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ABSTRACT 
 
Dome-shaped devices consisting of a single digital camera and multiple light sources have been used in the past for the 
3D scanning of objects. They leverage Photometric Stereo techniques in order to build detailed 3D models of these objects. 
Their advantage is that they can pick up even subtle details of the shape. Yet, these systems typically suffer from high 
recording and processing times. This paper introduces a novel GPU-accelerated implementation that calculates the shape 
normals, as well as the albedo and ambient lighting through the Photometric Stereo technique, providing to users the 
ability for real-time feedback on the recording process. An originally serial algorithm was mapped to the architecture of 
an NVIDIA GPU and the CUDA programming platform. To maximize performance, various optimizations were applied, 
like reducing the total amount of memory accesses, coalescing the memory accesses into the minimal number of 
transactions, reducing register usage to avoid spilling, hiding latency and maximizing thread occupancy. Our method 
reduces the processing time, accelerating the original implementation by a factor of 950, thereby altering the way in which 
such devices can be used. 
 

1.  INTRODUCTION 

Photometric Stereo methods recover the 3D shape and albedo of an object using multiple images in 
which typically the viewpoint is fixed and only the lighting conditions vary (Basri et al., 2006). The 
technique is based on the fact that the amount of light reflected by a surface depends on the orientation 
of the surface in relation to the camera and the light source. Like others, the dome-shaped device we 
use, consists of a single camera on top of a hemisphere with LED light sources inside. With this setup, 
the position of the object and the camera can be kept constant, while varying the position and angle 
of the light source by subsequently activating the different LEDs.  
 

 
Figure 1: The Minidome (VISICS, 2015). Left: the camera on top looks vertically down upon the object, positioned 
close to the center of the hemisphere. Middle: detailed view of the camera, equipped with a good quality lens. Right: 

inside view of the dome, with regularly placed LEDs.  

 
Such devices are currently used for digitizing a wide range of objects that are difficult to capture 
accurately using conventional techniques. They have a broad range of applications in different fields. 
In archeology, the recovered results allow for photo-realistic virtual renderings of the scanned objects 
in 2.5D, offering an interactive way to virtually inspect these objects. This makes them ideal for 
studying and demonstrating fragile historic artefacts such as clay tablets, cachets, manuscripts and 
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coins. In biology, they are used for digitizing insects, which are not only fragile, but usually also have 
complex microstructures on the surface of their wings, making their digitization more difficult. In 
manufacturing, they are used to inspect the surface finish of industrial parts (for example in 
automotive applications), etc.  
Up until now, the time to process the input images and perform the Photometric Stereo technique 
ranged from 5 minutes up to 15 minutes, depending on the resolution of the recorded images. 
Therefore, the processing of the data is usually scheduled to run as a batch job at night. This approach 
is time-consuming and does not allow for any timely quality control or feedback from the user. 
In this paper we present a novel method to perform Photometric Stereo efficiently on a GPU. Our 
starting point is an existing CPU-only implementation (Willems et al., 2005). The proposed algorithm 
is designed to process the data generated by dome-shaped devices like the one already described, i.e. 
KU Leuven’s `Minidome’ (Willems et al., 2005 and Watteeuw et al., 2013). The goal of our work is 
to produce detailed 3D models, while drastically reducing the time needed to produce these results 
(i.e. real-time). 
In this work two approaches are discussed, both solving a different need. The first approach focuses 
on processing the entire image set as quickly as possible. The second approach produces intermediate 
results as more data is being fed into the system. This allows for instant feedback on the recording 
process, enabling the operator to abort prematurely, e.g. to make adjustments to the camera settings 
or if the intermediate results are deemed satisfactory already. By providing immediate feedback, the 
recording can be calibrated more quickly, increasing overall productivity. This makes such devices a 
more attractive option for both researchers and consumers. 
In the following sections we will analyze how the system is designed and implemented, and which 
optimizations were applied to achieve the necessary speedup. A visualization tool is described to 
provide the user with immediate feedback and fully utilize the real-time nature of the solution. Finally, 
we present the results that were obtained using our method. 
 

