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Kurzfassung 

Die dreidimensionale Rekonstruktion von Innenraumszenen zielt darauf ab, die Form von 

Gebäudeinnenräumen als Flächen oder Volumina abzubilden. Aufgrund von Fortschritten im Bereich 

der Technologie entfernungsmessender Sensoren und Algorithmen der Computervision sowie 

verursacht durch das gesteigerte Interesse vieler Anwendungsgebiete an Innenraummodellen hat 

dieses Forschungsfeld in den letzten Jahren zunehmend an Aufmerksamkeit gewonnen. Die 

Automatisierung des Rekonstruktionsprozesses ist weiterhin Forschungsgegenstand, verursacht durch 

die Komplexität der Rekonstruktion, der geometrischen Modellierung beliebig geformter Räume und 

besonders im Falle unvollständiger oder ungenauer Daten. Die hier vorgestellte Arbeit hat die 

Erhöhung des Automatisierungsgrades dieser Aufgabe zum Ziel, unter der Verwendung einer geringen 

Anzahl an Annahmen bzgl. der Form von Räumen und basierend auf Daten, welche mit Low-Cost-

Sensoren erfasst wurden und von geringer Qualität sind.  

Diese Studie stellt einen automatisierten Arbeitsablauf vor, welcher sich aus zwei Hauptphasen 

zusammensetzt. Die erste Phase beinhaltet die Datenerfassung mittels eines kostengünstigen und leicht 

erhältlichen Sensorsystems, der Microsoft Kinect. Die Entfernungsdaten werden anhand von 

Merkmalen, welche im Bildraum oder im 3D Objektraum beobachtet werden können, registriert. Ein 

neuer komplementärer Ansatz für die Unterstützung der Registrierungsaufgabe wird präsentiert, da die 

diese Ansätze zur Registrierung in manchen Fällen versagen können, wenn die Anzahl gefundener 

visueller und geometrischer Merkmale nicht ausreicht. Der Ansatz basiert auf der Benutzerfußspur, 

welche mittels einer Innenraumpositionierungsmethode erfasst wird, und auf einem vorhandenen 

groben Stockwerksmodell.  

In der zweiten Phase werden aus den registrierten Punktwolken mittels eines neuen Ansatzes 

automatisiert hochdetaillierte 3D-Modelle abgeleitet. Hierzu werden die Daten im zweidimensionalen 

Raum verarbeitet (indem die Punkte auf die Grundrissebene projiziert werden) und die Ergebnisse 

werden durch eine Extrusion in den dreidimensionalen Raum zurückgewandelt (wobei die Raumhöhe 

mittels einer Histogrammanalyse der in der Punktwolke enthaltenen Höhen erfasst wird). Die 

Datenanalyse und -modellierung in 2D vereinfacht dabei nicht nur das Rekonstruktionsproblem, 

sondern erlaubt auch eine topologische Analyse unter Verwendung der Graphentheorie. Die 

Leistungsfähigkeit des Ansatzes wird dargestellt, indem Daten mehrerer Sensoren verwendet werden, 

die unterschiedliche Genauigkeiten liefern, und anhand der Erfassung von Räumen unterschiedlicher 

Form und Größe. 

Abschließend zeigt die Studie, dass die rekonstruierten Modelle verwendbar sind, um vorhandene 

grobe Innenraummodelle zu verfeinern, welche beispielsweise aus Architekturzeichnungen oder 

Grundrissplänen abgeleitet werden können. Diese Verfeinerung wird durch die Fusion der detaillierten 

Modelle einzelner Räume mit dem Grobmodell realisiert. Die Modellfusion beinhaltet dabei die 

Überbrückung von Lücken im detaillierten Modell unter Verwendung eines neuen, auf maschinellem 

Lernen basierenden Ansatzes. Darüber hinaus erlaubt der Verfeinerungsprozess die Detektion von 

Änderungen oder Details, welche aufgrund der Generalisierung des Grobmodells oder 

Renovierungsarbeiten im Gebäudeinnenraum fehlten. 
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Abstract 

Indoor reconstruction or 3D modeling of indoor scenes aims at representing the 3D shape of building 

interiors in terms of surfaces and volumes, using photographs, 3D point clouds or hypotheses. Due to 

advances in the range measurement sensors technology and vision algorithms, and at the same time an 

increased demand for indoor models by many applications, this topic of research has gained growing 

attention during the last years. The automation of the reconstruction process is still a challenge, due to 

the complexity of the data collection in indoor scenes, as well as geometrical modeling of arbitrary 

room shapes, specially if the data is noisy or incomplete. Available reconstruction approaches rely on 

either some level of user interaction, or making assumptions regarding the scene, in order to deal with 

the challenges. The presented work aims at increasing the automation level of the reconstruction task, 

while making fewer assumptions regarding the room shapes, even from the data collected by low-cost 

sensor systems subject to a high level of noise or occlusions. This is realized by employing topological 

corrections that assure a consistent and robust reconstruction.  

This study presents an automatic workflow consisting of two main phases. In the first phase, range 

data is collected using the affordable and accessible sensor system, Microsoft Kinect. The range data 

is registered based on features observed in the image space or 3D object space. A new complementary 

approach is presented to support the registration task in some cases where these  registration 

approaches fail, due to the existence of insufficient visual and geometrical features. The approach is 

based on the user’s track information derived from an indoor positioning method, as well as an 

available coarse floor plan. 

In the second phase, 3D models are derived with a high level of details from the registered point 

clouds. The data is processed in 2D space (by projecting the points onto the ground plane), and the 

results are converted back to 3D by an extrusion (room height available from the point height 

histogram analysis). Data processing and modeling in 2D does not only simplify the reconstruction 

problem, but also allows for topological analysis using the graph theory. The performance of the 

presented reconstruction approach is demonstrated for the data derived from different sensors having 

different accuracies, as well as different room shapes and sizes.   

Finally, the study shows that the reconstructed models can be used to refine available coarse indoor 

models which are for instance derived from architectural drawings or floor plans. The refinement is 

performed by the fusion of the detailed models of individual rooms (reconstructed in a higher level of 

details by the new approach) to the coarse model. The model fusion also enables the reconstruction of 

gaps in the detailed model using a new learning-based approach. Moreover, the refinement process 

enables the detection of changes or details in the original plans, missing due to generalization 

purposes, or later renovations in the building interiors. 
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1. Introduction 

1.1. Motivation  

Indoor modeling addresses the reconstruction of 2D and 3D CAD models of building interiors by 

means of surfaces or volumes. Such models can be derived from photographs by the extraction and 

matching of features of interest, or from point clouds by the fitting geometric primitives.  

Models of buildings interior structure are demanded by many applications to support a variety of 

needs, from navigation to simulation. In robotics and computer vision, existence of a map or 

simultaneous mapping is essential for localization of the user or a mobile robot. In virtual city models, 

interior models constitute the levels-of-detail 4 (LOD4) models (according to OGC standard CityGML 

(Kolbe et al., 2005)), to support many spatial-based applications such as GIS, urban planning, risk 

management, emergency action planning, environmental simulation, navigation, etc.. In Building 

Information Modeling (BIM), which is used for supporting construction, planning, design, and 

maintaining infrastructures, interior models are the geometric basis of semantic information. In 

architecture, virtual indoor models support interior designers to have a realistic and more precise 

impression about spaces.  

The most important challenge in the reconstruction of indoor models is the time and costs of data 

collection and generating such models. In practice, this task is mainly performed using manual and 

semi-automatic approaches, and therefore the user qualifications play an important role in the speed 

and accuracy of the process. According to the comparison made by Panushev and Brandt (2007), the 

reconstruction of average-sized building interiors takes several months, although modeling single 

objects can be a fairly quick task. Therefore, the automation of this process is required. This 

automation is still a challenge, due to the existence of clutter, complexity of the shape of the interior 

and challenges in the data collection.  

Indoor data collection is mostly performed from ground level viewpoints, and therefore is more 

complex and challenging in comparison with airborne and remote data collection. Moreover, data 

collection platforms delivering high accuracy data (e.g. Terrestrial Laser Scanners (TLS)) are usually 

heavy and expensive, and therefore large-scale data collection is time consuming and costly. However, 

development of low-cost range measurement sensors has recently increased the focus on range-based 

indoor mapping. According to Luhmann et al. (2014), the mass market effect of the consumer-grade 

3D sensing camera Microsoft Kinect (over 10 million units in circulation), had a significant impact on 

the photogrammetric community where the number of 3D sensing systems is in the range of 1000s. 

The registration of the point clouds collected by such low-cost and handheld systems is also an active 

research area; as will be seen later, this task can be a challenge in scenarios having a poor texture or 

insufficient geometrical features. Presented works by Henry et al. (2012), Newcombe et al. (2011), 

Whelan et al. (2013) consider the Kinect a suitable platform for a fast and affordable data collection. 

Google Project Tango, Structure Sensor and DPI-7/8 are examples of commercial solutions developed 

so far, for the collection of 3D data from building interiors, as the user walks through space. For the 

registration of the collected point clouds, the systems benefit from the geometric information extracted 
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from the range images, or observations made in color image space, or a combination of both 

information for an accurate pose estimation. Therefore, the systems turned to be fragile in scenarios 

that the mentioned sources of information are not available or insufficient, such as scenes with low 

visual or geometrical features (e.g. hallways). Therefore, other sources of information and new 

strategies shall be considered to fill the gap in the available registration approaches. 

