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ABSTRACT 

 
While images have been acquired from planes, satellites or the ground since decades, only recently the acquisition from 
Unmanned Aerial Vehicles (UAVs) has become an additional option. This paper focuses on the automatic processing of 
images from small UAVs together with terrestrial images from orientation to the functional modeling of buildings. It is 
shown how highly precise orientation can be achieved fully automatically only based on images also for large 
unordered sets of wide baseline images. The orientation is used for high quality fully 3D reconstruction from possibly 
many high resolution images employing efficient statistical modeling in voxel space based on octrees and a Total 
Variation (TV) based feature for the quality of the disparities. From dense 3D reconstruction functional models are 
derived in the form of façades, roofs, windows and doors using statistical sampling. Results for several datasets give an 
impression of the potential of the developed processing chain. 
 

1.  INTRODUCTION 

Research towards the automatic orientation of unordered sets of images with general orientations 
dates back to the mid of the nineties of the twentieth century. Particularly, Pollefeys et al. (2002, 
2008) have made major contributions concerning matching as well as (relative) orientation and 
dense 3D reconstruction. Arguably a major breakthrough has been (Frahm et al., 2010) as a 
successor of (Agarwal et al., 2009) who have shown that huge image sets of millions of images 
from ‘Community Photo Collections’ (Goesele et al., 2010) can be analyzed concerning overlap and 
tens of thousands of images oriented on one standard PC on one day. 
Key to these developments have been the 5-point algorithm of Nistér (2004) and RANdom SAmple 
Consensus – RANSAC by Fischler & Bolles (1981). The former allows for a direct solution of the 
relative orientation problem of a (possibly weakly) calibrated image pair. Here, ‘direct’ means, that 
the image can be oriented even though no approximate values are available. RANSAC allows to 
deal with wrong matches, particularly common for wide baselines. Because it takes into account 
knowledge about the solution, namely that the precision of correct matches is approximately known 
in terms of the error in pixels, it can deal with much less than 50% correct observations, the 
theoretical limit for a robust approach not considering this knowledge. 
In Section 2. of this paper we present an approach based on (Bartelsen et al., 2012, Mayer et al., 
2012, Mayer, 2014) which focuses on large unordered sets of images taken from Unmanned Aerial 
Vehicles (UAVs) as well as from the ground with possibly large base lines. It combines 5-point 
algorithm and RANSAC from computer vision with highly precise least squares matching and 
robust bundle adjustment from photogrammetry. Additionally, we introduce very recent work on 
graph based derivation of minimum sets of triplets which allow for the orientation of large image 
sets with wide baselines in a comparably short amount of time in comparison to state-of-the-art 
algorithms such as VisualSFM (Wu, 2011, 2013). 
Dense reconstruction from multiple images has received much attention in photogrammetry, e.g., 
(Ebner et al., 1987). Yet, only recent work such as Semi Global Matching (SGM) by Hirschmüller 
(2008) have demonstrated, that based on high quality digital imagery as well as the high overlap 
possible with recent digital aerial cameras, reliable and precise pixel wise disparity computation is 
possible. We have demonstrated in (Kuhn et al., 2013, 2014) that SGM can be extended to fully 3D 
reconstruction even for large sets of high resolution images employing local optimization based on 
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statistically coherent volume modeling, efficient octree data structures and a Total Variation (TV) 
based feature for the quality of the disparities. This work is summarized in Section 3.  
Dense 3D models are the basis for functional modeling, in this case the generation of models for 
buildings consisting of their façades, roofs, windows and doors (cf. Section 4.). The classical work 
of (Dick et al., 2004) was based on generative modeling from terrestrial images. Our earlier work 
(Mayer & Reznik, 2007, Reznik & Mayer, 2008) employed an Implicit Shape Model (ISM) (Leibe 
& Schiele, 2004). Objects, i.e., windows, were modeled in the form of small image patches and 
their relations. In our recent work (Nguatem et al. 2012, 2013, 2014) we use statistical sampling and 
model selection based on the dense 3D models from Section 3. 
 

2. ORIENTATION FOR WIDE BASELINE IMAGE SETS  

This section describes our approach for the orientation of large unordered sets of images taken from 
UAVs and from the ground, possibly with a wide baseline. We first (Section 2.1) describe the 
reconstruction of the relative geometry for pairs and triplets. The latter are useful, because the 
results for triplets are much more reliable. Triplets are then efficiently merged hierarchically 
(Section 2.2) to larger and larger image blocks. The first two sections describe an approach 
(Bartelsen et al., 2012, Mayer et al., 2012, Mayer, 2014) which can orient images when it is known, 
which images overlap. Yet, no knowledge about the relative geometry is needed. We extend this to 
the situation where the overlap is not known in Section 2.3. The representation for it is based on a 
very efficient approximate matching for all possible pairs and the reduction of the number of pairs 
and triplets to be oriented by the reliable but slow methods of Section 2.1 based on different graph 
structures. Results show the efficiency of our approach also in relation to recent state-of-the-art 
approaches such as VisualSFM (Wu 2011, 2013). 

