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ABSTRACT 

 
With the introduction of digital cameras questions about various aspects of the performance of the “new digital 
measurement device” have started and last since then. Several investigations performed by camera users and customers 
as well as by some manufacturers and scientific institutes have proven the outstanding quality of digital metric cameras. 
However, some reports revealed systematic error pattern in the images which can be determined by self calibration 
parameters during bundle block adjustment. Various approaches can compensate those effects in the digital images. 
Intergraph with the history of the Carl Zeiss and Z/I Imaging photogrammetry business wants to deliver outstanding 
system performance and thus strives to research the real source for the need of additional corrections.  
This paper introduces major investigation results, describes the problem and discusses applicable solutions. The main 
part starts with a self assessment of the Z/I Imaging calibration procedure and the DMC Post Processing System. It 
focusses next on a possible error budget model which leads to the approach of modeling a correction grid based on 
collocation technique. Finally the first results achieved with that technique are presented. The paper finishes with an 
outlook to the next development steps and tests at Intergraph. 
 

1.   INTRODUCTION 

The DMC Digital Mapping Camera of Z/I Imaging was introduced in 2003 and several reports 
about the outstanding quality of DMC’s radiometric and geometric performance has been published 
since then (Dörstel, 2003; Madani, 2004). These reports and presentations of the production site 
behavior of the DMC (accuracy: horizontal ±1/2 pixel / vertical ±4/5 pixel by 3001 Inc, 2004 – at 
GeoSpatial World 2004) have been considered as a proof of all the investigations done during 
system design (Tang, 2000) and system certification. However, first indications of anomalies were 
reported by Swedish Landmäteriet and later on this phenomenon was discussed at the EuroCow 
2006 workshop in Barcelona (Alamús, 2006; Honkavara, 2006; Kruck, 2006). 
  
At the beginning investigations concluded that systematic pattern in the block were influenced by 
atmospheric conditions, the camera itself, the control distribution or the introduction or weighting 
of additional GPS/IMU measurements. The introduction of self calibration parameters should be 
activated to compensate atmospheric conditions (R3 - parameter) or other remaining influences. This 
was a recommendation for the adjustment process and it was not considered for the compilation 
from stereo models. 

1.1. Problem description 

For research and engineering purpose one vital and mandatory requirement is to have a proper 
description of the problem and the goal. In this particular case the problem description comes from 
the camera operator’s point of view. When customers first reported their observations there were 
lots of discussions about difficulties with distribution or identification of control points or the 
weighting of GPS/IMU measurements as well as the influence from atmospheric conditions or earth 
curvature. One customer report (Alamús, 2006) found residuals of 0.5 – 3 [µm] in the virtual image 
space by analyzing the Block Rubi with an average ground sampling distance of 10 [cm]. These 
residuals in the image space translated into a maximum bending of 15-20 [cm] in z. In that research 
a preserving weighting was used and a 4 quadrant self calibration led to the correction grid as 
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depicted in figure 1. This correction grid when applied to other triangulations at the same 
approximate scale resulted in similar improvements.  

 
The grid with the mean residuals showed multiple whirl structures in the individual camera 
segments. Similar correction shapes were found with different approaches. These structures can not 
be explained by regular sets of calibration parameters. They showed no appearance of influences 
coming from scaling or shift in the individual segments either. The investigation of a block with 
very high overlap in strip and cross strip directions (80% / 60% @ 6 [cm] ground resolution) has 
shown similar pattern.  
To conclude, the goal is to research and correct a systematic distortion with a minimum estimate of 
0.5 [µm] and a maximum estimate of 3 [µm]. Knowing that the random error from image 
measurements due to radiometric noise is about 2 [µm] this a challenging task.  