Despite the fact that indoor data collection has already been studied by many researchers, and is 

facilitated due to advances in sensor technology and vision algorithms, less attention is still paid to the 

reconstruction of CAD models based on the collected data. Moreover, although some reconstruction 

approaches are already available, the quality and density of the collected data by low-cost sensor 

systems are not always consistent with the assumptions made by the approaches. In other words, 

affordability comes with loss of quality and trade-offs; data collected by low-cost sensor systems are 

subject to more noise, gaps and other artifacts that make the reconstruction process more challenging 

than before. Due to the complexity of indoor scenes, existence of gap and clutter, and extreme 

conditions for the registration of collected point clouds, still a general and fully automatic indoor 

reconstruction approach does not exist. Available approaches rely either on some level of user 

interaction, or make assumptions regarding the room shapes, quality of the collected data, etc. 

Commercial software solutions such as Leica Cyclone and Leica CloudWorx are widely used for 

modeling from the collected point clouds; however, they are based on a high level of user interaction. 

A strategy for the automation of this process is proposed for instance by Budroni and Böhm (2009) 

using a linear and rotational plane sweeping algorithm, however, under the assumption that the walls 

are parallel or perpendicular to each other (Manhattan-world scenario). Moreover, the ceiling and floor 

points have to be collected in this modeling approach (for the cell decomposition process), which is a 

challenge for low-cost mobile mapping systems, due to the poor texture and 3D information required 

for the registration of the point clouds captured from different viewpoints. Another example of 

automatic reconstruction of indoor scenes is presented by Previtali et al. (2014), based on the 

RANSAC algorithm for the extraction of planar features. Although this algorithm can model rooms 

with more general shapes, still the collection of floor or ceiling points for the cell decomposition is 

necessary. Another category of approaches converts the modeling problem from 3D to 2D, and extract 

line segments corresponding to walls by processing images derived from the projection of points onto 

the ground plane. Okorn et al. (2010) use the Hough transform for this purpose; however, the resulting 

2D plan does not represent a topologically correct model. Adan and Huber (2011) use a similar 

approach, but add more semantic information into the models and deal with occlusions using a ray-

tracing algorithm, assuming 3D data is collected from fixed and known locations. Valero et al. (2012) 

further improve the results using a more robust line detection algorithm and considering some 

topological analyses. However, this approach requires a dense and high quality input point cloud, 

which is a challenge to fulfill using low-cost sensor systems.  

Therefore, new approaches are required to fill the gap between the new data collection strategies and 

available reconstruction approaches, by making fewer assumptions regarding the point cloud quality, 

data collection strategy and different room shapes, and at the same time dealing with the gaps in the 

data.  
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1.2. Objectives 

Regarding the mentioned gaps in the previous section, this work aims at increasing the automation 

level, and at the same time the performance of the reconstruction process (i.e. modeling arbitrary 

shapes with a higher level of detail), with a focus on the data collected by low-cost sensor systems. For 

this purpose, the following objectives shall be fulfilled in this study: 

Investigation on indoor data collection using low-cost sensor systems: In this part of the work, state-

of-the-art sensor systems used for the collection of 3D data in indoor scenes shall be investigated. A 

suitable sensor system shall be selected as the case study, and the registration of the collected point 

clouds by this sensor has to be studied in different scenarios. 

Defining a robust and efficient reconstruction approach: In this part of the work, topologically correct 

models have to be automatically reconstructed from the point clouds collected by the selected low-cost 

sensor system in the previous part. Furniture and clutter have to be removed from the point cloud 

automatically, or with a minimal user interaction. The reconstruction approach shall be capable of 

dealing with the noise and occlusions contained in the collected data; strategies have to be defined to 

compensate such effects. Moreover, the approach shall include modeling of more general shapes of the 

building interiors (not only Manhattan-world scenarios). It is also required to reconstruct available 

larger gaps (e.g. those caused by the existence of windows), using available sources of information, 

such as architectural drawings and available floor plans.  

Investigation on update and refinement of available coarse floor models: As-designed building models 

and available floor plans do not necessarily represent the actual state of the building interiors (as-built 

models). For many indoor applications, such models and plans have to be verified, updated or refined, 

in order to fulfill the required accuracies. Low-cost data collection approaches have great potential for 

a fast and efficient fulfillment of this task, if a suitable reconstruction and fusion algorithm is 

available. This shall be investigated within the study as well.  

1.3. Outline and Design of the Thesis 

In order to fulfill the required tasks mentioned in the previous section, the thesis is structured within 

the next seven chapters, as follows. 

Chapter 2 presents state-of-the-art sensors used for 3D data acquisition in indoor scenes, together with 

available approaches used for the registration of the data collected from different viewpoints.  

In chapter 3, Microsoft Kinect is selected as the case study; the mathematical background for the 

system calibration and generation of colored point clouds from disparity and color images is presented 

in this chapter. Challenges regarding the data collection and registration are discussed in this chapter, 

and a new complementary approach for the registration of the point clouds is proposed. 

Chapter 4 presents state-of-the-art indoor reconstruction approaches, based on different sources of 

input data. Iconic (bottom-up) approaches use real measurements, mainly derived from images and 

range data. In contrast, symbolic (top-down) approaches support indoor reconstruction based on 

hypotheses, in case of having incomplete or erroneous data. 

Chapter 5 presents the proposed approach for the reconstruction of indoor spaces from the collected 

point clouds using a pilot study.  
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Experimental results are presented in chapter 6. The chapter starts with the system calibration and 

accuracy analysis of the range measurements by Kinect, and then continues with the performance 

evaluation of the reconstruction approach in different scenarios. 

Chapter 7 aims at the refinement of available coarse floor models by the fusion of the detailed model 

of individual rooms. Larger gaps in the detailed models (e.g. those caused by the existence of 

windows) are reconstructed here, as a byproduct of the fusion process, using a proposed learning-

based approach. 

Chapter 8 concludes the presented work with a summary of the achieved results and contributions. It 

further suggests research areas, in which more investigation is required to increase the performance of 

the proposed system and improve achieved results. 
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2. Overview of Indoor Data Collection Techniques  

For the reconstruction of building interiors geometrical information has to be provided. Depending on 

the application and required accuracy, different sensor systems can be employed for this purpose. 

Figure 2.1 presents a classification of available non-contact 3D data collection methods based on light 

waves. This chapter only presents state-of-the-art sensors used for the collection of 3D data in indoor 

mapping applications with more focus on low-cost solutions, together with the available techniques 

used for the registration of data collected from different viewpoints. 

 

 

Figure 2.1 – Classification of available non-contact 3D data collection methods based on light waves. Methods 

which are typically used for the collection of building interiors data are highlighted. (Adapted from Luhmann et 

al. (2014) and Remondino and El-Hakim (2006)) 
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2.1. State-of-the-Art Sensors for 3D Data Collection 

Sensor systems used for 3D data acquisition in indoor scenes are divided to two main categories, 

based on their sensing principle: passive and active systems.  

Passive Systems 

Passive triangulation systems provide 3D information by measuring and analyzing the 2D image 

coordinates of interest points, collected from multiple viewpoints (see figure 2.2). In close range 

photogrammetry, solid state sensor cameras such as SLR-type cameras, high resolution cameras and 

high speed cameras are certainly the most popular passive systems (Maas, 2008). Passive systems are 

highly dependent on the ambient light conditions and the visual texture. The derivation of 3D 

information requires post-processing efforts; however, the systems are low-cost, portable and flexible 

to use. 

The second type of passive systems rely on visual qualities such as texture, focus, shading and light 

intensity to estimate surface normal vectors and therefore, the shape of the surface. For example, 

shape-from-shading techniques recover the shape from the variation of shading in the image. This 

requires recovering the light source in the image, which is a difficult task in real images, and requires 

simplifications and making assumptions regarding the light conditions. Moreover, as also stated by 

Zhang et al. (1999), even with such assumptions, finding a unique solution to the corresponding 

geometrical problem is still difficult, since the surface is described in terms of its normal vectors, and 

additional constraints are required. In general, this category of passive approaches is not suitable in 

indoor modeling applications, and is mentioned here only for the completeness. 

 

 
Figure 2.2 – Passive triangulation 

principle. 

 

Active Systems 

Active systems rely on their own illumination and deliver 3D information (range images and point 

clouds) without requiring post processing efforts by the user, and therefore are more suitable for 

automation purposes. Since the systems do not rely on the visual appearance of the objects and 

provide their own features to be measured, they are well suited for measuring textureless surfaces, 

which is the case in many indoor spaces.  

Advances in sensor design and technology as well as vision algorithms and computational capabilities 

have resulted in portability, cost reduction and performance improvements of active range 

measurement systems. In indoor reconstruction applications, not only terrestrial laser scanners have 

become slightly less expensive and smaller than before, but also other solutions have been optimized 

for the collection of 3D data, such as time-of-flight cameras and triangulation systems using projected 
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light patterns. In the following section, popular and state-of-the-art systems used for the 3D data 

collection of indoor spaces are introduced.  

2.1.1. Laser Scanners 

2.1.1.1. Terrestrial Laser Scanners 

Terrestrial laser scanners (TLS) are increasingly used to capture accurate and dense 3D data in many 

applications, from the recording of building interiors to the documentation of heritage sites. They can 

collect thousands to hundreds of thousands points per second with millimeters accuracy.  

Distance measurements in terrestrial laser scanners are realized based on two methods: estimation of 

light travel time and triangulation. The light travel time can be measured directly using pulse wave 

time-of-flight (TOF) measurement, or indirectly by phase measurement in continuous wave lasers. 

Short range laser scanners use triangulation principle for the range measurements, and are typically 

used in industrial applications, where the object distance is less than 1m. Triangulation-based scanners 

are not of interest in this study.  