2.1. Orientation of pairs and triplets 

A basic step for automatic orientation is the determination of conjugate points. The gold standard 
for point detection is the Scale Invariant Feature Transform – SIFT (Lowe, 2004). For pair and 
triplet orientation we only use the SIFT points, but not the feature description. The points including 
scale are detected only once per image. For every point there is a unique ID consisting of the image 
number and the point number in the image. This is particularly important for hierarchical merging 
(cf. next section). For hierarchical processing in terms of resolution, we simply threshold the points 
concerning scale. 
The generation of conjugate points consists of normalized cross correlation followed by least 
squares matching (Förstner, 1982, Grün, 1985). The former is used to reduce the number of 
hypothesis for the time consuming least squares matching, the latter makes available covariance 
information employed in the latter stages to obtain a more reliable and precise result. 
Conjugate points are the input to relative orientation based on RANSAC, the 5-point algorithm and 
Expectation Maximization (EM). The Geometric Robust Information Criterion – GRIC (Torr, 1997) 
is employed instead of the standard counting of inliers in RANSAC. Via GRIC it is possible to take 
into account if an inlier is closer or further away from the correct solution, i.e., the epipolar line, as 
well as how precise the match is. For the latter the covariance information from least squares 
matching is employed. 
EM is used to deal with a similar situation as locally optimized RANSAC (Chum et al., 2003), 
namely, that a solution consisting only of inliers is not necessarily precise enough to comply with 
most or even many of the inliers. Thus, one iterates between Expectation, i.e., the classification of 
inliers, and Maximization, i.e., improvement of the parameters, in this case by means of robust 
bundle adjustment. 
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Once the relative orientation of pairs has been determined for relatively few points on a low 
resolution level of the pyramid in the range of 150 pixels, the epipolar lines are known. Thus, 
matching triplets of points in higher resolution, i.e., with more points becomes computationally 
feasible. Also for triplets, GRIC, RANSAC and EM are employed. Geometrically, we employ the 
5-point algorithm two times for images 1 and 2 as well as 1 and 3 and then determine the relative 
scale in the form of the median of the distance ratios to the five points in the two pairs. 

2.2. Hierarchical merging 

Serial merging of triplets into an image block (Bartelsen et al., 2012, Mayer et al., 2012) becomes 
extremely time consuming for larger blocks, because it was found to be necessary to bundle adjust 
the results after every addition of a triplet. Thus, in (Mayer, 2014) a much more efficient 
hierarchical merging has been proposed. The basic idea is to employ the unique ID of points (cf. the 
previous section). By this means finding conjugate points in triplets or image (sub) blocks is 
reduced to finding the same ID which can be done extremely efficiently and avoids the deletion of 
redundant 3D points in the earlier approach. 
The merging is done hierarchically. Instead of adding just one image, image blocks are merged with 
an overlap of two images. The latter makes it possible to determine the 3D similarity transformation 
based only on the images with no need to rely on possibly unreliable 3D points. In the ideal case, 
two blocks with n images lead to a new block of n * 2 – 2 images. E.g., starting with 3, one obtains 
blocks with 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, etc. images. Bundle adjustment is just 
employed for the generated image blocks and besides the last block, all other blocks are 
independent and the merging and bundle adjustment can, thus, be computed in parallel. 
An additional gain in efficiency is achieved by reducing the number of points per image. This 
number has to be high for pairs and triplets to guarantee stable image blocks also for small overlaps. 
Yet, once the overlap is known, much less points are needed. While we had had the intuition, that 
points seen in many images as well as a good distribution of points should be especially beneficial, 
experiments based on statistical tests using the Mahalanobis distance proved that only a totally 
random deletion of (3D) points leads to unbiased results (Mayer, 2014). 

