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Progress in Automatic Aerial Triangulation

TONI SCHENK, Ohio State University, Columbus

ABSTRACT

This paper summarizes the most important conclusions that can be drawn from recent developments in automatic aerial

triangulation. The focus of the paper is on a shift from points to linear and areal features. After motivating this shift,

the paper deals extensively with the use of control features to recover the exterior orientation parameters. Two different

approaches are presented, namely an image point to control feature relationship, and an image feature to control feature

relationship. The latter relationship requires fitting the appropriate feature through data points. The paper continues

with an account of remaining problems and concludes with suggested future research and directions of automatic aerial

triangulation.

1 Introduction

The transition from analytical plotters to digital photogrammetric workstations also had a significant
impact on aerial triangulation. It lead to what may be called interactive aerial triangulation. Most
vendors of digital photogrammetric workstations offer software tools that greatly assist the operator in
conducting aerial triangulation. Interactive methods offer the advantage of having a human operator
in the loop who can intervene if something goes wrong or makes decisions upon system requests. In
that way, automation of aerial triangulation can be gradually introduced.

Automatic aerial triangulation sets out to perform all the necessary processes automatically, with-
out much assistance from a human operator. The ultimate goal would be to have a black box system
that does not need any intervention at all. There is no sharp boundary between interactive and auto-
matic aerial triangulation. One may argue that a sophisticated interactive system may be superior to
an inflexible, non-robust automatic aerial triangulation system.

Remarkable progress has been achieved in automatic aerial triangulation during the past few years.
Undoubtedly, the single most important activity was the OEEPE test on integrated sensor orientation,
Heipke et al. (2002). At the occasion of the OEEPE workshop in Hannover, Sept. 17-18, 2001,
several researchers presented their findings and shed light on some of the pending issues.

From these OEEPE related activities and recent developments we comment on a few points. Com-
mercially available automatic aerial triangulation programs have reached a high level of performance
and flexibility allowing smooth and efficient processing of large blocks. The capability of programs
developed at research institutions are perhaps less well advertised and therefore less well known.
They usually sacrifice robustness, support, ease of use, and documentation for a higher level of so-
phistication and flexibility in the mathematical models.

We can also conclude that there is a much better understanding of the question direct vs. indirect
orientation, about the intricate relationship of sensor calibration, and the effect of interior and exterior
orientation. Perhaps less well known is the accuracy aspect of computed block points from direct
or indirect orientation. Habib and Schenk (2001) present a detailed analysis which shows that the
accuracy of block points is inferior in direct orientation even if the orientation parameters have small
errors. This is a consequence of a different error propagation between the two methods.

Yet another conclusion is that automatic aerial triangulation is entirely point based. Most authors
seem to make a claim of using features but a closer look reveals that points are meant. We take the
point/feature issue as the central part of this paper. The next section provides a motivation for using
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features and suggests a closer integration of automatic aerial triangulation with other photogrammetric
procedures. Section 3 is devoted to the use of control features, such as straight lines, analytical curves,
free-form curves, planar surfaces, and free-form surfaces. The presented mathematical models are
based on an image point to control feature relationship, or, if possible, an image feature to control
feature relationship. Section 4 lists some of the most important problems to be solved, including
tie features, curve fitting, and multisensor automatic aerial triangulation. The paper concludes by
summarizing the most pertinent points discussed and suggests future developments.

2 Feature-Based Aerial Triangulation
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Figure 1: The left hand side depicts a blockdiagram
of aerial triangulation and photogrammet-
ric applications. Note the clear separation
of the processes. The right hand side sug-
gests a closer integration.

As noted in the previous section, automatic aerial
triangulation is predominantly point-based, pre-
sumably because it is more challenging to extract
linear and areal features and to use them in the
mathematical models of automatic aerial trian-
gulation. Despite these difficulties, we strongly
argue for moving from a point-based to feature-
based photogrammetry, see also Schenk (2002).