2. RELATED WORK 

In recent years, a large body of work has explored how to use GPUs for general-purpose computing, 
also known as GPGPU. Before the advent of general-purpose languages for GPGPU, GPU 
implementations could only be achieved using existing 3D-rendering APIs such as OpenGL or 
DirectX. Recognizing the value of GPUs for general-purpose computing, GPU vendors added driver 
and hardware support to use the highly parallel hardware of the GPU without the need for computation 
to proceed through the entire graphics pipeline or the need to use 3D APIs at all. A wide variety of 
applications have achieved drastic speedups with GPGPU implementations with the most popular 
being Neural Networks. Unsurprisingly, Image Processing has benefited from this trend too. Attila 
Remenyi used GPGPU to process biomedical image data (Remenyi, 2011), Hiren Patel accelerated 
the processing of polarimetric images for defense-related purposes (Patel, 2010) and Yanqing et al. 
utilized GPGPU for the processing of palmprint images (Yanqing et al., 2012), to just give a couple 
of application-ready examples. 
Due to the highly increased performance with the use of GPGPU, a number of studies were conducted 
to quantify what the possible gains would be. Che et al. did such a performance study on GPGPU 
applications, comparing the performance of CPU and GPU implementations of six naturally data-
parallel applications (Che et al., 2008). The architecture of GPUs differs greatly from general-purpose 
CPUs, so optimized implementations differ for both as well. Some general optimization principles 
have been researched by Ryoo et al. (Ryoo et al., 2008). Other key factors in pushing GPGPU 
performance, such as memory access optimization, have been researched by Bibikov et al. (Bibikov 
et al., 2011). The benefits of using multiple GPU’s for Image Processing were researched by Song & 
Biao (Song & Biao, 2012). 
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The work presented in this paper is based on the Photometric Stereo implementation described in the 
work of Willems et al. (Willems et al., 2005) and follow up work (Watteeuw et al. 2014). To the best 
of our knowledge, there are only a few works that have tried to speed-up the Photometric Stereo 
process. Malzbender et al. (Malzbender et al., 2006) used a high-speed video camera, computer 
controlled light sources and GPU implementations of the algorithms to accelerate Photometric Stereo 
methods. Their approach only works for low-resolution images. Schindler introduced a method which 
uses the light emitted by a computer screen to illuminate an object such as a human face from multiple 
directions, simultaneously capturing images with a webcam in order to perform Photometric Stereo 
(Schindler, 2008). This CPU implementation was still rather slow, but Nozick (Nozick, 2010) 
managed – with a similar setup – to render human faces in real-time, thanks to a pyramidal integration 
of the normal maps based on an iterative scheme. An inherent limitation of this approach is that it is 
mainly tied to human face recordings. Finally, Varnavas et al. have implemented a GPU version of 
Photometric Stereo (Varnavas et al., 2010). However, their solution was designed for a different 
scanning setup that only captures a maximum of 128 images at a 0.3 MP resolution.  
In general, compared to previous approaches our method offers a scalable solution towards not only 
more images but also images larger in resolution. Our novel implementation of the Photometric Stereo 
scheme is only bound by transfer speeds over the PCI bus. The performance boost using our approach 
allows for the first time to adapt and alter the recording process based on the feedback of the user. 
 

3.  SYSTEM OVERVIEW 

3.1. Output of the algorithm 

The implemented algorithm produces three output images: a normal image, an albedo image and an 
ambient image (Willems et al., 2005 and Watteeuw et al., 2013). The normal image is a two-valued 
representation of the geometric details of the digitized object. It contains the surface orientation for 
each pixel and thus the shape of the object.  
 

                                     
Figure 2: Illustration of albedo (NC State University, 2015). 

 
The albedo image contains the diffuse reflection coefficient for each pixel, providing information 
about the optical characteristics of the object’s surface. The amount of energy that is reflected by a 
surface is determined by the reflectivity of that surface, called the albedo. A high albedo means the 
surface reflects the majority of the radiation that hits it and absorbs the rest (NC State University, 
2015). An example illustrating this principle is shown in Figure 2. 
The ambient image mimics the object’s observed color when illuminated under ambient lighting 
conditions, in this particular case it simulates the effect of all dome LEDs lighting the object 
simultaneously. The albedo and normal map are used to create an accurate textured 3D model of the 
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digitized object. The ambient map serves as a comparison with / and alternative for albedo, for 
inspection purposes for our users. Examples of the three result images are pictured in Figure 3.  
 

 
Figure 3: The normal (left), albedo (center) and ambient (right) result images for the scan of a moth. 

3.2. Overview of the algorithm 

The photometric stereo algorithm operates on a set of 260 images from the camera – each with one 
LED activated - to produce three output images, respectively containing the normal, the albedo and 
the ambient information for the observed object. In a real-time context, also the bayer pattern of the 
camera image needs to be taken into account. The algorithm has a number of internal dependencies, 
which allow for a modularized approach. These dependencies are visualized in Figure 4. 
 

                                                 
Figure 4: Dependencies in Photometric Stereo. PS = Photometric Stereo, DB = Debayering. 

 
In terms of computational complexity, the ambient output is the most straightforward to be processed. 
In order to compute the valid normal for each pixel, the input image set must be demosaiced to an 
image of gray-values in a pre-processing step. Similarly, Photometric Stereo produces bayer images 
for the albedo and ambient results. These require a post-processing step to produce the desired color 
images. Image processing libraries, such as OpenCV, provide methods for performing this 
demosaicing step. Contrary to the algorithm itself, the demosaicing is pixel inter-dependent. For 
optimal efficiency, these steps should be completed separately. The albedo of a pixel, calculated using 
the geometry of the observed object, can only be computed when its corresponding normal has been 
found.  
 
The observed intensity for a given pixel using the Lambertian lighting model is related to the angle 
between the incoming light and the normal at that position. 
 

ത்݊ሺݔሻ ∗ ሻݔത௣ሺܮ ∗ aതሺxሻ ൌ  							ሺ1ሻ					ሻݔ௣ഥሺܫ
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Where	aሺxሻ is the albedo at point x,  ܮത௣ሺݔሻ is the light vector observed at pixel x when illuminated 
with a LED at light position p, ܫ௣ഥሺݔሻ are the observed image intensities (by default RGB values), 
under the same lighting considerations. These color intensities ܫ௣ഥ ሺݔሻ are converted to the 
corresponding gray intensity ܩ௣ሺݔሻ using the standardized Rec. 601 luma equation (Poynton, C., 
2012), for speed and memory considerations. 
Next, since the equation holds both an unknown normal as well as an albedo, we solve for ത݊′௜

் ൌ
ܽሺݔሻ ∗ 	 ത݊௜

்ሺݔሻ, holding both unknowns.  
 

