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ABSTRACT 

 
Since its original publication, the Semi-Global Matching (SGM) technique has been re-implemented by many 
researchers and companies. The method offers a very good trade off between runtime and accuracy, especially at object 
borders and fine structures. It is also robust against radiometric differences and not sensitive to the choice of 
parameters. Therefore, it is well suited for solving practical problems. The applications reach from remote sensing, like 
deriving digital surface models from aerial and satellite images, to robotics and driver assistance systems. This paper 
motivates and explains the method, shows current developments as well as examples from various applications. 
 

INTRODUCTION 

Stereo matching is used for finding corresponding pixels in a pair of images, which allows 3D 
reconstruction by triangulation, using the known intrinsic and extrinsic orientation of the cameras. 
Unfortunately, the problem is ill-posed, since images are locally very ambiguous. Many techniques 
have been proposed in photogrammetry and, later on, in computer vision. However, all of them are 
far away from being optimal. This paper motivates and explains the Semi-Global Matching (SGM) 
technique, which offers a good trade off between accuracy and runtime and is therefore well suited 
for many practical applications, as shown in the end of the paper. 
 

MOTIVATION 

Correlation based stereo matching has long been the preferred method for dense reconstruction, 
especially if runtime is an issue, due to real-time constraints or huge amounts of data. Correlation 
methods compute the similarity between pixels by comparing windows around pixels of interest. 
This is done for all possible correspondences for finding the pixel with the highest similarity. 
Normalized Cross Correlation (NCC) is often used in photogrammetry for comparing windows. 
NCC handles radiometric differences like bias and gain changes and assumes Gaussian noise in the 
values of corresponding pixels. 
Correlation methods implicitly assume that all pixels within the window have the same distance 

from the camera, i.e. lie on a fronto-parallel surface. 
Slanted surfaces and abrupt changes, as caused by 
depth discontinuities, result in wrongly including non-
corresponding image parts in the calculation as shown 
in Figure 1. 
Slanted surfaces can be handled by permitting affine 
transformations of corresponding windows, i.e. Least-
Squares Matching (Grün, 1985). However, this is 
computationally expensive and does not work at fine 

structures or depth discontinuities. Matching partly wrong content near depth discontinuities (Figure 
1), leads to severe correlation errors, especially for NCC, since matching wrong pixels is not well 
modeled as Gaussian noise. Therefore, the computer vision community often uses the sum of 
absolute or squared differences and optionally limits differences (i.e. truncated costs as discussed by 
Scharstein and Szeliski (2002)) for reducing errors due to matching non-corresponding pixels. Non-

Figure 1: Correlation at object border. 
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parametric costs like Rank and Census further reduce the problem (Zabih and Woodfill, 1994) since 
outliers have a much lower weight. The problem can also be reduced by adapting the size and shape 
of windows (Kanade and Okutomi, 1994; Fusiello et al., 1997; Hirschmüller et al., 2002). 
However, a real solution of this problem is only possible by matching pixels individually instead of 
matching windows. Of course, individual pixels do not contain enough information for unique 
matching. Therefore, global methods additionally use a smoothness constraint that penalizes 
discontinuities. This is typically formulated in a cost function, 
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The first term of the function sums all pixel-wise matching costs over the whole image, while the 
second term adds a penalty for all pixels with neighbors that have a different disparity. In this way, 
discontinuities are permitted if pixel-wise matching is stronger than the penalty, i.e. if the texture 
indicates a discontinuity. It is noteworthy that the second term indirectly connects all pixels with 
each other in the image and makes the function global. 
In this formulation, the disparity image D is sought that minimizes equation (1). Unfortunately, this 
is an NP complete problem (Boykov et al., 2001). Famous approximate solutions to this problem 
are known as Graph Cuts (Kolmogorov and Zabih, 2001) and Belief Propagation (Felzenszwalb and 
Huttenlocher, 2004). The drawback of these and many other global methods are the speed and 
memory consumption, which often does not scale well with image size. 
 