In automatic photogrammetry computer oper-
ators assume the role of human operators. How-
ever, computer operators are far inferior with re-
gards to selecting meaningful points in aerial tri-
angulation. Although points can be extracted eas-
ily with an interest operator, they carry almost
no semantic information about a scene. In con-
trast, linear and areal features may be related to
objects. For example, an edge in the image may
correspond to an object boundary, and a region
to physical surface. In view of object extraction,
features are clearly more meaningful primitives
than points.

Now the critical reader may raise the ques-
tion why we should be concerned of integrating
automatic aerial triangulation with other applica-
tions that need features? To answer the question
we refer to Fig. 1. The left side shows the tradi-
tional process of aerial triangulation and the re-
lationship to subsequent processes. Aerial trian-
gulation is a self-contained process with the goal
to determine the exterior orientation of all im-
ages involved in a project. This is to narrow a
view, however, because aerial triangulation also
produces valuable information about the object
space, namely all the tie points. The object space
information is hardly used, however, except perhaps if stereomodels are being set up and tie points
are used to orient the models (as an alternative to use the exterior orientation parameters) in order to
manually minimize the y−parallaxes.
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The right hand side of Fig. 1 suggests a closer integration of aerial triangulation with subsequent
photogrammetric processes, such as DEM/DTM generation or automated mapping. The differences
to the traditional approach may appear subtle but are important. As argued in the previous section,
the orientation should preferably be performed with the same features that are used in applications.

As the figure indicates, the raw extracted features are further processed. Segmentation for exam-
ple, would extract straight lines and second order curves (curvi-linear segmentation). An example of
a typical grouping process is finding straight lines that have a particular orientation with each other,
e.g. parallel lines, or lines at right angles. These grouping processes are at the heart of perceptual
organization that aims at finding structure in features. In object recognition, such structures can be
compared with models of objects and if sufficient agreement between image structures and model is
found, a hypothesis about the instance of an object can be generated.

The major advantage of incorporating more abstract features is two fold. For one, matching
abstract features is a lot more robust than matching low level image primitives, although it is consid-
erably more complex to implement it. Successfully matched structures, perhaps in multiple images,
may assume the role of tie features and after automatic aerial triangulation, they are represented in
object space, allowing scene interpretation in the 3D object space.

Surface reconstruction is a good example for tightly coupling automatic aerial triangulation with
automatic DEM generation. In fact, there is no reason why sensor orientation and surface reconstruc-
tion must be completely separate processes.

3 Orientation with Control Features

In this section we will examine the use of known linear and areal features in object space, called
control features, instead of control points. Linear features include straight lines, analytical curves
(space curves), and free-form lines. Straight lines and to a lesser degree space curves may be known
in object space in urban areas while free-form lines are more likely to occur in natural scenes, for
example roads or other extended features stored in a GIS.

Control surfaces are increasingly available from LIDAR projects or in form of existing DEMs/
DTMs. If a control surface derived from LIDAR is used then orienting images with respect to this
surface is an ideal registration or fusion of the two sensors.

We assume that some control features are imaged, at least partially and that this partial projection
can be extracted, for example by an edge operator. In the following, we call this extracted feature
image feature. The goal is to derive a relationship between control feature, image feature, and the ori-
entation parameters, based on which a suitable target function can be designed for unbiased estimate
of the orientation parameters.

There are two principally different ways to establish a relationship between image and control
feature. The first approach takes a point of the image feature, for example an edge pixel, and mini-
mizes the distance of the bundle ray and the control feature. This will lead to modified collinearity
equations. In the second approach, the image feature is represented as an entity like the control fea-
ture. This entails fitting a straight line or a curve through instances of the image feature. Then, a
relationship of entities is established that usually renders condition equations.