ത݊ᇱ்ሺݔሻ ∗ ሻݔത௣ሺܮ ൌ  ሺ2ሻ				ሻݔ௣ሺܩ
 
The set of all light positions P each contribute an equation to the system that has to be solved for 
݊′ሺݔሻ. The iterative approach outlined below shows how better approximations for ݊′ሺݔሻ can be 
achieved by removing equations from the system when they are deemed to be outliers and do not fit 
the model well. Equations are removed if the observed gray value is under- or over-saturated (based 
on chosen thresholds ݐெ௜௡ and ݐெ௔௫) or if the gray value lies too far from the predicted gray value 
The set ௅ܲ .(௥௘௦ݐ which is determined by the empirical residual threshold) ሻݔ௣∗ሺܩ ⊆ ܲ represents all 
light positions that have not yet been removed and for which equation (1) holds true. After a number 
of iterations the normal converges and P, the set of light positions that produce valid equations, 
remains the same.  
The iterative process to solve for equation (2) is as follows: 
  
 ௅ܲ ← ሼ݌ ∈ ୑୧୬ݐ	|	ܲ ൏ ሻݔ௣ሺܩ ൏  ெ௔௫ሽݐ
 
݅	ݎ݋݂  ← 10	݋ݐ	1 ∶  

	݁ݖ݅݉݅݊݅݉										  ∑ ቀ ത݊௜
ᇱ்ሺݔሻ ∗ ሻݔത௣ሺܮ െ ሻቁݔ௣ሺܩ

ଶ
	ݎ݋݂	݁ݒ݈݋ݏ	݀݊ܽ	 ത݊௜′ሺݔሻ௣	∈௉ಽ  

 
	݌	∀										  ∈ ௅ܲ: 

                          ݂݅	 ቀ ത݊′௜
்ሺݔሻ ∗ ሻݔത௣ሺܮ െ ሻቁݔ௣ሺܩ

ଶ
൏  ௥௘௦ݐ

	݄݊݁ݐ																												  ௅ܲ 	← ௅ܲ		\ሼ݌ሽ 
 
The normal can be extracted by simple normalization: 

ത݊௜
்ሺݔሻ ൌ

ത݊௜
ᇱሺݔሻ

|| ത݊௜
ᇱሺݔሻ||

 

 
Given the normal, the albedo ܽ௥௚௕ሺݔሻ can be estimated from equation (1). 

minimize		 ቀ ത்݊ሺݔሻ ∗ ሻݔത௣ሺܮ ∗ a୰୥ୠሺxሻ െ ሻቁݔ௣,௥௚௕ሺܫ
ଶ
	and	solve	for	a୰୥ୠሺxሻ 

and the ambient 

ሻݔሺݐܾ݊݁݅݉ܣ ≔ 	
1

ሺܲሻ݁ݖ݅ݏ
෍ ሻݔ௣ሺܫ
௣	∈௉
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4. HIGH-LEVEL OPTIMIZATION 

Photometric Stereo needs a large amount of data to produce accurate results. A typical data set might 
consist of 260 images with a 20 MP resolution, totaling a little over 5 GB. Since the computations 
will be executed on the GPU, this data will need to be available there. At the time of writing,  the 
TITAN X with 12 GB RAM is the only CUDA-capable GPU that has enough global (DRAM) 
memory to accommodate this amount of data. The proposed solution should be able to run on any 
kind of CUDA-capable hardware. Removing this memory constraint is also necessary for images of 
an arbitrary resolution to be processed, adding to the scalability of the presented solution. 

4.1. Slicing 

Subdividing the high-resolution images into smaller image slices allows for the circumvention of the 
memory constraint. This approach is possible since the Photometric Stereo method is pixel-based; 
there are no inter-dependencies between the pixels, so the full-size images are not necessary to 
calculate the output for a specific slice. Instead of running the computation on 260 full size images, 
the computations are run on 260 times a number of smaller image slices. These slices all represent 
the same portion of their respective full size source images, ensuring that the algorithm operates on 
the right pixel combinations. The results of these multiple smaller image slices are computed one 
after the other, producing result images that are themselves slices of the full-size result image. These 
result slices are recombined at the end of the algorithm, creating the full-size result image. The slices 
that we used were chosen to be horizontal strips, since these are the fastest to obtain. Diagrams of the 
image slicing and slice recombination are shown in Figure 5. 
 

 
Figure 5: Image slicing diagram (left). Slice recombination diagram (right). 

 
The transfer times from CPU to GPU memory have a profound effect on the overall application 
performance. Therefore, it is important to ensure these transfers are executed as fast as possible. The 
data transfer between host and device memory is carried out over the PCI-Express bus (PCIe) for 
optimal efficiency. 

4.2. Pinned memory 

Host (CPU) memory is pageable by default. The GPU cannot access data directly from pageable host 
memory. When a data transfer from pageable host memory to device memory is invoked, the CUDA 
driver must first allocate a temporary page-locked host array, then copy the host data to this pinned 
array, and finally transfer the data from the pinned array to device memory. This process is illustrated 
in Figure 6. 
As shown in the figure, pinned memory is used as a staging area for transfers from the device to the 
host. The cost of transferring between pageable and pinned host arrays can be avoided by directly 
allocating the host arrays in pinned memory (Harris, 2012). Pinned memory allows the GPU to use 
its DMA engine to perform the data transfer without having to involve the CPU. Using only the DMA 
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engine to perform the memory transfer allows making full use of the PCIe bus bandwidth. Another 
property of pinned memory is that it is impossible for pinned memory to be swapped out to disk. This 
behavior is necessary, given that the swap partition is inaccessible to the DMA engines of the GPU. 
The unpinned memory transfer will be limited by the CPU speed and will be in the range of 1-1.5 
GB/s. The pinned memory transfer on the other hand, is limited by the speed of the PCIe bus. For a 
PCIe 2.0 bus, the transfer speed will fall in the range of 5.5-6.5 GB/s. This effective data transfer rate 
is lower than the peak bandwidth of 8 GB/s due to interface overhead and other system design trade-
offs. For a PCIe 3.0 bus, the effective bandwidth will be around 10-12 GB/s (Eshelman, 2013). 
 