SEMI-GLOBAL MATCHING (SGM) 

Semi-Global Matching (Hirschmüller, 2005 and 2008) successfully combines concepts of global 
and local stereo methods for accurate, pixel-wise matching at low runtime. 

Algorithm 

The core algorithm considers pairs of images with known intrinsic and extrinsic orientation. The 
method has been implemented for rectified and unrectified images. In the latter case, epipolar lines 
are efficiently computed and followed explicitly while matching (Hirschmüller et al., 2005). 

Matching Costs 

Radiometric differences often occur due to different imaging characteristics of the camera due to 
the vignetting effect, different exposure times, etc, and properties of the scene like non-lambertian 
reflection, which is viewpoint dependent, changing of the light source (e.g. movement of the sun), 
etc. The imaging characteristics of the camera can be calibrated and images corrected accordingly. 
However, the properties of the scene and lighting are typically unknown. Thus, the matching cost, 
which measures the dissimilarity of corresponding pixels, has to handle radiometric differences. 
The original SGM implementation (Hirschmüller, 2005) used Mutual Information (MI) as matching 
cost. MI has been introduced in computer vision by Viola and Wells (1997) for the registration of 
images from different sensors and is extensively used in the medical image community. With MI, 
the global radiometric difference is modeled in a joint histogram of corresponding intensities. Kim 
et al. (2003) applied MI to pixel-wise matching with Graph Cuts by Taylor expansion. MI has been 
successfully adapted for SGM (Hirschmüller, 2005 and 2008). The pixel-wise MI matching cost is 
very suitable for matching unrectified images, as corresponding image parts may be rotated or 
scaled against each other, which is irrelevant if only individual pixels are considered. 
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An extensive study of different matching costs (Hirschmüller and Scharstein, 2009) showed that MI 
can model all global radiometric differences as well as image noise very well, but it degrades with 
increasing local radiometric differences as caused by vignetting, different shadows, etc. 
Furthermore, MI does not scale well with increasing radiometric depth (i.e. 12 or 16 bit instead of 8 
bit quantization per pixel), since the joint histogram becomes too sparse in this case. 
The same study identified Census as the most robust matching cost for stereo vision. Census has 
been introduced by Zabih and Woodfill (1994). It encodes the local neighborhood (e.g. window of 
size 9x7 pixel) around each pixel into a bit vector that only stores if the compared, neighboring 
pixel has a lower value than the center pixel or not. Pixel-wise matching is done by computing the 
Hamming distance of bit vectors of corresponding pixels. In this way, all radiometric changes that 
maintain the local ordering of intensities become completely irrelevant. Census is also well suited 
for local radiometric changes since it considers the local neighborhood only. However, for matching 
unrectified images, the affine transformation of the local neighborhood has to be considered. 
Since the Census transformation is window based, it suffers from the same problem as correlation 
based stereo methods. However, the weight of outliers in the window is very low (i.e. 1 bit per 
outlier) and SGM uses the Hamming distances pixel-wise and not the sum of Hamming distances 
over another window as proposed in the original publication (Zabih and Woodfill, 1994). In 
general, Census is slightly inferior to MI, if there are only global radiometric differences, but it is 
much better for local radiometric changes, which are present in many real-world applications. 

Pathwise Aggregation 

SGM uses a slightly different global cost function as shown in equation (1) for penalizing small 
disparity steps, that are often part of slanted surfaces, less than real discontinuities, 
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The cost function is optimized similarly to scanline optimization (Scharstein and Szeliski, 2002), 
which can be seen as a subset of dynamic programming. It efficiently optimizes equation (2) in a 
time that is linear to the number of pixels and disparities. However, the optimization is performed in 
1D only (i.e. typically along scanlines) and not in 2D, which is NP complete. Due to individual 
optimizations along scan lines, streaking artefacts are inherent in scanline optimization and dynamic 
programming methods. 
The novel idea of SGM is the computation along several paths, symmetrically from all directions 
through the image. As shown in Figure 2, eight paths from all directions meet at every pixel. Each 