It is possible to combine both methods in an orientation problem to take advantage and avoid
disadvantages that are associated to both methods.
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3.1 Orientation with Straight Lines

3.1.1 Image Point to Control Line Relationship

To illustrate the case of using observed points on an image feature that corresponds to a 3D control
feature, we use the example of straight lines. Suppose a known straight line in object space is par-
tially imaged and detected by an edge operator, for example. As shown in Fig. 2(a), we can extend
the standard collinearity model such that the bundle ray from the perspective center through an edge
point intersects the control line. This situation can conveniently be expressed by the parametric rep-
resentation of the control line because. That is, the unknown point of intersection is defined by line
parameter t. Let points A and B define the control line. Then any point on this line is defined by
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Figure 2: Illustration of edge point to control line relationship (left pane) and image line to control
line relationship (right pane).

X = XA + t · a
Y = YA + t · b (1)

Z = ZA + t · c

with a, b, c the components of the direction vector and t the line parameter.
Now, in the standard collinearity model we substitute object point P by above equation and obtain

the extended model

xp = −f
(XA + t · a − XC)r11 + (YA + t · b − YC)r12 + (ZA + t · c − ZC)r13

(XA + t · a − XC)r31 + (YA + t · b − YC)r32 + (ZA + t · c − ZC)r33

yp = −f
(XA + t · a − XC)r21 + (YA + t · b − YC)r22 + (ZA + t · c − ZC)r23

(XA + t · a − XC)r31 + (YA + t · b − YC)r32 + (ZA + t · c − ZC)r33

(2)

with xp, yp an observed edge point, rij the elements of the orthogonal rotation matrix, and XC , YC , ZC

the perspective center. The perspective center, the three attitude angles of the rotation matrix, and line
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parameter t are the 7 unknowns to be estimated for one image and one observed point. Considering
the degree of freedom of two for straight lines, we can form another independent observation equation
of the form 2. Not surprisingly, three non-collinear control lines are needed to determine the exterior
orientation parameters. Observing more than 2 points on a edge does not contribute towards the
reduction of the datum defect but increases the redundancy and thus positively influences the accuracy.
Note that even if only one point per edge is used, the orientation can be solved, but we would need
six control lines.

3.1.2 Image Line to Control Line Relationship

Fig. 2(b) illustrates the concept of establishing a relationship between a straight line in the image and
its corresponding control line in object space. As indicated earlier, the straight line in image space is
the result of a line fitting process, for example by segmenting the raw edge into straight line segments.

There are various ways to formulate a relationship between the fitted line, the control line, and the
orientation parameters. Tommaselli and Lugnani (1988) suggest to use the following constraint:

λRn′ = n (3)

with λ a scale factor, R the attitude matrix, n′ the normal of the plane defined by the perspective center
C and image line L′, and n the normal of the plane defined by the perspective center C and control
line L. Expanding Eq. 3 to components and eliminating the scale factor λ leads to two independent
equations. Thus, every line reduces the rank deficiency by two, confirming the fact that three non-
collinear lines are necessary to solve the exterior orientation parameters.

3.2 Orientation with Analytical Curves

Analytical curves are a natural extension from the straight line. Considering the research published
related to straight lines, using analytical curves received considerably less attention. The computer
vision community primarily focused on a subfamily of general 3D curves, namely conic sections.

3.2.1 Image Point to Curve Relationship

We propose a parametric representation of a general 3D curve Γ(t) = [X(t) Y (t) Z(t), a ≤ t ≤ b].
Vector Γ(t) describes the locus of points on the space curve as a function of curve parameter t, ranging
from a to b. Now, the collinearity equations are modified to express that a measured point in image
space corresponds to Γ(t). Using homogeneous coordinates we have




xj

yj

1


 = λj




r11 r12 r13 −(r11XC + r12YC + r13ZC)
r21 r22 r23 −(r21XC + r22YC + r23ZC)

−r31/f −r32/f −r33/f (r31XC + r32YC + r33ZC)/f







X(t)
Y (t)
Z(t)

1


 (4)