 
Figure 6: Pageable vs pinned data transfer (Harris, 2012). 

4.3. Data transfer concurrency 

CUDA provides the option to perform data transfer concurrently with calculations, reducing the 
amount of stalls due to data dependencies. However, no computations can be done on data that is still 
being written. To avoid transfer latencies, the device memory is divided into two partitions. While 
computations are being run on the data in one partition, new data is being written to the other. The 
partitioning is achieved through the image slicing method previously discussed. Figure 7 shows how 
one slice is being processed while simultaneously transferring the next one. The size of these image 
slices is determined by the software to maximize memory occupancy while reducing the latency 
incurred by the very first memory transfer. If necessary, the amount of device memory used by the 
application can be limited to allow other processes to run on the GPU as well. A typical case would 
be using the same GPU to simultaneously render the screen content and to run the computations for 
an algorithm. 
 

 
Figure 7: Concurrent memory usage. 
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4.4. Pipelining and streams 

The overlapping of data transfers with both computation on the host and the device is achieved 
through the use of streams. A stream in CUDA is a sequence of operations that are executed on the 
device in the order in which they are issued by the host code. While operations within a stream are 
guaranteed to be executed in the prescribed order, operations in different streams can be interleaved 
and, when possible, they can even run concurrently (Harris, 2012). The pipelining schedule is 
illustrated in Figure 8. 

 
Figure 8: Pipelining schematic. 

 
If all steps are scheduled sequentially, most of the GPU’s capabilities are wasted. The GPU will wait 
for the CPU to finish scheduling tasks and for data transfers to complete, spending most of its time 
idling. The CPU processing and host-to-device (H2D) transfers of the same cycle can be overlapped, 
as shown in the diagram. These memory transfers can be overlapped with the execution of the kernel. 
The GPU is constantly busy with computing new results, without having to waste processing time 
waiting for new data to arrive. This is shown in the diagram by the continuous GPU Kernel section. 
Similarly upon completion of some computations, the device-to-host (D2H) transfers of the results 
can be done simultaneously. 
The effective speedup achieved by this pipelining scheme depends on the amount of data that needs 
to be transferred and the time it takes for the kernel to run (which itself is dependent on the GPU’s 
performance). For the optimal case, where transfer and calculation times are roughly the same, this 
pipelining can potentially double performance. For the current implementation, a 700 MB slice will 
take 120 ms to transfer and 132 ms to process. For this test setup, the performance gain through 
pipelining is 120/(132+120) ≈ 47.6%.    
The pipelining also indicates that there is an upper performance limit. For each 1000 MB of source 
images, 2076 MB of data needs to travel over the PCIe bus. The presentented implementation is 
entirely PCI bandwidth limited. Essentially the GPU is processing the data faster than it becomes 
available. This limit dictates that the maximum processing speed for the implemented photometric 
stereo algorithm is 3.15 GB/s when using a PCIe 2.0 bus. For a PCIe 3.0 bus, an effective bandwidth 
of 12.0 GB/s can be reached, increasing the processing limit to 5.78 GB/s. For further performance 
increases effort must be made to improve the data transfer. 
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5. LOW-LEVEL OPTIMIZATION 

5.1. Overview of the optimization strategies 

Creating a massively parallel solution with high performance demands must not be underestimated. 
Many traditional sequential programming paradigms no longer hold. Poor design and carelessness 
with respect to architecture are not remedied by branch prediction or prefetching. The following 
guidelines offer a suggestion as to which strategies tend to be most beneficial. 

 Reduce the amount of memory accesses. It is imperative to ensure all memory accesses (both 
reads and writes) are done coalesced. The data must be properly structured and the data request 
patterns must be properly organized, so that the number of memory accesses that are needed 
for the computations can be minimized. 

 Reduce register spilling. The right types of memory need to be used to store the right number 
of variables for faster access times. The overhead of having to access L1 cache needs to be 
avoided. 

 Reduce latency and increase thread occupancy or ILP. The SIMD model needs to be used to 
maximize the number of active threads while reducing the cost of expensive operations. This 
is done by keeping the ALU busy at all times. Instruction level parallelism (ILP) allows thread 
to schedule and reorganize their instructions to reduce the amount of stalls. 

Without paying heed to these pillars, any micro-optimization will be negligible. The optimizations 
should also be attempted in the presented order. Drastically reducing register spilling only to change 
it subsequently to account for coalesced memory access is meaningless. In the same way, increasing 
thread throughput is irrelevant if that throughput is bounded by the latency of excessive register 
spilling. These three strategies are covered in greater depth in the following pages. 