2.   APPLICABLE SOLUTIONS 

For the practical use of DMC cameras this effect has few influences but since it is a systematic 
pattern we want to correct this phenomenon. In general we can distinguish between the 4 
workflows, introduced in figure 2: 
 

1. Regular workflow 
2. Correction grid in Real Time Loop   
3. Apply correction grid to the images 
4. Improve camera calibration with correction grid 

 
Regular workflow:  
This approach (case 1.) applies to most of the projects. Excellent results can be achieved by 
meaningful usage of accuracies for check and control points and for the weights of GPS / IMU 
measurements. Applying refraction correction and self calibration parameters during bundle block 
adjustment process helps to achieve such good results as well. This approach is the most efficient 
for all projects at medium or high altitude where the vertical accuracy of the end product is not the 
main criterion. However some applications may require one of the following options. 
 
 

Fig. 1: Mean Residuals in image space from block Rubi (Kornus 2006) 
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Correction Grid in Real Time Loop: 
Once a correction grid is computed by bundle block adjustment this can be applied in the 
Photogrammetric Real Time Loop while transforming measurements from the image to the object 
space (case 2.). 
 
Apply correction grid to the images: 
This approach requires resampling of the images a second time. In that case (3a) the second 
resampling degrades the image quality. To avoid quality degradation, we have introduced an 
interface into the DMC Post Processing software to apply the correction grid when the initial image 
is generated (case 3b). The correction grid can be computed from a subset of images in the project 
and combined with the process of a bore site calibration of the camera.  
 

 
Improve calibration with correction grid: 
This case (4.) represents the best possible solution since there is no need for additional processing 
within the production cycle. Because each DMC camera is delivered after a Quality Control flight 
(QC) performed over the Z/I test field in Elchingen, there is an established process to support this 
approach. The idea is to compute correction grids for the individual camera heads from high 
overlapping images taken over a well defined test area and to use these grids to improve the camera 
calibration. 
 

3.   INVESTIGATIONS 

After first in-house investigations at Intergraph, where the phenomena of “systematic pattern” could 
not be confirmed an investigation of the “Rubi” block provided by ICC Barcelona was undertaken. 
From this point in time our research was accompanied by investigations of the University of 
Hannover, Institute for Photogrammetry and GeoInformation. Since then, lots of possibilities were 
discussed resulting in a systematic investigation of the complete camera calibration and the DMC 
Post Processing software. 

Fig. 2: Possible processing workflows for digital frame cameras – regular workflow (1), with correction grid for the 
Level 1 images (2) or with correction applied to images (3) or with collocation grid for improved camera calibration (4)  
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They result mostly from systematic error in image space. As an upper limit for this error we can 
assume 2.5 [µm]. 
 
Virtual image assembly is a process of computing a pixel transformation map by re-projection from 
4 oblique pan-chromatic cameras into a single near-nadir VIR camera and to resample the raw 
image data into a new composite image. All error sources in re-projection and resampling constitute 
the tertiary error source, E3. 
 
This investigation leads to the conclusion that the bottleneck in VIR image distortion may be due to 
effects in platform orientation (E2) that easily propagates to object space. Those can be caused by 
insufficient compensation of non linear lens-chip distortion and thus any improvement of robustness 
of E1 in the platform orientation that decreases E2 should be applied. The easiest way to do this is 
to use the images from our test flights and to compute calibration improvement grids from a dense, 
well defined block.  

3.3. Collocation Grid 

Collocation technique in mathematics is a method for the numerical solution of differential and 
integral equations. The idea is to choose from finite space of candidate solutions and a number of so 
called collocation points, and to select that solution which satisfies the given equation at the 
collocation points. By using this approach all measures (collocation points) are part of the final 
solution. 
To feature the collocation grid computation with valuable data a photogrammetric block with 80% 
end lap and 60% side lap shall be captured. This 80%/60% VIR block needs to be captured because 
it will give us a 60% by 30% overlap block for each PAN camera. The ground resolution for that 
investigation should be between 5 and 7 [cm]. Such a block was flown in May 2007 over the Z/I 
Imaging test field located in Elchingen. With that flight 846 images in 9 north-south and 12 east-
west strips have been taken. The actual GSD was at 5.4 [cm] which translates to an average image 
scale of 1:4500. For the computation of the correction grids 33.000 observations and 37 full control 
points were available and the images of the individual camera heads were used. Those images can 
be triangulated as a regular block using ImageStation Aero Triangulation (ISAT). From the cloud of 
tie points a 56x32 post correction grid for each pan-chromatic camera was computed.  
 