Denoting the 3 × 4 matrix in (4) by S and eliminating the scalar λj yields modified collinearity
equations

x =
S1[X(t) Y (t) Z(t)]T

S3[X(t) Y (t) Z(t)]T
and y =

S2[X(t) Y (t) Z(t)]T

S3[X(t) Y (t) Z(t)]T
(5)

with Si corresponding to the ith row of S. Since the 3D location of object points is uniquely deter-
mined by the value of curve parameter t, the image coordinates of object points are now functions of
the six camera parameters and the curve parameter t, e.g.
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x = Gx(XC , YC , ZC , ω, ϕ, κ, t) and y = Gy(XC , YC , ZC , ω, ϕ, κ, t) (6)

To arrive at a set of linear equations, (6) must be linearized. Linearization requires initial values
for the pose parameters as well as an estimate to for the curve parameter.

Every image point renders two equations but increases the number of unknowns by one (curve
parameter t). Hence, it contributes only one degree of freedom to the overall redundancy budget.
However, there is additional, independent information that can be used. As shown in detail in Zal-
manson (2000), differential curve information in form of tangent and curvature can be used at the
same measured point (x, y), resulting in four equations. This requires a measurement for the tangent
direction and the curvature, however.

3.2.2 Image Curve to Control Curve Relationship

There is an explicit relationship between the parameters of conic sections in image and object space,
involving the orientation parameters. Conic sections are an interesting family of analytical curves
because they are invariant under perspective transformations. That is, a conic curve or section in
object space is imaged as a conic. This can be easily explained with basic geometry. Suppose a conic
has its origin in the perspective center. The image plane intersects this conic resulting in a conic curve
or conic section. The same is true for the plane in object space that contains the conic curve.

Conic curves are usually expressed explicitly by ax2 +bxy+cy2 +dx+ey+f = 0. This equation
can also be written as:

[
x y 1

]



a b/2 d/2
b/2 c e/2
d/2 e/2 f







x
y
1


 = 0 or XQXT = 0 (7)

Q is the conic matrix and contains the conic parameters a, . . . , f . We can use the general conic curve
equation (7) to express the conic curves in image and object space. Let Q′ be the conic matrix in
image space and Qp the corresponding control conic curve represented in a local coordinate system.
The principal plane of this local system is identical to the plane that contains the control conic in
object space. The following six condition equations exist between the elements of Q′ and Qp:

kQ′[1, 1] − Qp[1, 1] = 0 kQ′[1, 2] − Qp[1, 2] = 0 kQ′[1, 3] − Qp[1, 3] = 0

kQ′[2, 2] − Qp[2, 2] = 0 kQ′[2, 3] − Qp[2, 3] = 0 kQ′[3, 3] − Qp[3, 3] = 0 (8)

As shown in Zalmanson (2000), the degree of freedom associated with space curves is directly
related to the number of parameters that uniquely define the curve. For conic curves five independent
parameters exists. It follows that only five independent equations can be used from Eq. 8. One of
the six equations can be used to eliminate the scale factor k. We realize that one control conic is not
enough to recover the six exterior orientation parameters.

3.3 Orientation with Free-form Control Curves

As elegant as the use of analytical curves for the pose estimation is, its application is limited because
such 3D curves hardly exist in photogrammetry and remote sensing applications. To exploit the full
potential of linear and areal features, free-form curves and free-form surfaces must be included in the
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orientation process. Besl and McKay (1992) first introduced free-form shapes for solving the reg-
istration problem with curves and surfaces. The authors describe a general-purpose, representation-
independent method for registering a variety of 3D shapes such as point sets, free-form curves and
surfaces. The iterative closest point (ICP) algorithm is the underpinning for the registration of 3D
shapes. It requires only a procedure to find the closest point on a geometric entity to a given point.
Subsequently, the ICP approach enjoyed a great deal of interest and success in solving many regis-
tration problems. In all these applications, a general weakness of the approach surfaced, however.
While it always converges to a minimum value from any given initial transformation parameters, its
convergence into a global minimum cannot be guaranteed. Thus, to avoid incorrect transformation
parameters, the initial parameter approximations must be quite accurate. Often times, this is a tough
requirement as it may necessitate the use of a matching strategy that ultimately yields a set of cor-
responding point primitives. Over the years, many curve and surface matching strategies have been
proposed with recent trends mostly devoted to exploiting differential and semi-differential invariants
associated with a variety of 2D and 3D geometric transformations. Zalmanson (2000) proposes an
alternative approach to circumvent the local minimum problem of the ICP method. The concept of
parametric curves allows the simultaneous estimation of the closest point and the orientation param-
eters. This significantly improves the convergence rate compared to classical ICP methods.