5.2. Memory coalescing 

5.2.1.  Global memory coalescing 

Grouping of threads into warps is not only relevant to computation, but also to global memory 
accesses. The device coalesces global memory loads and stores issued by threads of a warp into as 
few transactions as possible to minimize DRAM bandwidth. Arrays allocated in device memory are 
aligned to 256-byte memory segments by the CUDA driver. The device can access global memory 
via 32-, 64-, or 128-byte transactions that are aligned to their size. Recent CUDA devices (Fermi 
architecture and up) have an L1 cache in each multiprocessor with a 128-byte line size. Accesses by 
threads in a warp are coalesced by the device into as few cache lines as possible. If the requested 
memory is properly aligned to this 128-byte cache line, the requested data segment can be read during 
a single bus transaction. If the access to this memory is misaligned however, the data request has to 
be serviced in multiple transactions, spanning multiple cache lines, resulting in additional memory 
latency (Harris, 2013). 
To ensure that the memory accesses of the developed application are properly aligned, each image 
that is transferred to the device memory is padded so that its size is an integer multiple of 128 bytes. 
This ensures that the warps can be properly aligned to the cache lines so that superfluous transactions 
are avoided. This principle is illustrated in Figure 9. 
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Figure 9: Memory access coalescing. 

 
From the diagram above it is clear that if the image size S is not an integer multiple of 128 bytes, a 
thread block would often have to request device memory loads from two memory banks. The lucky 
few that are aligned with the underlying architecture enjoy the benefit of only having to do a single 
load, reducing the bandwidth limited latency by 50%. By padding the original image size to an integer 
multiple of 128 bytes, every block can access its corresponding pixels from each image with a single 
load. This is at the expense of 128 – (S mod 128) bytes. Because photometric stereo is inherently pixel 
independent, the algorithm does not need to take boundary conditions into account. Instead, it just 
processes these redundant pixels and subsequently discards them, without any adverse effect for the 
performance. 
 

 
Figure 10: Memory loads needed for images of size S. 

 
It is clear that for every image of size S, the first image is properly aligned. Also, after a certain 
number of images N, another image is properly aligned. N is the smallest number for which (N * S) 
mod 128 = 0 holds true. Figure 10 shows the number of memory loads required for image size S when 
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128 threads are requesting consecutive data. For typical data sets of 3 MP, there is a 13% decrease in 
device memory loads when comparing S*, a multiple of 128, and S* - 1. The large discrepancy 
between the theoretical and empirical data is evidence of aggressive caching. Each device memory 
load is checked to see if the value is cached in L1. Upon a cache miss, the request goes to L2 cache 
and subsequently to DRAM. In the test case when a given block has to issue two load requests, there 
is a high chance that the result of the first request, which was previously processed by a different 
block, is cached. The effects of temporal locality amortize the actual number of accesses to DRAM, 
which is the main cause for such bandwidth limited latency. 

5.2.2.  Shared memory coalescing 

Memory coalescing is equally important for data storage. Albedo and ambient image buffers (single 
channel) are trivially stored. The normal has an x, y and z component calculated by each thread. Due 
to the SIMD nature of the architecture, this means that obvious store operations lead to strided 
accesses, as shown in Figure 11. 
Due to strided global writes to device memory, three times as many store operations are scheduled, 
with a significant performance hit as a result (NVIDIA, 2015). Additionally, multiple entries in L2 
cache could potentially lead to data re-fetching for a different thread block. The solution is the 
introduction of thread cooperation through data reorganization in shared memory, leading to the 
desired coalesced writes. This is illustrated in Figure 11. 
 

 
Figure 11: Left: Normal storage without using shared memory, leading to strided access. 

Right: Normal storage using shared memory. 

 
Essentially the earlier uncoalesced write to device memory is replaced by an uncoalesced write to 
shared memory, followed by a coalesced write from shared memory to device memory. Although the 
indirection through shared memory creates a certain amount of overhead (measured to be 132 clock 
cycles), this allows for just one single write to device memory. Shared memory as part of the on-chip 
L1 cache bank allows for a thread to store data that was computed by a different thread. Non-
conflicting device memory stores (~400 cycles) are much slower than the cached operations (~38 
cycles), resulting in a performance increase of 400 * 3 – (400 + 132) = 668 cycles, essentially reducing 
the cost by 56%. 
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The most important aspect of this write sequence is that it is warp independent. This means that each 
warp operates by itself, without the need to synchronize between the various warps and avoiding the 
performance hit this would incur. When opting for such a compartmentalized approach, a shared 
memory size of 12 * 32 bytes per warp is needed. For typical block sizes of 128 threads this translates 
to 1536 bytes. The scheduling constraints for each SM impose the maximum of 32 concurrent thread 
blocks (assuming a shared memory size of 48K (NVIDIA, 2015)). This constraint is irrelevant since 
the number of threads is limited due to the limited resident block total. Effectively this means that the 
shared memory considerations can never be a limiting factor for thread scheduling. Data 
reorganization in shared memory is therefore always a good idea for storing the normal results. This 
holds true for every NVIDIA GPU. 