Time-of-Flight Measurement Principle (Short Laser Pulse) 

The light velocity is constant in a given medium. In vacuum, the accepted value for the light velocity 

is 299 792 458m/s. In other mediums, the light velocity is related to this value using a correction factor 

called the refraction index. Therefore, by knowing the light velocity in the medium and estimating the 

light travel time (from a source to the object surface, and back to the source), the object distance is 

estimated by the following equation (see figure 2.3): 

c T
d

n 2


 

 
 (2.1) 

where, d  is the distance between the source and the object, c is the light velocity in vacuum, n is the 

refraction index of the medium and T is the light travel time. As mentioned by Beraldin et al. (2005), 

the range measurement uncertainty is related to the time measurement uncertainty and the signal-to-

noise ratio (SNR) by equation (2.2). 

c T
d

n 2 SNR


  

 
 (2.2) 

Therefore, assuming SNR = 100 and T 1ns  , the range measurement uncertainty will be 15mm. In 

case of having N independent measurements, the uncertainty reduces by a factor proportional to the 

square root of N. However, increasing the number of measurements has applicability limitations in 

scanning methods (Beraldin et al., 2005; Vosselman and Maas, 2010). 

 

 

Figure 2.3 – Pulse wave TOF measurement principle. 
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As mentioned by Beraldin et al. (2005) and Vosselman and Maas (2010), most of the pulse wave TOF 

laser scanners provide an uncertainty of a few millimeters in the range measurements up to 50m, as 

long as a high SNR is maintained. However, as mentioned by Beraldin et al. (2010), exact and 

accurate measurement of the pulsed laser arrival time is a challenge, due to the difficulties in the 

detection of the time trigger in the returned echo. For example, if the pulse is time-triggered at the 

maximum amplitude, the detection of the time trigger will be difficult if the returned echo provides 

more than one peak. The detection threshold can also be set to the leading edge of the echo, but on the 

other hand the threshold will be strongly dependent on the echo’s amplitude, which is subject to 

change due to the light attenuation nature in the atmosphere. Another method which is proven to be 

more suitable is the constant fraction (Wagner et al., 2004), in which the trigger is typically set to 50% 

of its maximum amplitude. 

Phase Shift Measurement Principle (Continuous Wave) 

Besides the direct measurement of the TOF, the estimation of the light travel time can also be realized 

indirectly by the measurement of the phase difference between the original and returned waveforms 

using amplitude modulation (AM) or frequency modulation (FM) techniques. The phase difference 

between the two waveforms is related to the time delay and therefore to the corresponding distance by 

equations (2.3) and (2.4) (see figure 2.4). 
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in which, d is the distance equivalent to the phase shift (the absolute distance is the summation of this 

distance and a multiplication of the full wavelength),   is the phase shift and m  is the wavelength 

of the modulated beam m(c / f ) . As mentioned by Beraldin et al. (2005), the distance uncertainty in 

case of AM is given approximately by: 

m1
d

4 SNR


  

  
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As it can be seen in the equation, a low frequency mf  results in a less precise range measurement. 

Therefore, using blue opposed to a near-infrared laser will decrease the range measurement 

uncertainty. However, reducing the wavelength (increasing the frequency) will limit the operating 

range of the system, due to the faster attenuation of high frequency waves.  

 

 

Figure 2.4 – Continuous wave phase shift measurement principle. 
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Since the returned signal cannot be associated with a specific part of the original signal, the calculated 

distance is not the absolute distance between the source and the object, but a fraction of the full 

wavelength. The absolute distance is obtained by the summation of this value with a multiplication of 

the full wavelength, also known as the ambiguity interval. The ambiguity interval cannot be purely 

resolved by the phase shift measurement, and therefore, using multiple measurements with different 

modulation frequencies is required. As mentioned by Guidi and Remondino (2012), continuous wave 

solutions use two or three different modulation frequencies: a low modulation frequency for a large 

ambiguity interval, and higher modulation frequencies for increasing the angular resolution and 

therefore the resolution of the range measurements. By increasing the number of steps between the 

low and high frequencies, the FM technique is realized. This has the advantage of reducing the 

measurement uncertainty level, which is less than that of pulse wave devices (typically in range of 2-

3mm), as well as continuous wave devices with two or three modulation frequencies (typically 1mm at 

a proper distance). Such devices are mostly used in industrial and cultural heritage applications. 

According to Beraldin et al. (2005), The distance measurement uncertainty for such devices is 

approximately given by: 

3 c 1
d

2 f SNR
   

   
 (2.6) 

where, f  is the frequency excursion (Skolnik, 1980).  

According to Guidi and Remondino (2012), continuous wave systems provide smaller distance 

measurement uncertainties in comparison with pulse wave systems due to two reason: a) since the 

light is sent to the target continuously, more energy is sent to the target and therefore a higher SNR is 

provided; b) the low-path filtering used for the extraction of the signal further reduces the noise. 

However, limitations caused by resolving the ambiguity interval make the operating range of such 

systems smaller than pulse wave systems.  

A large number of commercially available laser scanner operate based on pulse wave TOF 

measurements. Such measurements operate at longer distances, but on the other hand are less sensitive 

with respect to the object surface variations and small details. Moreover, the measurement rates are 

usually about one order of magnitude slower than phase shift scanners. However, state-of-the-art pulse 

wave TOF laser scanners such as Leica Scanstation P20/30/40 have overcome the speed limitation, 

and can measure up to one million points per seconds even with TOF technology.  

Regarding the application, range of operation, measurement principle, demanded accuracy and price, 

different models of laser scanners are commercially available. Table 2.1 presents some of the popular 

state-of-the-art models of available laser scanners used in surveying and photogrammetric tasks based 

on TOF and phase shift measurement principles. Amongst the different models of the scanners, 

RIEGL VZ series are made specially for long range measurements. Depending on the model, the 

measurement range in RIEGL VZ series varies from 400m (VZ400, ca. 75K€) up to 6000m (VZ-6000, 

ca. 150K€); this extended range is suitable for topographical, mining and archaeological applications. 

Z+F and FARO laser scanners are based on phase shift measurements, and therefore provide a very 

high measurement rate. Before the release of the Leica P20/30/40 series (TOF laser scanners), Z+F 

laser scanner used to be the only TLS in the market which could measure about one million points per 

second. FARO Focus
3D

 X130 and X330 models provide a similar measurement rate, however, with 

smaller weight and price, which makes the scanners very popular for many indoor and outdoor 

applications. Although the captured data by TLS is of high quality and density, the price of such 

devices is usually too high to be accessible and used by public. In practice, the task of indoor data 

collection along with 3D reconstruction, which is required for generating BIMs, is usually performed 

by professional service providers (“U.S. General Services Administration,” 2009). 
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Laser scanner 

    

Manufacturer Leica Geosystems RIEGL Zoller+Fröhlich FARO 

Model Scanstation P40 VZ-400 Imager 5010C Focus
3D

 X330 

Measurement Principle TOF (pulsed laser) TOF (pulsed laser) Phase shift Phase shift 

Measurement rate (PPS) Up to 1Mio Up to 122K > 1Mio Up to 976K 

Field of view (H×V) 360°×270° 360°×100° 360°×320° 360°×300° 

Measurement range 0.4m - 270m 1.5m – 600m 0.3m - 187m 0.6m - 330m 

Accuracy of single point 

measurement ( 1 ) 

0.4mm @ 10m 

0.5mm @ 50m 
5mm @ 100m 

0.3mm @ 25m 

1.6mm @ 100m 

(80% reflectivity, 

127K points/sec) 

Up to ± 2mm 

0.3mm @ 10-25m 

(90% reflectivity, 

122K points/sec) 

Weight of the scanner 12.5kg 9.6kg 11kg 5.2kg 

Price of the scanner (€)* N. A. Ca. 75K Ca. 65K Ca. 50K 

Table 2.1 – Examples of typical models of terrestrial laser scanners with their technical specifications from the 

company product information (images adapted from the corresponding company website). *Non-official prices 

in Germany, March 2015. 

 

2.1.1.2. 2D Scanning Laser Range Finders (LRFs) 

In robotic applications, the perception of the environment is required. This is usually fulfilled by the 

use of inexpensive 2D scanning laser range finders (LRF), as an alternative to 3D laser scanners which 

are not cost-effective for many applications. Such devices can provide accurate and high resolution 

data in 2D, with a wide field of view and large measurement range, useful for mapping, obstacle 

avoidance, feature detection and self-localization applications.  Figure 2.5 depicts an exemplary 2D 

range image derived by a 2D laser range finder. The range estimation in LRFs is realized based on 

pulse wave TOF or phase shift measurements (technically simpler than TOF), although nowadays due 

to advances in sensors technology, TOF measurements are accepted as the standard technique (Chli et 

al., 2015). 

In robotic applications, the most popular used LRFs are those offered by SICK and Hokuyo 

companies. The price of the products ranges between a few hundred to a few thousand Euros, 

depending on the detectable range, precision and resolution. Therefore, each type is preferred for a 

special application. For instance, systems such as Hokuyo URG-04LX-UG01 and SICK TiM551 are 

more suitable for obstacle detection and avoidance, but not optimal for mapping purposes, due to their 

low angular and range resolution. For more detailed and high resolution mapping applications, more 

accurate products such as Hokuyo UTM-30LX and SICK LMS511 (largest SICK LRF) are usually 

preferred. The mentioned LRF models together with the corresponding technical specifications are 

presented in table 2.2.  