path carries the information about the cost 
for reaching a pixel with a certain disparity. 
For each pixel and each disparity, the costs 
are summed over the eight paths. Thereafter, 
at each pixel, the disparity with the lowest 
cost is chosen. This formulation ignores 
occlusions. Thus, arbitrary results occur in 
occluded areas. However, occlusions can be 
identified by computing the disparities 
separately for the left and right image and 
comparing the results by a left-right 
consistency check. Further post-processing 
steps are possible for cleaning up the 

disparity image. More details about SGM aggregation, matching of multiple and huge images is 
given in the literature (Hirschmüller, 2008). 

Figure 2: Eight optimization paths from different directions 
meet at every pixel. 
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CPU AND CLUSTER IMPLEMENTATION 

The algorithm has been implemented and optimized by coding some core loops manually with 
vector commands (i.e. SSE2 instruction set), that can operate on multiple values in parallel. 
Nevertheless, matching many huge images, as in case of aerial image processing, requires a lot of 
processing time, but each image can be matched independently against its neighboring, overlapping 
images. Therefore, SGM based image processing has been implemented on a computer cluster, 
which consists of two blade systems with a total of 256 Intel X5570 CPU cores and another blade 
system with older and slower CPUs. Each CPU core has 3 GB of RAM available for running one 
matching process. A GPFS1 based central file system with a total capacity of 55 TB is distributed 
over three RAID systems and accessed through four server computers for high performance access 
to image data. Processing is controlled by the Grid Engine2 software. 

GPU AND FPGA IMPLEMENTATION 

For real-time robotics applications, SGM has been implemented on the GPU (Graphics Processing 
Unit) using OpenGL/Cg as programming language (Ernst and Hirschmüller, 2008). Mutual 
Information as well as Census have been implemented as matching cost. The implementation runs 
on a NVidia GeForce GTX 275 on rectified images with a size of 640 × 480 pixel and 128 pixel 
disparity range with about 4.5 Hz. Other examples of SGM implementations on the GPU are in the 
literature (Gibson and Marques, 2008; Rosenberg et al., 2006). 
In a parallel development effort, FPGA (Field Programmable Gate Array) implementations of SGM 
with Census as matching cost have been investigated. Since the SGM algorithm has a very regular 
structure with operations that can be reduced to comparing and adding integer values, it is well 
suited for massive parallel implementations on FPGAs. Gehrig et al. (2009) presented a SGM 
implementation on a FPGA that processes images at 27 Hz and requires less than 3 W of power. 
Banz et al. (2010) published an idea for reducing the external memory bandwidth, which is the 
bottleneck for an SGM implementation on a FPGA. 
These GPU and FPGA implementations target at real-time applications on rather small images. For 
processing huge images with large disparity ranges, the DLR Institute of Robotics and 

Mechatronics delegated an implementation to the 
Supercomputing Systems AG3. Within the project, 
a new Xilinx Virtex 6 (LX240) board has been 
developed with four parallel memory banks, 
equipped with 2 GB DDR3 memory modules for 
avoiding a memory bus bottleneck. The com-
munication with a host PC is implemented by 
Gigbit Ethernet (Figure 3). 
The SGM implementation expects rectified images 
with 16 bit radiometric depth and uses Census as 
matching cost. Images can have a width and height 
between 512 and 2048 pixels in steps of 8 pixels. 
The disparity range can be chosen between 32 and 

4096 pixels for an image width up to 1024 pixels. It is limited to 1024 disparities for images with a 
larger width. The width of the right image is extended by the disparity range, such that each pixel of 
the left image has a correspondence in the right image, even if the disparity range is larger than the 
image width. This feature is used for tilewise processing of huge images. Left-right consistency 
                                                 
1 http://www.ibm.com/systems/software/gpfs 
2 http://www.gridengine.org 
3 http://www.scs.ch 

