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ABSTRACT 
 
In the last 5 years, a significant trend characterizes sensor development: miniaturization. The latter also accounts for 
TLS and UAV sensors. In combination with the developments in low-weight unmanned airborne vehicles (UAVs) or 
RPAS, new research opportunities arise. Especially, the generation of 3D point clouds from TLS or UAV-based 
imaging campaigns enables a new era in remote sensing applications in terms of spatial and temporal resolutions. 
Especially in precision agriculture, the demand of non-destructive sensing methods which provide within-field 
variabilities in space and time is given to improve crop management. Consequently, the new 3D sensing methods 
implicate a significant potential to improve crop monitoring. In this contribution, the focus will be on (i) 3D data 
analysis using multi-temporal Crop Surface Models (CSM), (ii) understanding the 3D information of crop surfaces 
derived by different sensors, and (iii) applying an established GIS method for resampling plant height data .  
 

1. INTRODUCTION 

In the last decade, the trend to minimize electronic devices also accounts for sensing and sensor 
technologies as well as for Remotely Piloted Aerial Systems (RPAS) also named UAV. These 
developments result in multisensor platforms for laser scanning, stereo imaging, multispectral, 
hyperspectral and thermal sensing (Jaakkola et al. 2010). In precision agriculture, sensing methods 
are of key importance to improve nutrient, pest, and stress management (Mulla 2013). Therefore, 
the acquisition of non-destructive sensor data has to be carried out in dependence of important 
phenological growing stages. In this context, the nitrogen nutrition index (NNI) was introduced as a 
sensing-based management approach (Mistele und Schmidthalter 2008). In short, the NNI is 
calculated by dividing the actual (spectrally) measured N content (Nact) by the critical N content 
(Nc). For the calculation of both parameters, dry biomass data is needed. Biomass is also a key 
parameter for calculating the harvest index which is used for yield simulations (Kemanian et al. 
2007). A typical approach to estimate biomass non-destructively is proximal or remote sensing 
(Gnyp et al. 2014; Koppe et al. 2012; Koppe et al. 2013). Besides these approaches, it is known that 
plant height is a strong predictor for biomass (Fricke and Wachendorf 2013). Therefore, the concept 
of multi-temporal Crop Surface Models (CSMs) was introduced by Hoffmeister et al. (2011) to 
derive plant height from terrestrial laser scanning (TLS). This concept of multi-temporal CSMs was 
transferred on an UAV approach using RGB imaging and Structure from Motion (SfM) data 
analysis (Bendig et al. 2013). In this contribution, the focus will be on (i) 3D data analysis using 
multi-temporal Crop Surface Models (CSM), (ii) understanding the 3D information of crop surfaces 
derived by different sensors, and (iii) suggesting an established GIS method for resampling plant 
height data. 
 

2. METHODS  

In several publications, it is shown that the approach of multi-temporal CSMs is very suitable to 
derive crop plant height and crop biomass by using terrestrial laser scanning (TLS) or UAV-based 
RGB imaging (Bendig et al. 2014, Geipel et al. 2014, Hoffmeister et al. 2010, Tilly et al. 2014, 
Bareth et al. 2015). The idea of the CSM approach is shown in Fig. 1. After sowing and before plant 
emergence, a first Digital Elevation Model (DEM) is captured. Afterwards and in dependence of the 
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phenological important growing stages, additional Digital Surface Models, in the crop context 
named CSM, are produced. By raster data calculations, the crop height for each raster cell is 
calculated for each phenological stage. The data for the DEM and the CSMs can be generated either 
by TLS or UAV campaigns as shown in Fig. 2 and Fig. 3.   
 

 
Figure 1: Multi-temporal Crop Surface Models (CSMs) (Bendig et al. 2014). 

 

 
Figure 2: TLS data campaign. 