 



2.1. State-of-the-Art Sensors for 3D Data Collection  21 

Laser range finder 

 

   

Manufacturer SICK SICK Hokuyo Hokuyo 

Model LMS511 TIM551 URG-04LX-UG01 UTM-30LX 

Scan time 13msec/scan 67msec/scan 100msec/scan 25msec/scan 

Angular field of view 190° 270° 240° 360° 

Angular resolution 0.25° 1° 0.36° 0.25° 

Operating range 0m - 80m 0.05m - 10m 0.02m - 4m 0.1m - 60m 

Systematic error 
25mm (1m - 10m) 

35mm (10m - 20m) 
60mm N. A. N. A. 

Statistical error 
7mm (1m - 10m) 

9mm (10m - 20m) 
20mm 

30mm (0.02m - 1m) 

3% (0.02m - 4m) 

30mm (0.1m - 10m) 

50mm (10m - 30m) 

Dimensions 

(W×D×H) [mm] 
160×155×185 60×60×86 50×50×70 60×60×87 

Weight 3.7kg 250gr 160gr 370gr 

Price (€)* Ca. 6100 Ca. 1700 Ca. 1200 Ca. 4800 

Table 2.2 – Examples of the most popular laser range finders (technical specifications and adapted images from 

the corresponding company website). *Non-official prices in Germany, March 2015. 

 

 

Figure 2.5 – An exemplary 2D range image derived by Hokuyo URG-04LX-UG01 laser range finder. Colors 

indicate the intensity of the reflected beams. (adapted from “UrgBenri Information Page” (2015)) 

 

2.1.1.3. Indoor Mobile Mapping Systems Based on Laser Scanners 

Indoor Mobile Mapping Systems (IMMS) have enabled a fast 3D data collection of large building 

interiors using kinematic platforms. For the positioning purpose, opposed to the outdoor mobile 

mapping systems that use GNSS solutions, these systems mostly use Simultaneous Localization and 

Mapping (SLAM) methods. In most IMMS, in order to achieve a cost-effective solution, 3D maps are 

created by a single tilted or multiple 2D laser scanners mounted on the system. Commercial solutions 

such as i-MMS (by VIAMETRIS), ZEB1 (by CSIRO) and MID (supported by VIAMETRIS) are 

examples of state-of-the-art IMMS based on 2D laser scanners.  
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i-MMS: This system consists of a mobile platform, 3 Hokuyo laser scanners (1 for positioning using 

SLAM and 2 for the data collection), a Point Grey Ladybug spherical camera and batteries.  

ZEB1: This system uses a handheld platform, 1 Hokuyo laser scanner, a low-cost IMU and a 

computer. The performance of i-MMS and ZEB1 is investigated and compared by Thomson et al. 

(2013). The comparison shows that i-MMS generates higher quality point clouds, although both 

systems deliver results in centimeters accuracy, and therefore inadequate for surveying applications 

requiring millimeters accuracy. 

MID: This system features a Hokuyo laser scanner, a 5Mpx fisheye camera, an SBG-Systems AHRS 

(Attitude and Heading Reference System, consists of set of three MEMS based gyroscopes, 

accelerometers and magnetometers) and a tablet PC. The integrated positioning solution provides up to 

1cm absolute accuracy, while the laser scanner delivers measurements with 3cm accuracy (0.1m - 

10m) (“MID Brochure,” 2014). 

To achieve millimeters accuracy, the use of more expensive laser scanners in IMMS is inevitable; an 

example is the TIMMS system offered by Trimble-Applanix. The use of indoor mobile mapping 

systems is the optimum solution for the data acquisition in large public buildings such as railway 

stations and airports, in which the measurement range is usually too high for the low-cost systems, or 

the data acquisition shall be performed faster than usual static laser scanning. The mentioned mobile 

mapping systems are depicted in figure 2.6. 

 

      

Figure 2.6 – Examples of commercial indoor mobile mapping systems. Left to right: Trimble-Applanix TIMMS, 

VIAMETRIS i-MMS, CSIRO ZEB1 and VIAMETRIS MID. (images from the corresponding company website) 

 

2.1.2. 3D Range Cameras 

As an alternative solution to the abovementioned laser-based systems, one can use range cameras to 

capture the scene 3D information using CMOS or CCD technologies at high frame rates, based on 

TOF or triangulation principles.  

2.1.2.1. Time-of-Flight (TOF) Cameras 

TOF cameras measure the distance based on either timing of pulse, continues wave modulation or 

signal gating, using the so called PMD (Photonic-Mixer-Device) sensors. Each PMD sensor has an 
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LED light emitter and a CMOS sensor. Each CMOS pixel, depending on the measurement principle, 

estimates the time delay between the emission and arrival of the signal. This enables 3D imaging 

without the need for scanning (Thorsten and Hagebeuker, 2007). Technical details regarding the 

cameras’ components and the measurement principles are not of interest in this study; interested 

readers may refer to Buxbaum et al. (2002), Kraft et al. (2004), as well as Sell and O’Connor (2014). 

TOF cameras initially had very small resolutions; for instance the effector-PMD product introduced in 

2005 has only 1 pixel resolution, used for the distance measurement in industrial applications. 

However, advances in micro-optics and microelectronics caused the development of TOF cameras 

with better performances and higher resolutions. According to Kolb et al. (2009), the development of 

TOF cameras from 2006 to 2008 shows an increase by factor of 8 or 9. MESA SwissRanger 4000 

introduced in 2008 is the first commercial-grade TOF camera which has a resolution of 176 by 144 

pixels. Another popular TOF camera PMD CamCube introduced in 2009 has a resolution of 204 by 

204 pixels. Some of the most widely used TOF camera models together with their technical 

specifications are presented in table 2.3. 

TOF cameras are not intended to be used in applications requiring high measurement accuracies. The 

main advantage of the cameras is the ability of delivering frame-based real-time measurements. This is 

required by applications dealing with object detection and recognition at very high frame rates, such as 

industrial, automotive (car comfort and safety), robotics, gaming and security applications. The 

cameras are also used in indoor localization and mapping applications requiring centimeters accuracy 

(Hong et al., 2012; May et al., 2009). However, in general they are not an optimal solution for indoor 

mapping applications, due to their high level of noise, small field of view and low resolution.  

Different studies have investigated the calibration of TOF cameras by modeling the systematic errors 

contained in the range data. For instance, the study presented by Lindner et al. (2008) shows that one 

may expect a systematic error of 5-15cm and a noise of 5cm in the range data measure by the PMD 

CamCube camera. However, the systematic errors can be modeled and removed by B-splines (Lindner 

et al., 2008) or harmonic series (Pattinson, 2010). 

 

Range camera 

 
 

 

Manufacturer IEE MESA Imaging PMDTechnologies 

Model and release date 3D-MLI Sensor (2008) SwissRanger 4000 (2008) CamCube 2.0 (2009) 

Resolution 61×56 176×144 204×204 

Operating range 7.5m 5m or 10m (optional) 7.5m 

Scan rate 10 fps 10 - 30 fps 25 fps 

Accuracy 2cm @ 1.5m 1cm or 1% 2cm @ 2m 

Dimensions (W×D×H) [mm] 144×104×54 65×65×76 194×80×60 optics 

Table 2.3 – Examples of TOF cameras. (adapted images and technical specifications from the corresponding 

company website) 
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2.1.2.2. Active Triangulation Systems 

The second type of the range cameras uses the fundamental trigonometric theorems to compute the 

object distance, and has been widely used in close range photogrammetry. Triangulation systems can 

be divided into two categories: passive and active. Passive triangulation systems extract and match 

features across multiple images taken from different viewpoints (stereo photogrammetry, see ), while 

active triangulation systems integrate a projector into the system in order to generate structured light 

patterns (Maas, 2008). Figure 2.7 depicts the schematic setup of a systems based on the active 

triangulation principle. In this method, the camera and projector must be calibrated and spatially 

oriented to each other. The pattern is recorded by a CCD camera and analyzed by the integrating 

computer in order to compute   and  , and therefore the dimensions of the triangle using the cosine 

law. This yields the (X, Z) coordinates of the laser spot on the object surface using equations (2.7) and 

(2.8). 

 

 
Figure 2.7 – Single point triangulation principle. (adapted from Beraldin et al. (2010)) 
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In these equations Z (the perpendicular distance) is the unknown, p (the distance between the 

projection of the point and the principal point of the censor), f (the effective focal length) and B (the 

baseline) are known (estimated by the system calibration), and   and  are measurements. According 

to Beraldin et al. (2010), the perpendicular distance uncertainty in this case is given by: 
2

Z
Z p

B f
   

  
 (2.9) 

where p depends on the type of the laser spot, peak detection algorithm, SNR (signal-to-noise ratio) 

and the shape of the projected spot. Since p  depends on the SNR which is proportional to the square 

of the object distance, the distance uncertainty in theory is proportional to the fourth power of the 

object distance. It makes the triangulation systems poor candidates for long-range applications, but 

dominant in sub-meter ranges. 

The projected patterns can be of different formats, for instance stationary and dynamic fringes, light 

sections or speckle patterns. Figure 2.8 depicts two different types of active triangulation systems. 

Figure 2.8 (a) presents a fringe coded-light projection system, in which a sequence of n binary stripe 

patterns with 2
0 

… 2
n-1

 vertical black and white stripes is projected onto the object surface, in order to 

assign a binary code to each pixel of the CCD camera. In figure 2.8 (b), a known pattern is projected 
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on the object surface. The pattern is collected by the camera and the point correspondences are found 

by matching the collected pattern with the reference pattern in the image, in order to recover the object 

surface based on the disparity measurements.  

 

                

Figure 2.8 – Active triangulation systems based on: a) fringe coded-light projection (from Luhmann et al. 

(2014)); b) structured light pattern (from Remondino (2010)). 