Figure 3: SGM accelerator board for huge images with 
large disparity ranges. 
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checking is done on the host PC, since it is computationally not demanding. The implementation is 
thought as an external SGM acceleration box. The communication via Gigabit Ethernet permits 
creating a network of host PCs and processing boards. 
Currently, the FPGA implementation is running at only half of the planned core frequency of 160 
MHz. The implementation requires 4.6 s for matching twice (i.e. for left-right consistency 
checking) an image of size 2048 × 2048 pixels with 1024 pixel disparity range. In comparison, the 
optimized CPU implementation, running on a very fast Intel X5570 CPU with 3.0 GHz is 41 times 
slower than the FPGA implementation. The goal of the current optimization phase of the project is 
to double the speed of the FPGA. Despite this high computational performance, the FPGA box has 
a total power consumption of just 54 W, including power supply. This speedup and the advantage of 
significantly less hardware costs, infrastructure and air-conditioning in comparison to CPU or GPU 
solutions, makes the FPGA a very attractive alternative for processing huge amounts of data in short 
time. 
 

EVALUATIONS 

SGM has participated in several tests and evaluations. The Middlebury stereo pages (Scharstein and 
Szeliski, 2011) currently list 108 stereo methods. The C-SGM variant (Hirschmüller, 2006) that is 
modified for structured indoor scenes has a Rank of 30 and an average error of 5.8%. In 
comparison, the currently best method has an average error of 4%. However, runtime and 
scalability, with respect to image size, is not considered in the evaluation. Furthermore, the test 
image set is quite limited as it includes only four pairs of small images of indoor scenes. Practical 
experience has shown that SGM is not only much faster and more scalable than most other 
methods, but also robust in very different applications and does not require parameter tuning. 
Another test compares SGM and other methods for reconstructing the Martian surface from HRSC 
images that have been taken by the ESA probe MarsExpress (Heipke et al, 2006; Hirschmüller et al, 
2006). In this application, SGM performed as well as other methods that were specially tuned to this 
application in contrast to SGM. 
The main power of SGM can be demonstrated on aerial images of urban scenes. A study 
(Hirschmüller and Bucher, 2010) compared SGM based digital surface models from images of 
different commercial aerial cameras with each other, with a laser model and ground control points. 
Very precise DSMs in the ground sampling distance of the images were computed, especially on 
datasets with sufficient image overlap (Figure 4). The competitiveness of SGM as compared to 
aerial laser scanning has also been confirmed by others (Gehrke et al., 2010). 

  
Figure 4: Automatic untextured and textured reconstruction from DGPF UltraCam-X images with 8 cm/pixel ground 

sampling distance (from Hirschmüller and Bucher, 2010). 
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APPLICATIONS 

The applications for SGM range from aerial and satellite image processing and robotics to driver 
assistance systems. It is noteworthy that algorithmic parameters never need to be changed within an 
application and many parameters are also fixed between very different applications like aerial 
image matching and robotics, which shows the generality and maturity of the approach. 
 

AERIAL AND SATELLITE IMAGE PROCESSING 

The SGM cluster implementation (Section 3.2) has been used in various projects for creating digital 
surface models (DSM) and ortho images from aerial pinhole, pushbroom as well as satellite images. 
More than 100 TB of registered images have been processed fully automatically in recent years. 

Figure 5 shows a typical result from high resolution aerial images. The DSM is always created in 
the ground sampling distance of the images, with sharp object boundaries and fine details. Side 
textures for vertical structures like building walls are generated fully automatically from aerial 
images as well, which results in photo realistic, high resolution city reconstruction. 