5.3. Register usage 

5.3.1.  Register spilling 

Registers are a precious commodity in NVIDIA GPUs. They are by far the fastest way to locally 
access and store data. As such, it is often worth copying a variable stored elsewhere into a register 
before accessing it multiple times. In turn, the number of available registers is very limited. Each 
temporary or local variable resides in register space, unless there are not enough registers available. 
In this case, the register values will spill to L1 cache. When using registers, no attention must be paid 
to memory coalescing or bank conflicts. However, the number of registers used, and when they are 
accessed, does impact the overall performance. One of the most obvious ways to improve a CUDA 
program, is to use less registers. Using too many registers could reduce occupancy or even cause 
spilling to L1 cache. If the variables in a performance critical section (e.g. an inner loop) are accessed 
from memory outside of register space, this could have devastating effects. However, a little spilling 
can actually improve performance when the spilling enables a significant increase in occupancy. 
Older NVIDIA GPUs (CC ≤ 3.0) have even less registers than their current counterparts, so even 
more care must be taken when deciding how many registers to use. Because of the way the hardware 
and warp scheduler are designed, a thread block must allocate all of its necessary registers prior to 
executing. The warp scheduler does not take temporal access patterns into account as it cannot 
guarantee a specific order of executed instructions. The easiest way to reduce register pressure is to 
only store necessary variables. Variables that can be recalculated cheaply, contain no meaningful data 
or are only used once or twice do not belong in registers. 
For each recorded image, corresponding to a different lighting position, a different light vector Li is 
found for each pixel. Light vectors consist of three floats, taking up three registers. These vectors are 
calculated as the difference between the light source position and the pixel position, and are therefore 
different for each thread. Due to the large number of light positions for the typical mini-dome 
(currently 260), each thread would require a total of 780 registers to store them. Obviously, such a 
large number will not fit in the 255 available registers. The light vectors that do not fit, will spill to 
L1 cache. If every thread spills 3120 bytes to L1 cache, only 63 threads can run concurrently before 
inducing further spills to L2 cache, resulting in a maximum occupancy of only 3.1%. Instead of 
storing these light vectors, it is better to recalculate them when they are actually needed. The current 
design only uses 3 registers per thread instead of 780. Since this approach repeats the same 
calculations many times, this actually creates additional overhead. However, this is completely offset 
by the reduced number of memory accesses and increased occupancy. Simulations show a 
performance increase of over 3400 times when the light vectors are recalculated, instead of 
permanently stored. 
The most important part of the optimizations concerning register usage, is that they are cumulative. 
Using one more register could cause another to spill, potentially causing other parts of the program 
to grind to a halt. Function inlining, compiler and linker optimizations, and instruction level 
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parallelism (ILP) must all be taken into account when examining the consequences of creating certain 
variables. Because of this, it is important to analyze the program in its entirety in order to make 
meaningful predictions about its behavior. 

5.3.2.  Single vs double precision 

When designing any algorithm, serious thought must be given to what type of variables are used to 
store a given value. Both memory and direct processing speed should be taken into account. Registers 
are by far the fastest way to access stored data. Each register on an NVIDIA GPU holds exactly one 
word, which means that storing double precision variables take up twice the amount of memory than 
simple floats. GPUs are designed to process vast amounts of single precision floats. Each core can 
process a single precision arithmetic instruction in a single cycle. Conversely a typical GPU, such as 
the GTX 780 Ti, has fewer ALUs with the capability to perform double operations (8 per SM). 
Effectively this means that it takes 24 clock cycles to process a 64-bit floating-point instruction 
(NVIDIA, 2015). 
The underlying architecture is best suited to process single precision variables. The downside to using 
less bits to represent the same number is that an inevitable loss of precision occurs. Before altering 
the algorithm and eliminating all double precision variables, one must check if it has a noticeable 
effect on the system output. The first key observation is that, in contrast to the inner operations, the 
resulting normal, albedo and ambient images are float arrays. Internal instructions introduce rounding 
errors on intermediate values, which can accumulate and alter the resulting output. These errors are 
larger for floats than for doubles. To investigate the possible impact of using less significant digits, 
the output images for both double and float algorithms are compared. If they are deemed close 
enough, a transition to single precision operations is justified. As a measure of the difference between 
normal images, the mean Angular Error (AE) measure suggested by Barron et al. is used (Barron et 
al., 1994). 
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݂ and ݀ are the real surface normals for pixel ݅, represented as respectively a float and double. Table 
1 presents an overview of the difference in output values when changing from double precision to 
single precision calculations. The majority of pixels receive an identical normal (AE < 0.001). This 
comparison indicates that the difference between using float and double is negligible. 
 

Data set Moth Clay tablet
Mean AE 0.00181 0.00177 
Pixels with AE < 
0.001 

96.2 % 99.1 % 

Mean speedup for 
float vs. double 

5.05 x 5.04 x 

Table 1: Overview of differences between double and float. 
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5.3.3.  Packing bytes into words 

The data set that is fed to the Photometric Stereo algorithm consists of images where the intensity of 
each pixel is represented by a single byte. This means that four intensities can be stored per word. 
Due to the limited resources and significant cost of accessing data, the data should be grouped tightly 
together. One of the compound types used to hold multiple data is uchar4 (NVIDIA, 2015). If four 
bytes are accessed sequentially, four requests might be needed, introducing significant memory 
latency. Instead, it is usually a better idea to access four consecutive bytes (one word) in a single 
memory request and store them together in a single register. This register can then be read four times, 
with better performance. This approach is shown in Figure 12. 
 

 
Figure 12: Loading data from L1 cache as four uchars (left) or as one uchar4 (right). 

 
When dealing with the low level optimizations and memory layout, it is often prudent to enforce the 
usage of certain structures. When CUDA compiles a piece of code, it already applies many 
optimizations by itself. However, these optimizations are extremely dependent on the context. Small 
arrays are a classical example of this. CUDA allows these small arrays to be stored in fast register 
space. To determine the maximum dimension of these arrays, the compiler has to take many factors 
into account. When the array size exceeds this limit, it gets pushed into L1 cache, as was designed to 
happen in CUDA. When the optimizer decides not to bundle four bytes into a word, array sizes 
quadruple. The only way to force the compiler to actually group four bytes together in a single word, 
is to manually pack them together in a struct. Control over the compiler’s actions is an often-
overlooked aspect of code design. When done correctly, it can save a huge amount of development 
time. However, this is usually at the expense of more complicated access patterns and reduced 
legibility. 