 

2.1.2.3. Low-Cost Consumer-Grade Range Cameras Based on Active 

Triangulation and TOF Principles 

Range cameras have been employed by the gaming industry for several years in order to provide 

controllers based on the human gesture and natural user interactions. Companies such as 3DV System 

Ltd. (Yahav et al., 2007) and Optrima NV (Van Nieuwenhove, 2011) provided range cameras for 

game consoles based on the TOF principle. PrimeSense, the previous market leading company (now a 

part of Apple Inc.) released range cameras originally applied to gaming, based on the active 

triangulation principle. The company is best known for providing the technology to Microsoft for 

producing the first Kinect, previously known as Project Natal.  Figure 2.9 depicts the range cameras 

based on the PrimeSense technology; some of them were licensed to ASUS and Microsoft. The 

performance of some of these sensors (in terms of accuracy and repeatability) is analyzed and 

compared by Böhm (2014). 

Although the range imaging devices and technology have been available for several years, interest in 

these sensors initially remained low; interest grew with the release of Microsoft Kinect. The most 

important reason was the mass production of Microsoft Kinect (24 million units were sold as of 

February 2013 (“Microsoft News,” 2013)), which had a great effect on the photogrammetric 

community in which the number of traditional 3D sensing systems such as laser scanners is in the 

range of 1000s. The low price of this system has made it one of the most affordable and accessible 

systems for the collection of 3D data. (Böhm, 2014; Luhmann et al., 2014) 

 

 

Figure 2.9 – Range cameras based on the PrimeSense technology. 

Top to bottom: Microsoft Kinect, PrimeSense PSDK, ASUS Xtion 

Pro Live and ASUS Xtion Pro. (from Böhm (2014)) 

a) b) 
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Microsoft Kinect for Xbox 360 

The Microsoft Kinect was originally developed by the PrimeSense LTD as a human interface and a 

hands-free game controller for Microsoft Xbox 360 game console in November 2010. Releasing the 

non-official and later the official Software Development Kits (SDKs) for this device opened the way 

for a wide range of new activities in which range cameras play an important role, such as Augmented 

Reality, robotics (“MS Robotics Developer Studio,” 2014), security and surveillance (“Connecting 

Kinects for Group Surveillance,” 2014), medicine and surgery (“GestSure,” 2014; Loriggio, 2011), 

etc.  

Reverse engineering has determined that this RGB-D sensor system consists of an IR laser projector, 

an IR camera (640×480 pixels resolution at 30fps, or 1280×1024 pixels at a lower frame rate with 11-

bit depth), an RGB camera (640×480 pixels resolution at 30fps, or 1280×1024 pixels at a lower frame 

rate with 8-bit depth), a 3-axis accelerometer for recognizing the current orientation of the Kinect and 

a microphone array for capturing sound (see figure 2.10). The system has a 43° vertical by 57° 

horizontal field of view, and performs within the range of 0.7-6m, providing centimeters accuracy in 

the range measurements.  

The system projector emits a fix IR laser speckle pattern to the object surface (see figure 2.11 (a)). The 

pattern is then recorded by the IR camera which is located at a distance of about 7.5cm from the 

projector. The pattern consists of a 3×3 grid of light and dark speckles, with a significantly lighter 

speckle at the center of each grid (see figure 2.11 (b)). This special pattern design is used for the image 

matching technique performed by the Kinect (the algorithm is patented by PrimeSense and is not 

disclosed), in order to compute the disparity image by a comparison between the collected and the 

reference pattern. The disparity image is then converted to a point cloud using the SDKs and 

mathematical relationships mentioned in section 0. The accuracy analysis of the system range 

measurements is presented in section 6.1.2.  

 

              
Figure 2.10 – Microsoft Kinect integrated sensors. (from (“MSDN Kinect,” 2015)) 

 

  
Figure 2.11 – Kinect IR laser speckle pattern projected on a real scene (left) and a flat surface (right). 

a) b) 
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Microsoft Kinect V2 for Xbox One 

Opposed to the mentioned sensor systems based on the PrimeSense technology, the Kinect V2 system 

is based on the time-of-flight principle. This system was released in November 2013 as a motion 

sensing input device for Xbox One, together with an SDK for software developers. The system uses 

the TOF technology and chips developed by Cantesa (Bamji et al., 2015) which was acquired by 

Microsoft before the release of the first Kinect sensor.  

The system features an RGB camera with 1920×1080 pixels resolution at 30fps, an IR emitter and an 

IR sensor with 512×424 pixels resolution at 30fps (see figure 2.12). The pixels in the IR sensor are 

divided into a top and bottom half, each driven by separate clock drivers, working with tens of MHz 

frequency (Bamji et al., 2015), which means increasing the depth camera’s resolution to 1024×848 

(“Doc-Ok.org,” 2015). The performance range of the system is 0.5-4.5m, with 70°H×60°V field of 

view. The accuracy of depth measurements by this system is within 2% across all lighting, color, 

users, and other conditions in the operating range (Sell and O’Connor, 2014).  

The system costs around 150 Euros (non-official price in Germany, March 2015); the comparison 

between the resolution, accuracy and price of Kinect V2 with other TOF cameras such as SwissRanger 

4000 or CamCube, which cost some thousands of Euros, is noticeable. Figure 2.13 depicts a sample 

point cloud collected by this system. 

 

          

Figure 2.12 – Kinect V2 for Xbox One. (from (“iFixit,” 2013)) 

 

 

Figure 2.13 – A sample registered point cloud collected by Kinect V2 without noise removal. 

 

 

 

 

RGB sensor IR sensor IR emitter 
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2.1.2.4. Indoor Mobile Mapping Systems Based on Low-Cost Range 

Cameras 

Inspired by Microsoft Kinect, and based on the PrimeSense active triangulation and state-of-the-art 

TOF technologies, low-cost commercial indoor mobile mapping systems are being developed 

increasingly. Examples of such systems are presented in the following parts. 

DotProduct DPI-7 and DPI-8 

The DPI-7 handheld scanner is developed by DotProduct LLC, and uses a PrimeSense Carmine 1.08 

RGB-D sensor for the collection of range images. According to “DPI-7 User Manual” (2014), the 

system integrates a 7” tablet as the user interface for the data collection as well as recording and 

processing the data. The integrated software automatically colorizes the point clouds, and performs the 

localization using the scene geometrical information (similar to KinectFusion (Newcombe et al., 

2011)) for the alignment of the collected range images, with the ability to re-localize the sensor in case 

of losing the location track. Moreover, the software filters the noise of the point cloud and adjusts the 

color of the collected points which might be inconsistent due to the light conditions of the 

corresponding color images. The tablet is additionally used to give feedback to the user regarding the 

quality of the collected data and location tracking, indicated by augmented colors. Figure 2.14 depicts 

a sample point cloud collected by this system. 

The successor of this system, DPI-8, uses an 8” NVIDIA SHIELD tablet with 2GB of RAM (twice the 

DPI-7), which results in a higher performance, as well as the ability of capturing rooms of at least 3 

times the size. The nominal accuracy of the range measurements in both systems are the same (see 

table 2.4). In fact, due to the use of a similar sensor, the accuracy of the range measurements is similar 

to the accuracy measurements captured by Kinect. The system measures depths within the range of 

0.6m - 3.3m; longer distances are filtered out in order to avoid the effect of noise in longer 

measurements. The DPI-8 system costs about 5800€ in Germany (May 2015). 

 

Range Typical accuracy (RMS) Minimum accuracy 

< 1m 0.2% 0.4% 

1m - 2m 0.5% 0.8% 

2m-3.3m 0.8% 1.2% 

> 3.3m Not specified Not specified 

Table 2.4 – Nominal accuracy of DPI-7 and DPI-8 range measurements. 

 

  

Figure 2.14 – Left: DPI-7 system (adapted from “DotProduct LLC” (2015)); Right: a sample point cloud 

collected by this system (noise is already removed by the integrated software). 



2.1. State-of-the-Art Sensors for 3D Data Collection  29 

Structure Sensor 

This sensor system is developed by Occipital, and captures the 3D map of indoor spaces using a range 

measurement system developed by PrimeSense (active triangulation) and an integrating iPad 

containing the software (figure 2.15 depicts the system). The software colorizes and aligns the range 

images captured from different viewpoints, and creates meshes. A notable feature of this system is the 

SDK provided for the developers in order to enable them to write mobile applications that interact 

with the 3D maps, Augmented Reality, measurements on the objects, gaming, etc. Some of the 

technical specifications of the system are summarized in Table 2.5. The range image alignment in this 

system is based on the observations in the 3D object space (similar to KinectFusion (Newcombe et al., 

2011)); the sensor tracking is lost in case of dealing with flat surfaces.  

 

 

Figure 2.15 – Structure Sensor mounted on an iPad. (from the company website) 

 

Field of view (H×V) 58°×45° 

Measurement rate 30fps & 60fps 

Measurement range 0.4m - 3.5m 

Precision 1% of the measured distance 

Weight 99.2gr 

Dimensions (W×D×H) [mm] 27.9×119.2×29 

Price ($)* 379 and 499 

Table 2.5 – Technical specifications of the Structure Sensor. *Official prices without iPad, in US, March 2015. 
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Google Project Tango 

In recent years Google Inc. has shown increasing interest in indoor mapping and virtual reality. 

Examples of the developed systems and applications are Google backpacker (the indoor version of the 

Google Street View cars), Google Art project (360 degree tours of art galleries using Street View 

indoor technology), Google Glass (for Augmented Reality and photography) and Google Project 

Tango.  