 
Figure 3: UAV data campaign. 
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3. RESULTS  

The CSM derived plant height data is suitable to estimate biomass with a high R2. The latter is 
proofed and investigated in several investigations (Bendig et al. 2014, Tilly et al. 2014, Bareth et al. 
2015). In Fig. 4, UAV-derived plant height data for barley are validated against manual 
measurements resulting in a R2 of 0.92. As shown is Fig. 5, similar results are produced with TLS-
derived plant height for rice (R2 = 0.91). Finally, the approach is also working for grasslands. In 
Fig. 6, UAV-derived plant height is plotted against compressed sward height which was measured 
with a rising plate meter. The latter is used in grasslands for determining biomass increase. Also in 
this example a very high R2 of 0.89 is produced. 
 

 
Figure 4: UAV-derived CSM-plant height evaluated against manual plant height measurements in barley  

 (Bendig et al. 2014). 

 

Figure 5: TLS derived CSM-plant height evaluated against manual plant height measurements in rice 
(Tilly et al. 2014). 
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Figure 6: UAV derived CSM-plant height evaluated against manual rising plate measurements in grassland 

 (Bareth et al. 2015). 
 

4. WYSIWYG 

“What you see is what you get” (WYSIWYG) seems to be generally true in RGB imaging. But 
from the experiences working with TLS- and UAV-derived CSMs, an essential research question 
developed: What do we actually “see” from nadir imaging and from oblique laser scanning in the 
CSMs? The data acquisition situations are shown in Fig. 7 and Fig. 8. In Fig. 7, the nadir imaging 
with UAVs is visualized for different crop densities. Even so the single plant height is equal in both 
densities, the average plot plant height differs according to the plant cover density. This density 
information is not included in the oblique data acquisition shown in Fig. 8. Here, the average plant 
is similar to the one of the higher density because less low plant height values are recorded. 
 

 
Figure 7: Nadir view: equal plant height but different plant densities result in different mean plant height. 

 

 
Figure 8: Oblique view: equal plant height and plant density but different plant density than in nadir view. 
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5. ZONAL STATISTICS 

As shown in Fig. 7 and Fig. 8, the very high spatial resolution of TLS- and UAV-derived CSMs (< 
3 cm) on field level contains additional useful plant height information which could be described as 
surface roughness. On the one hand, homogenous plant height of crops within a field results in a 
smooth CSM without a high variance of plant height. On the other hand, a large inhomogeneity of 
crop plant height within a field produces a rough CSM. Usually, a spatial resolution of < 3 cm is not 
needed in precision agriculture. More applicable are spatial resolutions in dm or m. For such a 
processing step standard resampling methods like nearest neighbor are usually applied resulting 
again in one value class of the raster data set. But the spatial variance in plant height also contains 
valuable information. Therefore, it is of research interest to keep some of this information to 
explore its potential for crop monitoring. Hence, I suggest to use a vector grid for “resampling” the 
very high resolution into a coarser one. The method is known as zonal statistics and provides a data 
set of descriptive statistics for each vector cell.  
As an example, results of such a zonal statistic approach are shown in Fig. 9 and Fig. 10. The CSM 
presented in Fig. 9 has a spatial resolution of 0.2 m while the original input CSM was generated in a 
spatial resolution of 0.01 cm. The cells with the black outline are the cells of the vector grid which 
was used to compute the zonal statistics for each cell. In Fig. 9 the mean plant height is visualized 
for each cell which was computed from all 400 input raster cells. To show the potential of the zonal 
statistics for a vector grid, the standard deviation of the resampled CSM shown is Fig. 9 is presented 
in Fig. 10. Interestingly, a very different spatial pattern for the different plots can be identified. 
 

 
Figure 9: CSM containing mean plant height computed with zonal statistics. 
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Figure 10: Oblique view: equal plant height and plant density but different plant density. 

 

6. CONCLUSIONS 

In numerous studies it is proofed that crop growth and corresponding biomass can be reliable 
monitored with 3D data capturing approaches. TLS- and UAV-derived multi-temporal CSMs are 
good predictors for crop biomass. As expected, there is a difference in nadir- or oblique-derived 
plant height information which has to be considered in future studies. Finally, the use of vector 
grids in combination of zonal statistics might have the potential to improve biomass monitoring. 
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