A 3D free-form curve, Γf , is represented as a sequence of vertices V = {Vi}. This induces a
set of ordered line segments (polyline). As described in the previous section, we then determine the
orientation parameters by minimizing the distance between a bundle ray and the polyline.

3.4 Orientation with Control Surfaces

In this section we assume that surfaces are known in object space. The most frequently occurring
cases are known planes and free-form surfaces, such as DEMs and DTMs. We approximate free-
form surfaces by a set of planar surface patches—in analogy to straight lines and free-form curves.
Therefore we only sketch the solution for using planar surfaces as control surfaces.

Obviously, dealing with surfaces requires that surface features extracted from sensors are three-
dimensional. An example for a 3D sensor is a range finder. When working with a 2D imaging sensor,
3D surface features are obtained from two or more images. For the following discussion we assume
a 3D model space with measured or derived points that are known to be on a planar surface.

3.4.1 Model Point to Control Plane Relationship

The problem of orienting stereomodels to DEMs was first suggested by Ebner and Strunz (1988)
with a target function that minimizes the z−differences. This is not an unbiased estimation of the
orientation parameters because it is direction dependent. We propose to use as a target function the
distance from a model point to the known surface along the surface normal, instead. Let q be a point
in model space, subjected to a 3D similarity transformation. Then we have q′ = sRaq − t with s
a scale factor, Ra an orthogonal matrix that rotates the model space into the object space, and t the
translation vector. Further let S be the surface, expressed in the Hessian normal form. Then, the
shortest distance d from q′ to surface S, is defined by

d = q′ · h − p (9)

with h = [cos α cos β cos γ] the three directional cosines and p the distance of surface S from
the origin. The target function (9) combines the unknown seven orientation parameters with the
control surface and the observed model points. Hence it is an ideal starting point to formulate an
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adjustment procedure for estimating the orientation parameters. For every control plane Si three
independent equations are available. At least three non-parallel control surfaces are required to solve
the orientation parameters. For more details on the linearization of Eq. 9 and an analysis of suitable
control planes, the interested reader is referred to Schenk (1999a).

3.4.2 Model Plane to Control Plane Relationship

The alternative approach to perform the orientation with control surfaces is to fit a surface through
all model points that correspond to the control surface. We sketch the procedure for planar surfaces.
Let S be a known plane in object space and T a plane in model space, for example fitted through the
model points qi. As a target function we wish to minimize the differences between S and T . The
challenge is to find a suitable representation for T in order to allow a similarity transformation.

Suppose a sphere, centered at the origin of the coordinate system with a radius such the plane
to be represented becomes a tangent plane. Then planes can be represented by the triplet {ϕ, θ, p}
with ϕ, θ the spherical coordinates of the tangent point, and p the shortest distance of the plane to
the origin. Let Ra be a 3D rotation that operates on the plane in the suggested representation. This
will change the direction of the surface normal, expressed by Rϕθ as follows R′

ϕθ = RaRϕθ. Let
us now apply a translation, t, on the plane. It will change all three quantities {ϕ, θ, p}. This may
come as a surprise because the surface normal does not change its direction under translation. But
our representation requires a sphere, centered at the origin, with a radius such that plane S becomes
a tangent plane. Translating the plane changes both, the radius and the tangent point (closest point)
represented by spherical coordinates. Finally, a scale factor has only an effect on p.