2.3. Automatic determination of image block 

The preceding sections have shown means to orient images if nothing about the images is known 
but the camera calibration as well as which images overlap (but not how). To become even more 
flexible, i.e., to be able to deal with unordered image sets with only an approximate camera 
calibration (e.g., from the Exchangeable Image File Format – Exif tags of the images), we have 
developed an extended approach. It determines the overlap extremely efficiently and produces a 
limited set of hypotheses for overlapping pairs and triplets to be validated by our reliable but slow 
methods for pairs and triplets based on 5-point algorithm, RANSAC, GRIC and EM introduced in 
Section 2.1 above. 
While normalized cross correlation is a good means to find matches also for wide baselines, their 
computational efficiency is low. We, therefore, use a variant of SIFT optimized for highly parallel 
Graphical Processing Units – GPUs named SiftGPU (Wu, 2007), to generate SIFT points and 
feature vectors consisting of 128 real values for matching. Yet, instead of computing the 
(continuous) distance between the feature vectors, we embed the feature vectors and obtain 128 bit 
values which can be extremely efficiently compared based on the Hamming distance, i.e., common 
zeroes and ones. 
SIFT matching gives us the number of matches between pairs of images. This is the basis for the 
determination of an approximately minimal set of images pairs and triplets which link as many 
images in the unordered set as possible. For the pairs this is based on Minimum Spanning Trees 
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(MSTs). As verification of pairs based on the methods introduced in Section 2.1 can show that a 
hypothesized link is not valid, not one but several MSTs are obtained. For triplets a similar concept 
to MSTs are terminal Steiner minimal trees (Lin & Xue 2002). They are employed to obtain an 
approximately minimal set of triplets linking all images which are then verified by the method for 
triplet orientation of Section 2.1. From the oriented triplets one or several image blocks are built 
based on hierarchical merging (cf. the previous section). 
First results show that our approach is fast also in comparison with state-of-the-art approaches such 
as VisualSFM (Wu, 2011, 2013). For the data set presented in Figure 1 consisting of 655 images 
from the ground and from several UAVs our approach took just 32 minutes, while SFM needed 271 
minutes on the same hardware. The data set in Figure 2 consists of 1570 images. Our approach took 
186 minutes and VisualSFM 1674 minutes. The number of derived points are similar, but due to the 
use of least squares matching, we obtain a much more precise result: 0.42 pixels instead of 2.25 
pixels for VisualSFM for the first data set and 0.29 pixels instead of 2.04 pixels for the second. 

 

Figure 1: Image set Church (of Bundeswehr University Munich) consisting of 655 images taken by multiple cameras 
from the ground and a UAV visualized by colored pyramids. 

 

Figure 2: Image set Village consisting of 1570 images taken by multiple cameras from the ground and several UAVs. 
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3. FULLY 3D DENSE RECONSTRUCTION  

Our work on fully 3D reconstruction (Kuhn et al., 2013, 2014) is based on Semi Global Matching 
(SGM) by Hirschmüller (2008). While global approaches such as (Vu et al., 2012) produce the 
results with the highest quality, their scalability towards a large number of high resolution images is 
limited. Our local volumetric approach is based on the seminal work on range image integration by 
Curless & Levoy (1996), but reinterprets and extends it by a novel probabilistic formulation. We, 
particularly, have analyzed the 3D error taking into account a sound stereo error model and have 
developed an approach for the fusion of data with strongly varying quality. 
The stereo error model is usually dominated by the uncertainty of the disparity which is not known 
and can vary from one tenth to a couple of pixels. We have developed a Total Variation (TV) based 
feature describing how large the area is in which the image function varies less than a given 
threshold. This feature was found to be highly correlated with the quality of the disparity. The 
corresponding function is learned by an EM approach based on reference data. 
To achieve nearly unlimited scalability, the volume data is represented in an octree which is 
dynamically generated and split into subtrees each handled on a single computing node. The data in 
the subtrees can be processed in parallel on as many nodes as available. Because the volumes of the 
subtrees overlap by the size of the influence area of the employed local probabilistic approach, the 
results for the subtrees can be seamlessly integrated without need for further editing. 
Results show that our approach generates high quality results also for data sets with strongly 
varying intersection geometry and resolution on the object. While the overall complexity is high, 
the computing times are limited when distributing the computation on a large cluster with more than 
100 computing nodes. This demonstrates a good scalability. Figure 3 presents results for the Church 
of Bundeswehr University Munich, Germany. Particularly for the door on the right side small 
details such as the door handle are represented in 3D. Overall, the results are smooth and yet 
detailed with few holes besides for areas occluded in all or all but one image. 