4.   RESULTS 

The grid calibration procedure produced a post-correction grid for all 4 pan-chromatic camera heads 
with a minimum correction of 0.3 [µm] and maximum corrections of up to 1.88 [µm]. This is from 
the order of magnitude what we expected to see as a correction for the individual camera heads. 
Comparing these results with other publications such as Kruck in 2006, he figured maximum 
residuals of 2.94 [µm], provides trust in that solution. Even the results from the Rubi block require 
corrections of a magnitude of 0.5 – 3 [µm]. Thus we can in first instance assume that the technique 
under discussion delivers corrections in the expected range. Looking to the shape of the corrections 
we saw in chapter 1.1 that the whirl structure discovered is a prominent pattern, not reproducible 
with standard self calibration parameters. Figure 4 shows a comparison of a correction grid modeled 
by Bingo and the 4 individual correction grids computed by collocation technique. The whirl 
structure is present in both graphics. Note, the blocks were taken with different cameras. 
A more detailed analysis of the data of that test flight is currently ongoing and the final proof that 
the grid really resolves the block bending must still be shown. 
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For validation of the effectiveness of photogrammetric data refinement by post-correction, after 
having applied the ten AP parameters (10-AP) a QC is done. The procedure for that was as follows:  

• The block is triangulated with GPS given EO StdDev of 20 [cm] and image observation 
StdDev of 2[um]. The triangulated XYZ objects are recorded. 

• The block is triangulated with GPS given EO StdDev of 5 [cm] (Shift/Drift is active) and 
image observation StdDev of 6[um]. The triangulated XYZ objects are recorded. 

• The estimated deformation of DTM is plotted as difference in Z between two datasets versus 
XY planar position. 

 

 
This procedure was repeated twice: first, for a block of image observations corrected only for 10-
AP by the lab calibration model and second, for a block of image observations corrected by 10-AP 
and post-corrected by the correction grid. This computation was done for one camera head. Figure 5 

 

Fig. 4: visual and numerical comparision of correction grids, block Trusville (Kruck 2006) with max residual = 2.9 µm 
(left) and block Elchingen, max residual = 1.88 µm (right) both blocks flown with different DMC cameras. 

 

Fig. 5: DTM comparision, 10-AP correction (left) vs. Collocation grid (right) 
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shows the results for camera head 3 where the deformation DTM was reduced from 55[cm] to 
11[cm]. 
 

5.   CONCLUSIONS AND OUTLOOK 

In case the regular workflow for digital photogrammetry is no applied and images shall be corrected 
for any systematic pattern this paper introduced several possibilities. One possibility offered to the 
users of the DMC Post Processing software is to apply correction grids right during generation of 
the virtual images. This enhancement of the software guarantees best possible image quality. As a 
second possibility the computation of collocation grids for individual camera heads was suggested. 
This technique requires very well defined blocks with high overlaps. For the DMC camera this is an 
challenging task since the maximum residuals expected are in the order of the random error from 
image measurements due to radiometric noise which is about 2 [µm]. However the collocation 
technique introduced was capable to produce correction grids to compensate for such pattern. 
Since this investigation is not completed yet the final results are still pending. The next steps to 
proof the correctness of the approach is to implement the collocation grid for individual camera 
heads into the post processing software and then to re-compute the images. The final triangulation 
should then confirm the proper correction of the pattern under discussion.  
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