5.4. Reducing unnecessary operations 

From a performance perspective, unnecessary operations are a waste of resources. When optimizing 
an algorithm, one must first identify the bottlenecks. Reducing a part of your program by 50% is 
meaningless if the part itself only accounts for 0.5% of the total cost. This consideration is known as 
Amdahl’s law (Amdahl, 1967). It predicts the maximum expected improvement to an overall system, 
when only one part is improved. The maximum speedup in a program where one part was sped up ݌ 
times is limited by the inequality (7), where ݂	 െ ሺ0 ൏ ݂ ൏ 1ሻ 	െ is the fraction of time spent in the 
part that was not improved. 

	݌ݑ݀݁݁݌ݏ	݉ݑ݉݅ݔܽ݉ ൑ 	
݌

1 ൅ ݂ ∗ ሺ݌ െ 1ሻ
 

The normal calculations account for the majority (~85%) of all arithmetic computations. The iterative 
approach executes the same inner loop for a fixed number of iterations (Willems, et al., 2005). After 
each step, the predicted normal becomes more accurate, converging to an optimum. This is achieved 
by reducing the number of equations in the system. The number of steps that is actually required is 
highly dependent on the characteristics of the surface (such as reflectivity and surface texture). Highly 
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reflective surfaces for example will produce many saturated pixels reducing the number of valid 
equations. 
This is shown in figure 14. It is easily shown that if two normals of consecutive iterations match, the 
algorithm has converged. This powerful information was not taken into account in the original CPU 
implementation. 

 
Figure 13: Graphs detailing the number of iterations needed to converge to a reasonable normal  

for the moth and clay tablet data sets. 

 

 
Figure 14: Graphical representation of the number of iterations needed to converge  

(higher intensity means more iterations). 

 
Convergence is analyzed here for two separate data sets (figure 14). One can examine the number of 
iterations each thread goes through, before its normal converges (figure 13a). Pixels with either very 
similar or very dissimilar entries are prime candidates for early convergence. A large number of pixels 
(98% and 95% of the respective data sets) can be readily computed in 5 iterations or fewer, which is 
an improvement compared to the fixed value of 10 iterations. However, a thread is never executed by 
itself. The smallest unit, the warp, has each of its 32 threads execute the very same instruction. This 
means that if a single thread has not converged, the others will have to wait for it to finish. 
Performance implications must therefore be analyzed by comparing warps, instead of single threads. 
A warp has converged if all 32 threads have converged, so the entire warp needs to go through as 
many iterations as the longest running thread needs. 
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Warps execute threads that correspond to consecutive pixels. This makes use of the fact that pixels, 
which are located in close spatial proximity, tend to be strongly correlated. The algorithm itself 
considers each pixel to be independent of its surroundings, but the spatial locality of the image can 
be exploited to reduce computation time. Figure 13b shows that over 50% of all warps have finished 
in 3 and 6 iterations for the respective data sets. Checking for convergence can potentially save all 
these warps from recalculating known values. An estimation for the number of calculations can be 
observed by a weighted average of the number of iterations the warps execute. Figure 13c shows how 
the few warps that do not converge quickly still account for a lot of computations. This can be 
summarized by taking the total number of iterations for all warps and comparing it with the original 
requirements where all ten iterations are calculated. Both the theoretical and actual improvements 
(Figure 13d) are significant considering the high profile nature of this bottleneck. 
In order to check for convergence, a copy of the previously estimated normal must be stored and 
updated during each iteration. The use of three additional registers per thread increases register 
pressure, but the potential spills to L1 cache are offset by the extra reads from L1 cache that would 
have occurred if the next iterations had been executed. If the algorithm is performance limited by the 
total number of registers available in an SM, 3 additional registers could reduce the number of threads 
that can be run concurrently. This reduced occupancy can potentially negatively impact the 
performance. A little overhead, from introducing additional branching and the optimization costs that 
come with it, can account for the discrepancy (1.2%) between the actual and theoretical speedup. By 
eliminating superfluous calculations and accesses, the computation of the normals can be performed 
up to 59% quicker for typical data sets. Since these computations represent 85% of the total arithmetic 
operations, this has a noticeable effect on the overall performance of the algorithm. 
 

6. CONTINUOUS USER FEEDBACK 

The performance increase associated with the novel GPU-based implementation of Photometric 
Stereo fundamentally changes the way the Minidome can be used. Previously the high computation 
times forced researchers to collect their datasets, store them and only later process them. This is no 
longer the case as the real-time solution can provide the user with the desired output upon completion 
of the recording. The recording itself has become more time consuming than the calculations. 
Unfortunately many measurements are not optimal due to bad lighting and camera configuration or 
object placement. Previously the researcher would have to wait until the completion of the recording 
before deeming it a success or simply making an adjustment to the camera settings and restarting the 
process.  
The presented implementation allows for continuous user feedback because of shorter computation 
times. Specifically the algorithm can be started with a subset of the final 260 images corresponding 
to 260 different light positions. While the resulting normal, albedo and ambient images are not as 
accurate they still give a clear indication as to whether the recording itself will be a success. As more 
images are collected the quality of the resulting images increases and converges towards the eventual 
outputs. The algorithm was designed to be easily optimized for different number of images and as 
such can be run concurrently with the recording software.  
Each time a new image becomes available it is transferred to the GPU and the image is taken into 
account during the next iteration of the algorithm. The resulting images of the partial solution need 
not be sent back to the CPU and stored. Instead they are visualized using OpenGL. The interoperation 
between CUDA calculations and OpenGL rendering happens through common memory buffers. By 
correctly setting up the OpenGL contexts and post-processing the results from Photometric Stereo 
can be visualized when told to refresh. From a design perspective the online operation used for real-
time visual feedback changes little about how the algorithm is optimized. The rendering itself, using 
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the GPU, incurs a slight performance hit, but that is irrelevant when compared with the advantages 
that feedback to the user has. 
The feedback between the researcher and the recording software allows for premature aborting if the 
user determines the setup to be suboptimal. The recording times depend greatly on the lighting and 