 

Figure 3: Dense 3D reconstruction of the Church of Bundeswehr University Munich (cf. orientation in Figure 1) – full 
model (left) and detail for door (right). 
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4. BUILDING RECOGNITION AND FAÇADE INTERPRETATION  

For functional modeling we start with the determination of the façades of buildings in the form of 
vertical planes (Nguatem et al., 2012). They are the basis for the reconstruction of the roof 
(Nguatem et al., 2013) and the localization of windows and doors (Nguatem 2014). 
To estimate the vertical direction (Nguatem et al., 2012), we make use of the fact that in our data 
which consists of images taken from the ground and UAVs one can see the roofs, but also the 
façades. Usually the area of the latter is much larger and, thus, we compute a first approximation of 
the vertical direction based on the cross products of the normals of pairs of points on the dense 3D 
surface (for which the majority lies on the façades). The vertical direction is refined based on edges 
in the point cloud and employed to estimate vertical planes with a RANSAC based approach. 
Because the vertical direction is already known, two randomly sampled points are sufficient to 
determine a vertical plane. For the resulting (infinite) planes the outlines are estimated with line 
sweeping. Finally, adjacent façades are determined based on the vicinity of their outlines and 
intersected to obtain a closed outline for the building. 
The façades are the basis for the reconstruction of the roof using statistical sampling (Nguatem et 
al., 2013). Because the gutter height can only be determined approximately from the façade 
outlines, it is estimated together with the other parameters of the roof. Of particular importance is 
the comparison between different roof types, such as flat, gable, hipped or mansard, described by 
parametric models. It is solved via model selection based on the weights for the maximum a 
posteriori (MAP) solutions obtained by statistical sampling in a Bayesian setting. For improved 
efficiency, a coarse to fine scheme is employed. 
Figure 4 presents on the left side a dense 3D model of the building on the right side of Figure 2. The 
balconies, their supporting posts as well as the roof overhang show that the representation is fully 
3D. On the right side of Figure 4 a 3D functional model derived from the dense model is shown. It 
consists of the façades, parallel planes for the balconies as well as smaller parts of the façades in 
front of the main façades, and a mansard roof determined by means of model selection. 

 

Figure 4: Dense 3D reconstruction of right building in Figure 2 (left) and 3D model derived from it (right). 

 
For the façades doors and windows are determined (Nguatem et al., 2014) starting with the 
generation of several segmentations based on so-called ‘plane-angular sweeps’. I.e., the given 
hypotheses for the façade plane are shifted slightly along their normal directions and rotated away 
from the vertical direction. Windows and doors are modeled by means of B-splines modified by 
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affine transformations. Like for the roofs, the distinction between different architectural types of 
doors and windows, such as rectangular, half-circular or gothic, is based on model selection for the 
MAP estimates obtained by probabilistic template matching between the models and the 
segmentations. By means of clustering the search space, the approach can be run in parallel for 
disjoint parts of the segmentation. 
Figure 5 shows on the left the point cloud determined by fully 3D reconstruction (Section 3.). On 
the right, the detected façade, windows and doors are presented. All windows and doors besides the 
two windows on the very left have been found. The outlines are mostly correct. Figure 6 presents 
the dense point cloud as well as windows and doors for several façades. All windows besides the 
three on the upper right have been found. Their outlines are for the largest part correct. Not all doors 
have been detected and their outlines are only partly correct also due to occlusions by other objects.  

 

Figure 5: Dense 3D point cloud (left) and windows as well as doors as holes in the façade plane (right). 

 

Figure 6: Dense point cloud of several façades with windows and doors marked by red boxes. 
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5. CONCLUSION

We have presented an approach for images taken from the ground and from UAVs ranging from 
camera orientation to the functional modeling of buildings generating models consisting of façades, 
roofs, windows and doors. For orientation we combine highly robust approaches from computer 
vision with the high precision of photogrammetry. Results show a strongly improved precision as 
well as speed in comparison with a state-of-the-art approach. Our approach for the generation of 
dense fully 3D models reaches a very high quality by means of a statistically sound modeling of the 
voxel space and is suitable for a large number of high resolution images, distinguishing it from most 
other approaches available. Finally, we have shown how to employ the generated dense fully 3D 
model for the determination of façades, roofs windows and doors based on a consistent Bayesian 
statistical modeling allowing for model selection between different roof types and architectural 
styles for windows and doors. 
Concerning future work, for orientation the determination of weak pairs, e.g., by means of 
(Michelini & Mayer, 2014), could help to stabilize the generation of the image block. For dense 
fully 3D reconstruction, the introduction of the estimated full covariance information about the 
camera orientations could be a, though computationally intensive, means to improve the quality of 
the surfaces for geometrically difficult configurations. Finally, functional modeling of façades could 
be extended by ornamental objects such as cornices (Brandenburger et al., 2013) and the 
organization of the façade in terms of a grid, rows or columns of windows could be taken into 
account. 
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