The three elementary transformations can be combined and we arrive at an explicit relationship be-
tween {ϕ, θ, p} and its transformed coefficients {ϕ′, θ′, p′}. Now, minimizing the differences between
the control plane, expressed by the coefficients {ϕc, θc, pc} and the transformed coefficients leads to
three condition equations that can be formulated independently for one correspondence model plane
to control plane.

There is an interesting twist to the problem of plane to plane transformation in that it can be
reduced to the traditional point solution. For this to see imagine that any independent combination of
three non-parallel planes leads to a set of intersected points. Repeating the same operation in object
space with the corresponding control planes leads to set of intersected points. The two sets of points
can now be used for establishing the transformation parameters with a point-based approach.

3.5 Summary

In this section we sketched orientation procedures based on linear and areal control features. This
was accomplished by establishing a relationship between orientation parameters, image and control
features. The underlying assumption was that the correspondence between image and control fea-
tures is known, for example by a prior matching process. The goal was to derive a target function
that minimizes a distance in object space for an unbiased estimation of the orientation parameters.
Whenever possible we formulated a relationship between image (model) points and control features
or between image (model) features and control features, respectively. The table below summarizes
the most pertinent results.
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Table 1: Summary of control features and their use in recovering the exterior orientation parame-
ters.

feature point to feature relation-
ship

feature to feature relationship

straight lines image points to control lines image line to control line
space curves image points to control curve coefficient to coefficient rela-

tionship for conic sections
free-form curves image points to control poly-

lines
not applicable

planar/higher order surfaces model point to control sur-
face

planar surface to control plane

free-form surfaces model points to DEM not applicable

4 Future Challenges

4.1 Tie Features

Classical aerial triangulation, including automatic aerial triangulation, deals with control points and
tie points. We strongly suggest to expand this concept to include linear and areal features, that is, to
move from points to features. The previous section presented solutions to the problem of using control
features instead of control points. This permits the orientation of single images, known as single photo
resectioning, but we are still far from a feature-based automatic aerial triangulation because of the lack
of suitable models for tie features. What are the problems? Surprisingly, there is virtually no research
related to tie features. Consequently, there is long list of exciting future challenges awaiting to be
tackled. We briefly comment on a few key issues.

To make a point let us begin with straight lines. Suppose a straight line in object space is imaged
in n images, n > 2. Suppose further that the orientation of the n images is known. How would you
determine the most likely position of this line in object space, assuming that the orientation parameters
and the image lines have random errors?

Of paramount interest is an optimal representation of features. An optimal representation should
satisfy several criteria, a few of which are listed below (in non-mathematical terms)

• the representation should be unique and should include only independent parameters

• the representation should either avoid singularities or gracefully deal with them

• the representations in image and object space should correspond

• the representation should be amenable to geometric modeling, such as rigid body or 3D simi-
larity transformations

• the representation should be amenable for stochastic modeling

A 3D straight line, for example, has four degrees of freedom. Representing it by two points
violates the first criterion because out of the six parameters, two are dependent. Several 4-parameter
representations have been proposed. A popular one is to consider a 3D line as the intersection of two
planes, one of which is parallel to the x−axis, defined by x = a1z+b1 and the other one parallel to the
y−axis, defined by y = a2z+b2, see Ayache and Faugeras (1989). The 4-tuple {a1, b1, a2, b2} defines
the 3D line with a direction vector [a1 a2 1] and an intersection with the x, y−plane of [b1 b2 0]. This



138 Schenk

representation has a singularity for lines that are perpendicular to the z−axis. Another difficulty is
related to the stochastic model: how do we express uncertainties of the line with respect to the four
suggested parameters? We realize that the search for an optimal representation of straight lines is not
an easy one and by no means as straight-forward as one may suspect at first. The quest for optimal
representations of other than straight line features poses an even greater challenge.