Figure 6 shows a reconstruction of Germany’s 
highest mountain “Zugspitze” in 20 cm/pixel from 
pushbroom images, taken by the High-Resolution 
Stereo Camera (HRSC) that has been developed at 
the DLR Institute of Planetary Research. 
Pushbroom images are matched unrectified, by 
explicitely calculating and following epipolar lines 
(Hirschmüller et al., 2005), since pushbroom 
images cannot be rectified in general. 
A reconstruction of Berlin from satellite images is 
shown in Figure 7. Despite the low spatial and 
radiometric resolution as compared to aerial 
images, all houses and main structures are 

precisely represented in the DSM. In this case, only an ortho-image has been created from 
panchromatic input images for texturing the model. 
SGM based reconstruction of the worlds highest mountain (Mt. Everest) is shown in Figure 8. As in 
all other examples, the DSM has been created in the ground sampling distance of the images, which 

 
Figure 5: Automatic untextured and textured reconstruction from DGPF UltraCam-X images with 8 cm/pixel ground 

sampling distance (from Hirschmüller and Bucher, 2010). 

Figure 6: Reconstruction of Zugspitze in 20 cm/pixel 
from HRSC pushbroom images. 
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is in this case 50 cm/pixel. The data set contains a height range of almost 5000 m from the lowest 
point to the mountain top, which results in disparity ranges of several thousand pixels. 
The maturity of the approach has convinced many researchers and companies to re-implement SGM 
for remote sensing applications (e.g. Gehrke et al., 2010). 

MODELLING FROM LIGHT WEIGHT, UNMANNED MULTICOPTERS 

The creation of DSMs and fully textured reconstructions from consumer grade cameras is another 
application for SGM. In this case, an off-line 3D viewpoint planning algorithm was used on a 
coarse DSM (Schmid et al., 2011). An optimal path was planned through all viewpoints and flown 
autonomously by a light weight multicopter. Images were taken by a 10 MPixel Pansonic Lumix 
DMC-LX3. Image registration was performed by the bundler software (Snavely et al., 2008) and 
matched by SGM. The results in Figure 9 appears very accurate with a high level of details. 

 
Figure 7: Reconstruction of Berlin in 50 cm/pixel from World View satellite images, provided by Digital Globe. 

Figure 8: Reconstruction of Mt. Everest in 50 cm/pixel from World View satellite images, provided by Digital Globe. 
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Figure 9: Building “DLR TechLab” and hillside, reconstructed by SGM in 5 cm/pixel from images of a 10 MPixel 

camera mounted on a flying multicopter (from Schmid et al., 2011). 

MOBILE ROBOTICS 

Real-time implementations of SGM on the GPU are used in robotics. Figure 10 shows the DLR 
crawler (Görner et al., 2010), which is equipped with a synchronized stereo camera. Stereo 
matching and visual odometry with six degrees of freedom are performed in 5 Hz. The depth 
images and visual odometry information are used for mapping and navigation in unknown, rough 
terrain (Chilian and Hirschmüller, 2009) for search and rescue as well as for planetary missions. 
Current work includes the on-board implementation of SGM on FPGAs for mobile robotics. 

DRIVER ASSISTANCE SYSTEMS 

SGM has also been discovered by Daimler AG for supporting driver assistance systems. In this 
application, the car is equipped with a stereo camera that observes the scene in front of the car as 
shown in Figure 11. A low-power FPGA implementation of SGM (Gehrig et al., 2009) is used for 
computing depth images in real-time. The depth images are used as base for various driver 
assistance tasks. For this purpose, SGM gives much better results as correlation based stereo 
matching (Steingrube et al., 2009). Figure 11 shows that SGM delivers much more depth values. 
Moreover, it also produces significantly less errors in low contrast areas and shows robustness 
against repetitive structures like at the rail of the bridge. 

Figure 10: DLR Crawler with stereo camera and real-time GPU implementation of SGM. 
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Figure 11: Camera image with depth image overlay. Red is near and green is far away. 

Left: Stereo correlation. Right: SGM. Courtesy of Stefan Gehrig (Daimler AG). 

 

FUTURE WORK 

Current work includes the GPU implementation of SGM in OpenCL for getting rid of some 
OpenGL size and data type restrictions. Furthermore, FPGA based matching of huge images will be 
optimized for speed and FPGA implementations for mobile systems realized. Future work also 
includes the creation of real 3D models from SGM disparity images, additionally to the currently 
produced 2.5D surface models. 
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