The Google Project Tango is an Android device platform integrating depth sensors, advanced 

computer vision and image processing algorithms, developed in collaboration with currently 24 

universities and industrial research labs for real-time 3D mapping of interiors (“Tango Concepts,” 

2015) (see figure 2.16). The system range measurement is based on the TOF principle, using a PMD 

sensor developed by PMDTechnologies (2015). The sensor provides a quarter of a million of 

measurements every second (Say hello to Project Tango!, 2014), and works best within the range of 

0.5m - 4m. The device collects range images while tracking its 3D motion using a wide-angle camera 

working based on visual-inertial odometry techniques, in order to create the 3D map of the 

environment (“Tango Concepts,” 2015). 

The system costs around 1000$ (non-official price in US); currently, only a limited number of the 

prototypes of this product is available for researchers and software developers to develop applications 

and algorithms.  

 

  

  

Figure 2.16 – Google Project Tango smartphone and tablet together with a sample collected data. (adapted from 

“Google Store” (2015), “Say hello to Project Tango! ” (2014) and “The Verge” (2015)) 
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2.2. The Registration Problem 

Due to scene complexities and the scanners limited field of view, in many applications it is required to 

collect point clouds from multiple viewpoints in order to cover the whole scene. Point clouds collected 

from different viewpoints have their own local coordinate system; in order to align the coordinate 

systems, the corresponding point clouds have to be registered together using a rigid-body 

transformation, which is a special case of the 3D similarity (Helmert’s 7-parameters) transformation 

by setting the scale factor to 1. The transformation can be estimated using point correspondences in 

the point clouds, or by estimating the sensor pose in the reference coordinate system. 

2.2.1. Registration Using Point Correspondences in the Point Clouds 

The rigid-body transformation parameters can be estimated using point correspondences in the point 

clouds. In case the point correspondences are already given in the form of 3D features in the scene 

(artificial or natural) or 2D features in the corresponding intensity or color images, the transformation 

parameters can be estimated for instance using a closed-form solution based on the unit quaternions 

(Horn, 1987; Sanso, 1973). If the point correspondences are not provided, they can be estimated based 

on the geometrical structure of the scene, using an iterative procedure called Iterative Closest Point 

(ICP) algorithm (Besl and McKay, 1992). See appendix A for the mathematical background of the two 

approaches. 

2.2.1.1. Correspondences by Recognition of 3D Features 

Artificial Targets 

According to Luhmann et al. (2014), the most accurate way of registration is based on using artificial 

objects of known geometry in the scene, and spheres have proven to be the most reliable choice. The 

spheres in the scene are usually detected using the RANSAC algorithm, and their centers are used as 

tie points in the registration process (figure 2.17). More details about RANSAC algorithm is presented 

in appendix B. 

 

 
Figure 2.17 – Fitting a sphere to a set of measured points. 
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Natural Targets 

3D features can also be defined in the scene using well-defined sharp corners manually (figure 2.18 

(a)), or automatically using feature extractors such as NARF (Normal Aligned Radial Feature) (Steder 

et al., 2011) (figure 2.18 (b)). The NARF feature extractor works with the corresponding range 

images. It first identifies the interest points on the objects border (outer shape of the object from a 

certain perspective view), in locations where the surface is stable (robust estimation of normal vectors 

is possible). Then it defines a descriptor for the interest points based on the amount and the main 

direction of the surface changes (in terms of the surface curvature) in the vicinity of the point. 

 

   

Figure 2.18 – Identification of 3D natural target points manually (left) and using NARF feature extractor 

(adapted from “Documentation - Point Cloud Library (PCL)” (2015)) (right). 

 

2.2.1.2. Correspondences by the Recognition of Features in 2D Images 

3D point correspondences can be identified based on the information provided by the corresponding 

color, intensity or reflectance image. However, as also mentioned by Luhmann et al. (2014), this 

requires a perfect registration of the corresponding images, which means each pixel in the color, 

intensity or reflectance image must correspond to the same point in the corresponding point cloud. In 

this case, point candidates can be derived in the 2D image space using image processing techniques (to 

recognize artificial targets) or 2D feature extractors such as SIFT (Lowe, 2004), SURF (Bay et al., 

2006), FAST (Rosten and Drummond, 2006, 2005), etc. The extracted features then have to be 

matched against each other across different images. The matching process can be performed using the 

RANSAC algorithm, based on the rigid-body transformation model in case of using intensity images, 

or by the fundamental matrix in case of using color images. An example of the registration using this 

method is presented by Böhm and Becker (2007). They extract and match SIFT features across the 

corresponding reflectance images, and compute a pair-wise registration using a rigid-body 

transformation (see figure 2.19).  

 

 

Figure 2.19 – SIFT features extracted 

and matched for a reflectance image. 

(from Böhm and Becker (2007)) 

a) b) 
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2.2.1.3. Correspondences by the Analysis of the Scene Geometry – Iterative 

Closest Point (ICP) Algorithm 

In case no point correspondences are available, or the accuracy and distribution of the available 

corresponding points are not sufficient for an accurate point cloud registration, one can alternatively 

use the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992). For each point in the local 

point cloud (scan world), the algorithm finds the closest points in the reference point cloud, and 

estimates a rigid-body transformation. After applying the transformation, the algorithm is repeated 

until the sum of the residuals of the distances between the point correspondences is smaller than a 

threshold (see figure 2.20). This registration method requires initial values; bad initial values may 

cause a wrong convergence of the solution. More details regarding the ICP algorithm are provided in 

appendix A. 

 

 

Figure 2.20 – Point cloud alignment using the ICP algorithm. 

 

2.2.2.  Registration by the Estimation of the Sensor Pose 

Beside the abovementioned approaches, point clouds can be aligned if the sensor poses are estimated 

in a common coordinate system. The sensor pose can be estimated by the integration of different 

sensors such as low-cost MEMS-IMUs, LRFs and cameras into the range measurement system.  

2.2.2.1. Registration Based on Structure from Motion Methods  

The estimation of camera poses from two and three viewpoints has been focused for a long time by 

photogrammetric and computer vision communities, and closed-form solutions have been developed 

to solve this problem (Hartley and Zisserman, 2003). For multiple views, Structure from Motion 

(SfM) methods estimate the sensor pose incrementally; image features are extracted and matched for 

an initial image pair, the points are triangulated, and a new image is added. The solution is then 

globally optimized using a bundle adjustment in a post processing step. There is a wide range of SfM 

methods, each of which dealing differently with the large number of images, and pipelines for solving 

the problem (Snavely, 2008). Famous commercial software solutions are available for solving the SfM 

problem, such as Bundler (Snavely et al., 2006), VisualSfM (Wu, 2013), Agisoft PhotScan, etc. 

SfM methods estimate the camera pose in a local coordinate system up to the scale factor. To register 

the point clouds, camera locations have to be first scaled to a metric coordinate system. The scale 

factor is estimated using a 3D similarity transformation, having point correspondences in the color and 

range image channels. More details regarding this registration approach is presented in section 3.2.1. 
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2.2.2.2. Registration Based on SLAM Methods  

In real-time and robotic applications, the sensor pose is estimated using SLAM approaches. In such 

applications, the autonomous platform needs to localize itself within an unknown environment, while 

simultaneously creating the map of the environment (see appendix C). Frese et al. (2010) present an 

overview regarding available SLAM methods based on the application and different sensor inputs in 

2D and 3D. According to this overview, in 3D applications, two general variants of SLAMs are 

recognized: graph-based SLAM methods that rely on scan matching, and visual SLAM methods based 

on point features extracted from images. Most of the graph-based SLAM methods use pair-wise 

alignment of the consecutive scans and create constraints for the sensor 6 degree-of-freedom (DOF). 

Nüchter et al. (2007) and Wurm et al. (2010) present localization and mapping methods using ICP 

scan matching, supported by loop closure and pose graph for the global consistency and optimization. 

The KinectFusion software implemented by the Microsoft Research Group (Newcombe et al., 2011) 

besides presenting an optimized method or the sensor tracking, creates a dense and smooth 3D map by 

the use of Kinect point clouds in real-time. Sensor tracking in this method is based on a GPU 

implementation of a coarse-to-fine ICP algorithm. Open-source implementations of this method 

(KinFu and KinFu Large Scale) are provided by the Point Cloud Library (PCL) (Rusu and Cousins, 

2011) (see figure 2.21). Such methods, however require a suitable scene structure and enough 

geometric information for the successful constraining of the sensor 6 DOF, and therefore fail in case 

of dealing with flat surfaces.  

Visual SLAM systems estimate the sensor pose by tracking sparse points of interest, extracted from 

images, using vision algorithms. The offline version of this problem is studied as the bundle 

adjustment problem in photogrammetry, and as SfM in computer vision community (Frese et al., 

2010; Hartley and Zisserman, 2003; Triggs et al., 2000). According to Newcombe et al. (2011), 

research on SLAM has focused more on real-time marker-free tracking and mapping using monocular 

RGB cameras. Systems such as Parallel Tracking and Mapping (PTAM) enable marker-free tracking 

of the camera together with Augmented Reality applications using a single camera (Klein and Murray, 

2007). This system emphasizes on the localization of the camera, and therefore performs mapping by 

sparse point models.  

 

  

Figure 2.21 – Creating an exemplary 3D map and sensor tracking using the KinFu software provided by the PCL 

software library. 

 

RGB-D sensors such as Microsoft Kinect provide range data together with corresponding color 

images. This enables the combination of geometric and scale information with visual features to 

localize the sensor and create the map of the environment. The combination of both information is 

specially useful for Kinect which has a relatively small field of view (57°H×43°V), and therefore 

vision-only and graph-based methods may easily fail due to finding insufficient visual or geometrical 

features in the scene. Henry et al. (2012) present an RGBD-ICP mapping method that tightly uses 
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RGB and depth information for a robust frame-based matching and loop closure. This method first 

extracts and matches sparse visual features (SIFT features) in two consecutive RGB images, and 

associates them with depth values in the corresponding depth images to generate feature points in 3D. 