4.2 Curve Fitting

As discussed in Sec. 3 there are two different approaches to recover the orientation from control
features. The point to feature relationship leads to extended collinearity equations while the second
approach usually establishes conditions between image and control features. In the second approach,
the extracted image feature must be parameterized—a task that is accomplished by fitting the appro-
priate analytical feature to the data points. This is not an easy problem for clutter and noise may make
it hard to decide which image primitives belong to the curve to be fitted. Moreover, the extracted
image curve may be heavily fragmented and the fragments may be poorly distributed.

Apart from the more practical problems there are still theoretical issues, despite the good number
of publications dealing with curve fitting. Take the problem with the target function, for example. It
is common in the computer vision community to use the algebraic distance of a curve as the entity
to be minimized. This approach does not render an unbiased estimation of the curve parameters,
however, because it minimizes along a fixed direction. Imagine an ellipse to be fitted through data
points. The target function should minimize the distance from the measured points (x, y) to the ellipse
along its normal. The algebraic distance F (x, y) is not identical with the normal vector; it is only one
component of the vector.

4.3 Multisensor Aerial Triangulation

sensor 1 sensor 2 sensor 3

feature extraction feature extraction feature extraction

sensor invariant
feature detection

sensor invariant
feature detection

sensor invariant
feature detection

correspondence

block adjustment

Figure 3: Blockdiagram of multisensor aerial trian-
gulation based on sensor invariant fea-
tures.

There is an increasing use of multiple sensors for
deriving complementary information. By com-
bining sensors that use different physical princi-
ples and record different properties of the object
space, complementary and redundant information
becomes available. If merged properly, multisensor
data may lead to a more stable and consistent scene
description. Ideally, proven concepts and meth-
ods in remote sensing, digital photogrammetry and
computer vision should be combined in a synergis-
tic fashion. Multisensor fusion begins with sensor
alignment that involves establishing a common ref-
erence frame and determining the pose of all sen-
sors involved.

If the sensors are mounted on the same plat-
form, direct orientation is the standard solution to
align the sensors. To improve the registration, an
aerial triangulation involving multiple sensors is
suggested. A useful combination of sensors in-
cludes an aerial imaging system, an airborne laser
scanning system, and a hyperspectral system. Recently, LIDAR emerged as a new technology for
rapidly capturing data of physical surfaces. The high accuracy and automation potential enables a



Schenk 139

quick delivery of DEMs/DTMs derived from the raw laser data for urban areas. Multispectral and/or
hyperspectral data provide further clues about surface properties, such as composition, roughness and
slope. The increasing spatial resolution and accuracy, together with the rich information content of
hyperspectral image data opens new avenues for automating surface reconstruction and object recog-
nition of urban environments.

Fig. 3 illustrates how the orientation of different sensors can be approached. The proposed method
is based on the notion of sensor-invariant features. Such features are caused by the same physical
phenomena in object space, see Schenk and Csathó (2002) for more details.

5 Concluding Remarks

In this paper we have strongly argued for using linear and areal features in automatic aerial triangula-
tion instead of points. This makes the matching more robust, although more complex to implement.
Yet another advantage is the circumstance that the same features can be used in automatic aerial tri-
angulation and in subsequent processes. That is, extracting features and perceptually organize them
into higher order structures that may be more meaningful with a view on scene interpretation and
object recognition, is only performed once. In general we opt for broadening the fairly narrow focus
of automatic aerial triangulation and capture this notion by the following bullet items:

from points to features: see comments above.

integration of automatic aerial triangulation with other photogrammetric procedures: use the
same feature extraction, grouping and matching engine in automatic aerial triangulation and
other processes. The most appealing example is the combination of automatic aerial triangula-
tion and automatic surface reconstruction.

from single sensor to multi-sensor aerial triangulation: different sensor types, such as frame,
panoramic, pushbroom, and whiskbroom types require different sensor modeling.

from aerial triangulation to general sensor orientation: establishing a general sensor orientation
framework that would include sensor alignment and image registration, for example.
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