categories), however, hampers fluent analysis and renders fast situation 
assessment impossible. Instead we apply semantic aggregation by showing the main categories first, 
which can then be interactively explored by changing the current category level to see more or less 

details. While in outer city areas and suburbs 
distances between destinations (or destination 
clusters) can be expected to be quite large, in 
downtown areas they can be much closer to each 
other, causing heavy visual clutter when an icon is 
displayed for each of them. Several grouping 
techniques have been proposed to allow 
aggregation of icons, which are now quite 
common in interactive map visualizations. In our 
case, we group nearby icons together to form 
representative icons showing the number of 
aggregated POIs. 

 
 
To allow detail analysis of frequent movement 
behavior, we provide a temporal analysis 
component. If one or more objects are selected 
on the map, for example to investigate the 
typical usage behavior within a specific suburb, 
frequently visited POIs are highlighted within a 
linear temporal view. The view represents 
cyclically repeating POIs occurrences by 
aggregating them based on a definable 
timeframe, e.g. daily or weekly. For example, if 
the analyst is interested in daily behavior, the 
visualization subdivides the day in 24 sections. 
For each hour of the day, the most frequently 
visited POI is displayed on top, while less 
frequent ones are stacked below in descending 
order of frequency. The analyst can also switch 
to other cyclic aggregations, such as weekly 
patterns. By this means, the analyst can always 
identify the most probable current location for a 
given hour of the day. In addition to the vertical order we also map the frequency to a color scheme 
ranging from green (most frequent) to white (least frequent). Depending on the current level of detail, 
the POIs are aggregated according to respective categories. Thus, the temporal visualization unfolds 
on higher detail levels (i.e. shows more distinct destinations) and folds up when lower detail levels 
like the primary categories are selected. The map view and the temporal view are interactively linked. 
By investigating the destinations in the temporal view, details of the aggregated POIs (category type, 
number, frequency) are shown and all corresponding destinations are consistently highlighted in the 
map, revealing their geographic position.  
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4.4. Case study 

To demonstrate the applicability of the 
method we present a case study on 
individual product usage. We start by 
selecting a scooter home location, which 
will highlight corresponding routes, 
visited POIs and typical behavior, as can 
be seen in the figure on the left. The map 
shows that the scooter is likely used to 
visit the shopping sites Penny Markt and 
Aldi, two supermarkets, and Bauhaus, a 
hardware store. While users can charge 
their scooters at home, this scooter was 
also charged at a public charging station. 
Further analysis suggests that the scooter 
was employed to drive to the hospital, to 

a fast-food restaurant (McDonalds) and to a shopping outlet at Stylecode. However, there are more 
sites found near these POIs, all showing a lower certainty. There is also a business location found in 
the northwest of the map, but with expert knowledge, we are able to identify this location as repair 
and assembly shop for the scooters. Examining the place Grillwagen (hot-dog stand) reveals that there 
is also a different venue available here, like another hardware store. We thus zoom in on the map and 
indeed see a large OBI sign on the map as well. Using our background knowledge, we can infer that 
the scooter user went to this store rather than to the Grillwagen. Final investigations in the temporal 
behavior reveals that the user is not a frequent driver as well as that the scooter was rarely used for 
daily transportation means and primarily for shopping. 
 

5. CONCLUSION  

This paper highlighted the unique role that geo-spatial data and geo-spatial properties of data play in 
data visualization research. We have shown how visualization of digital elevation models can be used 
to find large-distance correlations of geologic and geomorphic phenomena based on highly accurate 
data covering large connected areas. While traditional software can only handle a limited subset of 
the dataset at once, hardware accelerated rendering and highly interactive navigation allow us to see 
landscapes in a different way and understand the specific properties and possibilities of land 
formation and use. Besides using visualizations to display such vast spatial data, the second part 
demonstrated how spatial properties of data can be used to enable new visualizations forms for 
abstract data. The map is a natural way to find relatedness – by aggregating large-scale data records 
to corresponding geospatial positions we can build a geographic dictionary of prevalent thoughts, 
opinions, and observations. This aggregation data can in turn be used to understand regional language 
specifics, map content to places, and highlight unusual behavior. In the final part, we demonstrated 
how analysis of inherently geospatial data, such as movement trajectories, which has long been 
subject to research, can be improved by incorporating additional data sources. We showed how the 
context knowledge that millions of people freely provide through social media can be used to provide 
the where, why, and how of geographic endpoints. Based on this enrichment we can understand the 
modes of transportations, the reasons of movement, and the acceptance of mobility products. 
 
With the cheap and broad availability of commodity position sensors in everyone’s pocket more and 
more cyber-social systems as well as cyber-physical systems are emerging that record and transmit 
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their current spatial configuration on a regular basis. In the next couple of years, this development 
will produce humungous amounts of geo- and time-referenced data that lets us essentially create a 
holistic real-time picture of the state of reality. Visualization research will contribute to create and 
represent this picture in a comprehensible form, but also to utilize this data to enable space-time 
indexed data exploration, the discovery of unknown correlations based on spatial proximity, and deep 
insights about the hidden semantic realm that is tightly entangled with our geospatial environment. 
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