Then it finds the best rigid-body transformation between the two sets using RANSAC algorithm. The 

transformation is then refined using the ICP algorithm. The ICP algorithm, however, minimizes two 

different Euclidean distances: the mean distance between visually associated points (sparse points) and 

the mean distance between dense points (Kinect point clouds), by setting different weights for each of 

the two distances in the error minimization process. This enables the method to benefit from the visual 

information when the scene geometry cannot constrain the sensor 6 DOF, or to benefit from the scene 

geometrical information in case of having poor visual features. The results then become globally 

consistent using a graph optimization process. The process is summarized in figure 2.22. A sample 

map created by this method is depicted in figure 2.23. 

 

 

Figure 2.22 – Overview of the RGBD-ICP mapping system. The algorithm uses visually associated and dense 

points for frame-to-frame alignment and loop closure detection in parallel threads. (from Henry et al. (2012)) 

 

 

Figure 2.23 – A sample map created by the RGBD-ICP mapping system. (from Henry et al. (2012)) 
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3. Data Collection using Microsoft Kinect for Xbox 360 

In the previous chapter, potential sensors and approaches for the collection of range data in indoor 

scenes were introduced. In the presented work, the low-cost and accessible RGB-D camera Microsoft 

Kinect for Xbox 360 is employed as the case study for the collection of 3D point cloud of interiors. 

This chapter presents the mathematical background for the system calibration, derivation of point 

clouds from disparity data and colorization of the point clouds. Moreover, in extreme cases where 

vision-based and depth-matching-based registration approaches mentioned in the previous chapter fail, 

due to the lack of visual features and appropriate geometrical scene structure, a registration approach 

based on an indoor positioning solution is proposed as a complementary approach. 

3.1. Point Cloud Collection by Kinect 

3.1.1. System Interfaces and SDKs 

For the collection of colored point clouds using Kinect, low level data streams such as color images 

and disparity data have to be extracted using a Software Development Kit (SDK). SDKs enable the 

interaction of the user with the system using specific programming languages (e.g. C, C++, C#, Java 

and Python). In November 2010, when the Kinect system was first introduced as an interface for the 

Xbox 360 game console, no official driver was introduced for developers. However, shortly after that, 

open-source drivers such as libfreenect (OpenKinect project) and OpenNI (PrimeSense) were released 

to support the data acquisition with Kinect. The official Kinect SDK for the Microsoft Windows 

operating system was released in February 2011, which additionally supports gesture and face 

recognition, voice recognition, alignment of the range data, etc.. In the present work, the libfreenect 

driver was used for the interaction with the Kinect, as it supports programming under the free and 

popular operating system Linux. 

3.1.2. System Calibration 

The Kinect system integrates a range measurement system (combination of an IR laser projector and 

an IR camera) and an RGB camera (see figure 3.1). For the colorization of the Kinect point clouds, 

and also registration of the point clouds using visual information, the Kinect range data have to be 

registered with the color information. For a correct pixel-to-pixel registration of RGB and depth 

values, besides the calibration of the IR and RGB cameras, the relative pose between the two cameras 

has to be estimated precisely. The camera calibration refers to the determination of camera interior 

orientation parameters (principal distance and the image coordinates of the principal point) together 

with the parameters describing image errors (e.g. lens distortion parameters).  
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Figure 3.1 – A disassembled Kinect; the system consists of an IR laser projector, an IR and an RGB camera. 

 

According to Luhmann et al. (2014), three calibration techniques can be distinguished: laboratory 

calibration, test-field calibration and self-calibration. Laboratory calibration was used in the past for 

the calibration of metric cameras using optical alignment instruments. This method cannot be done by 

the user, and therefore meets little applications in close range photogrammetry. State-of-the-art close 

range techniques employ the analytical calibration methods in which the observation of the image 

coordinates is used to derive the interior orientation parameters using a bundle block adjustment. 

Moreover, by the inclusion of additional parameters, the position of the perspective center and the lens 

distortion effects are modeled. The test-field calibration method employs a target field, photographed 

using a suitable camera configuration, in order to ensure a suitable ray intersection, while filling the 

maximum image format to assure a small correlation between the estimated parameters. In practice, 

the test-field might be replaced by the actual object, only if a condition similar to the test-field 

calibration can be fulfilled, to ensure a suitable ray intersection and small correlation between the 

estimated parameters (self-calibration). 

In the test-field calibration, measured image coordinates and approximate object coordinates are 

processed using an unconstrained datum bundle adjustment technique (e.g. free net adjustment 

technique), in order to avoid the effect of possible inconsistencies in the datum information on the 

estimated unknowns. Moreover, to ensure the maximum accuracy in the estimation of the relative pose 

between the two cameras, the exterior orientation together with the interior orientation parameters of 

the IR and RGB images are estimated in one bundle adjustment process. It is necessary to mention that 

the corresponding image pairs (IR and RGB) used in the bundle adjustment have to be taken 

synchronously at multiple viewpoints, in order to avoid erroneous measurement of the stereo baseline. 

The bundle adjustment is based on the well-known collinearity equations (equations (3.4)) which are 

set for each target point. The collinearity equations are derived from the central projection equations 

(equations (3.1), see figure 3.2) by solving the point dependent scale factor from the third row and 

replacing it in the first and second rows. 

 

 
Figure 3.2 – Central projection principle. (adapted from Cramer (2014)) 
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In these equations: 

- A A AX , Y , Z  are the coordinates of the point A in the world coordinate system; 

- A  is the scale factor corresponding to point A; 

- R is the rotation matrix from the object to image coordinate system; 

- 
ijr  is the (i,j)R  element; 

- 
a ax , y  are the measured image coordinates for the point A; 

- 
p px , y  are the coordinates of the principal point; 

- a ax , y   are the correction terms for image coordinates corresponding to point A; 

- c  is the calibrated focal length; 

- O O OX , Y , Z  are the coordinates of the camera projection center in the world coordinate system. 

According to Guidi and Remondino (2012), for the estimation of the correction terms (additional 

parameters) x, y  , the model developed by Brown (1971) is proved to be the most effective, in 

particular for close range sensors. The Brown calibration model which is a physical model, estimates 

the lens distortion effect in the radial and decentering (tangential) directions by:  
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in which 
1,2,3K  are the distortion coefficients for the radial direction, 

1,2P  are the distortion coefficients 

for the tangential direction, r  is the radial distance reduced to the estimated principal point and d dx , y  

are distorted image coordinates reduced to the principal point.  

Besides the Brown’s physical model for the estimation of the additional parameters, Tang et al. (2012) 

prove that there are rigorous and effective mathematical models based on the Legendre polynomials, 

which are able to compensate distortions of very small magnitude (around 0.05 pixels). Equation (3.8) 

presents an exemplary model of additional parameters derived based on the Legendre polynomials 

with 34 unknowns (corresponding to degrees m=4 and n=3). The maximum order of the polynomial 

should be chosen by the compromise between the optimal accuracy and reducing over-

parametrization.  
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In these equations, ia  coefficients are the additional parameters and 
m,np  represent the series of 

continuous orthogonal polynomials based on the Legendre polynomials. This family of additional 

parameters is used where the Brown’s model is not sufficiently accurate and a very high accuracy is 

required. However, this is not the case for the Kinect images, due to the high level of noise and blur 

contained in image observations. Moreover, in practice, interest points are extracted and matched 

based on the SIFT or other feature detectors, which deliver an accuracy of about 0.7 pixels 

(Mikolajczyk and Schmid, 2004). Therefore, image measurements of around 0.5 pixels accuracy will 

be sufficient in case of using Kinect. Numerical results and evaluations regarding the calibration of the 

Kinect system are presented in section 6.1.1.  

3.1.3. Generation of Colored Point Clouds 

As already mentioned, the Kinect system calibration enables a correct registration of RGB and depth 

values. In the first step, the disparity values have to be converted to depth values. Afterwards, through 

some transformation steps which are described in this chapter, RGB values are transformed into the IR 

image space for colorizing the point clouds.  

3.1.3.1. From Disparity Image to 3D Point Clouds 

In normal stereo photogrammetry, where two identical cameras have parallel axes perpendicular to the 

baseline, disparity measurements are related to the object distance by the following equation: 

H c

b d


 
 (3.9) 

whereby H is the depth or the object distance, b  is the stereo baseline length, c  is the focal length of 

the IR camera and d  is the measured disparity. This equation can be derived from the ratios indicated 

in figure 3.3 or from the collinearity equations, by setting the rotation angles equal to zero. The 

distance uncertainty with respect to the uncertainty in the disparity measurement is given by: 
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The equation shows that the distance uncertainty is proportional to the square of the object distance. 

 

  
Figure 3.3 – Normal case of stereo photogrammetry. (adapted from Luhmann et al. (2014)) 

 

Referring to the equation (3.9), at zero disparity the object distance is infinity, since the rays are 

parallel. Kinect disparities are not normalized in the same way; they are in the range of [0, 1023] (1 

out of the 11 bits is reserved as a validity marker for the data, i.e. it marks the pixels for which no 

measurement is available (Khoshelham and Elberink, 2012)). The zero disparity does not correspond 

to an infinite distance, but to the distance to the reference plane (at a known depth) memorized in the 

device. According to “ROS Kinect calibration” (2011), Kinect disparities are supposed to be 

denormalized using a linear transformation (consisting of a shift and a scale factor), which can be 

expressed by: 
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in which, d  is the denormalized disparity and Kd  is the disparity measured by Kinect. 