Figure 15: Continuous feedback. Outcome of Photometric Stereo for an increasing number of images. From top to 
bottom N={10,20,40,60,160,260}. From left to right: normal, albedo, ambient. 
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camera configurations, with 1.25 images/s being a typical rate for the Minidome. For a full 
measurement (N=260) over 3 minutes are needed. The online visualizer allows the researchers to 
work much more efficiently. Moreover this allows them to stop recording when enough data is 
collected. If the resulting image at (N=200) is of sufficient quality and it is determined that the 
additional 60 images would not contribute greatly to the result, the measurement can be concluded 
early. Figure 15 shows an example of this convergence. The first images give an idea of the expected 
result and after N=160 images the resulting normal, albedo and ambient have almost completely 
converged. The visual feedback provides additional value for the Minidome and the way it is used. 
 

7. RESULTS 

Significant performance increase has been observed compared to the original serial CPU 
implementation. The proposed solution is still heavily dependent on the hardware it is run on, and 
was optimized specifically for devices such as NVIDIA’s GTX 780ti. The implementation 
automatically adapts to various image sizes and scales well as depicted in table 2. 
 
 CPU GPU 
1.2MP 158*10^3 265 
1.7MP 252*10^3 267 
2.7MP 401*10^3 431 
3MP 445*10^3 480 
6MP 891*10^3 966 
28MP 4185*10^3 5009 

Table 2: total computation time in ms for GPU implementation and the CPU implementation it was based on, for 
different image resolutions. (CPU=Intel core i7 2.80GHz; GPU=GTX 780ti). 

 
The novel implementation allows for image processing that was previously too slow and not very 
time efficient. The ability to scale well with increasing image resolution means that the Minidome 

Figure 16: total computation time for a subset of the 2.7MP moth data set. The number of images used to run 
Photometric Stereo on is greatly dependent on the number of images in the data set. 
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can be used as a versatile recording device, for many different applications. The number of light 
positions taken into account is the single most important factor when determining performance for 
Photometric Stereo. Essentially the implementation presented in this paper was designed to process 
input data sets of N=260 images. However in online operation mode, with user feedback, fewer 
images are processed which leads to greatly reduced computation times. Figure 25 depicts the relation 
between increasing N and the performance cost. 
 
Figure 16 takes into account the time taken to copy the data to and from the GPU. When providing 
live feedback the program keeps the images locally, removing the necessity for many image transfers 
and further reducing the performance costs. The result is fast, high quality normal, albedo and ambient 
images that give an indication of the geometry of the observed object. These results can further be 
used to create depth maps and render photorealistic 3D models. Result images for three separate data 
sets are depicted in figure 17. 
 

 
Figure 17: Result images for 3 separate data sets: book(28MP), coin(2,6MP), tablet(1.7MP). From top to bottom:  

one of the input images observed with a specific lighting condition, normal, albedo, ambient. 
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8. FUTURE WORK 

8.1. Algorithm extension 

The current implementation of the photometric stereo algorithm uses regular images as its input, 
captured in the visible region of the electromagnetic spectrum. Instead of these, the input can be 
extended to use multispectral images. Research is currently being done, at KULeuven and elsewhere, 
on using these multispectral inputs for photometric stereo applications (Nam & Kim, 2014). Using 
the multispectral reflectance information allows for the removal of interreflection on diffuse 
materials, resulting in more accurate surface normals. The implementation can also be extended to 
work on non-Lambertian surfaces using a kind of BRDF model to better observe specular reflectance. 
A multi-camera, multi-light system can be significantly accelerated by scanning BRDF functions, 
allowing for further optimization. 
 
Another extension is adapting the software to process a variable number of images. Not all 260 images 
are needed to calculate accurate results. A smart combination of complementary lighting positions 
could greatly reduce the number of images needed. By running a prediction algorithm on the 
intermediate results, the light position that is most likely to contain new information can be 
determined. Using this technique would allow for obtaining an equally accurate result, but fewer 
images would need to be captured and processed. This enables a reduction in both processing and 
recording time. For the algorithm implementation, this means that for each pixel, not only the 
intensity needs to be known, but also to which light position the intensity belongs. In the current 
implementation, the light position can be derived from the location in memory. Keeping track of these 
light positions has considerable implications for the software design. On the other hand, the high 
speed of calculations would render it possible to develop strategies for on-line light source selection, 
thus bringing further accelerations by reducing the total number of images to be processed.  

8.2. Reducing data transfer 

The current implementation uses a double input set; both the bayer images and the debayered grey 
images are transferred over the PCIe bus. Since the current implementation is not yet limited by the 
bandwidth of the PCIe bus, this is not problematic. However, there is a possibility that the algorithm 
will become bandwidth limited when more powerful hardware is available, or when new 
optimizations are applied. The necessary bandwidth can be halved by only sending the bayer images 
over the bus. This adaptation allows the processing speed to be raised from 3.15 GB/s to 6.3 GB/s. 
To get the grey value information, the debayering would have to be done on the fly on the GPU. 
Additionally the amount of data could be compressed to further reduce the total amount of data being 
transferred. 
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