As the image matching algorithm of Kinect has sub-pixel accuracy, the scale factor 1/8 is considered 

to convert the measurements to the pixel unit. The offset value and the stereo baseline are computed 

using a least squares adjustment, having observed some known depths at different distances. By 

substituting the equation (3.11) in (3.9), H  is computed. The 3D coordinates of the corresponding 

point is then computed by:  
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in which, x, y  are the coordinates of the point in the IR image space, or equivalently in the disparity 

image space. 
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3.1.3.2. Adding Color to the Point Clouds 

For colorizing the point cloud, the depth values shall be registered with the RGB image. Figure 3.4 

depicts the main transformation steps 1 2 3(T , T , T )  required to transform a pixel from the disparity to 

the RGB image space. 

 

 

Figure 3.4 – Transformation from disparity to RGB image space. 

 

In the first transformation 1(T ) , the disparity image is converted to IR camera local 3D coordinates 

(equation (3.13)). In the second transformation 2(T ) , 3D coordinates are converted from IR to RGB 

camera local 3D coordinate system (equation (3.14)): 
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where: 

- R  and T  are the exterior orientation parameters of the RGB and IR cameras, which have already 

been computed by the system calibration (section 3.1.2); 

- 
RGB (hom)X  and 

IR (hom)X  are the homogeneous coordinates of the corresponding point in RGB and 

IR local 3D coordinate systems, respectively. 

Finally, in the last transformation 3(T ) , using the projective matrix of the RGB camera (equation 

(3.15)), the corresponding coordinates in the RGB image space are computed (Hartley and Zisserman, 

2003): 
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(3.15) 

In the equations: 

- RGBK  is the calibration matrix of the RGB camera; 

- P  is the projection matrix of the RGB camera; 

- 
RGB (hom)x  and 

RGB (hom)X  are the homogeneous coordinates of the corresponding point in RGB 

image and 3D local object coordinates, respectively. 

The mentioned transformations enable the registration of each pixel in the disparity image, and 

therefore a point in the corresponding 3D object coordinates to an RGB value. 

3.2. Point Clouds Registration 

In section 0, available approaches for the registration of the point clouds in indoor applications were 

introduced. For the registration of the Kinect point clouds, as mentioned before, SfM and SLAM 

approaches can be used. Commercial and open-source implementations of some of the solutions are 

available. Software such as ReconstructMe (“ReconstructMe,” 2015), Skanect (“Skanect by 

Occipital,” 2015), FARO SCENECT (“SCENECT,” 2015) and KinFu Large Scale (Rusu and Cousins, 

2011) enable the user to easily scan the objects or scenes without requiring knowledge about 

photogrammetry, computer vision and robotics. The user usually interacts with the software front-end, 

and cannot manipulate parameters to deal with challenging scenes with poor texture or geometrical 

information. To deal with such issues, one may use or customize available SfM or SLAM 

implementations to adapt the localization method with the application.  

3.2.1. Point Clouds Registration Based on RGB and Depth Information 

This study uses the free software VisualSFM – the implementation of an SfM method to orient RGB 

images captured by the Kinect system (Wu, 2013; Wu et al., 2011). Similar to all SfM methods, 

VisualSFM uses point features to incrementally estimate the scene structure and camera poses. The 

solution is then merged into a bundle adjustment for the global optimization of this estimation. As a 

result of this process, 3D coordinates of point features are derived in a 3D local coordinate system up 

to the scale factor. The scale factor is estimated by the best fitting of the 3D local coordinates with the 

corresponding 3D object coordinates of matched point features at each range image frame, which is 

then averaged over all frames. For the best fitting of the 3D point features at each range image frame, 

having more than 3 points, a least squares adjustment can be performed based on the 3D similarity 

(Helmert’s 7-parameters) transformation: 

Object Local  X R X T
  (3.16) 

In this equation: 



3.2. Point Clouds Registration  43 

- 
ObjectX  and LocalX  are the 3D coordinates of point features in the object (metric) and local coordinate 

systems; 

-   is the scale factor; 

- R  is the rotation matrix applied to the local coordinates; 

- T  is the translation vector from the centroid of rotated and scaled local to the centroid of the 

object coordinates. 

As the model is not linear regarding the unknown parameters  , R  and T , initial values and 

iteration are required to estimate the unknown parameters. To avoid this issue, closed-form solutions 

to the least squares problem is proposed by Horn (1987) and Sanso (1973), which are based on the unit 

quaternions for the representation of rotations (see appendix A). 

The RGB camera orientation parameters in the metric space can be used directly for the registration of 

the corresponding point clouds, since the relative orientation of the RGB and IR camera is fixed. 

Figure 3.5 depicts an example in which the point clouds collected from 10 viewpoints are aligned 

using the mentioned approach. 

 

  

Figure 3.5 – Oriented images and the sparse point cloud corresponding to point features (left); aligned point 

clouds corresponding to the color images (right). Images are oriented using the VisualSFM software. 

 

3.2.2. Point Clouds Registration Based on an Indoor Positioning Solution 

and Available Coarse Indoor Models 

Vision-based and depth-matching-based registration approaches for the estimation of the sensor pose 

rely on the existence of sufficient well distributed features of interest, as well as suitable geometry of 

the scene to constrain the sensor 6 DOF. Therefore, such approaches fail in scenarios with poor 

texture, or scenes with insufficient geometric information. This issue can be handled for instance by 

integrating inertial solutions into the system. For example, ZEB1 mobile mapping system (by CSIRO) 

uses a 2D laser range finder supported by a low-cost MEMS IMU for the localization and mapping 

purpose. In the robotics community, visual and inertial information are merged together for the 

localization purpose using visual-inertial SLAM methods (for example see (Leutenegger et al., 2013)). 

However, in order to avoid drift error, the existence of visual constraints in keyframes is inevitable.  

This study presents a new complementary approach for the registration of collected point clouds in 

extreme scenarios, in which the abovementioned methods fail, due to having poor texture and 

symmetrical geometrical structure (e.g. hallways). For this purpose, the point cloud registration task is 

supported by an indoor positioning method implemented at the Institute for Photogrammetry, together 
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with information extracted from available coarse models. Figure 3.6 depicts the overview of this 

approach, which is described in detail in following sections. 

 

 
Figure 3.6 – Flowchart of the proposed approach for the registration of the point clouds: evacuation plans 

support the indoor positioning by map matching, and at the same time, are used to generate coarse indoor 

models. The user’s track and the information extracted from the coarse indoor model enable the registration of 

point clouds. 

 

3.2.2.1. Indoor Positioning Method Based on a Foot Mounted MEMS IMU 

In recent years, indoor positioning has increasingly been focused by the robotics and computer vision 

communities, and various approaches are proposed to solve this problem. As stated by Peter et al. 

(2010), most of the approaches either use an extra infrastructure such as WLAN networks or RFID 

beacons, or require a high quality indoor model. Therefore, low-cost sensor systems such as MEMS 

IMUs have been focused to overcome the limitations. However, such systems suffer from large drifts 

shortly after the data collection starts. To improve the accuracy, Godha and Lachapelle (2008) suggest 

the use of zero-velocity updates algorithm (ZUPT) to reduce the problem of error accumulation over 

time and to maintain the accuracy bounds for longer periods. In this approach, the MEMS IMU is 

mounted on the user’s foot, and therefore the foot dynamics enable the use of frequent zero-velocity 

updates.  

Although zero-velocity updates significantly reduce the accumulation of the drift error, still this effect 

is considerable in longer tracks. Therefore, Peter et al. (2011, 2010) further improve the accuracy of 

navigation using the information extracted from the available coarse indoor models, assuming the 

most parts of the user’s track is parallel or perpendicular to the main direction of the building. This 

study uses their implemented software for the derivation of the user’s track. 

3.2.2.2. Generation of Coarse Indoor Models 

In Peter et al. (2010), a new approach for the extraction of course indoor models from available 

evacuation plans is presented. In many countries, existence of such plans is compulsory for the public 

buildings such as hospitals, universities, hotels, etc. The coarse models support the aforementioned 

indoor positioning method, as well as point cloud registration, as will be shown in the following 

sections. The procedure for the generation of such models is summarized in section 4.2.3. 

3.2.2.3. Data Collection 

For the data collection purpose, the user employs a foot mounted MEMS IMU and starts walking from 

the position where the evacuation plan is photographed into the corridor, while holding a Kinect 

system and capturing the range and MEMS IMU data, simultaneously. The user’s track as well as the 

coarse indoor model is then derived using the aforementioned methods. Afterwards range images have 

to be pre-processed and finally transformed into the world coordinate system using a rigid-body 

transformation. The details are described in the following sections. 

Evacuation plans 
Point clouds 

registration 

Indoor positioning 

 

Coarse 3D models 



3.2. Point Clouds Registration  45 

3.2.2.4. Pre-Processing of the Point Clouds  

In this step, point clouds are levelled in the horizontal plane (to compensate the sensor tilt) and the 

heights are modified (using a shift in the vertical direction), so that the ground parts of the point clouds 

lay at a same level. For this purpose, first the normal vectors of range images are analyzed in order to 

find the ground points and to estimate the point clouds tilts regarding the horizontal plane. Points are 

segmented as ground points, if the angular difference between their normal vector and the vertical axis 

is less than a threshold (e.g. 45° which is a quite tolerant threshold). The segmentation is refined 

iteratively by compensating the tilt and removing outliers. The point cloud of the walls can also be 

grouped using a similar procedure, which is required by the next steps. 

3.2.2.5. Extraction of 3D Rigid Transformation Parameters 

In this step, the user’s track is analyzed in order to estimate the orientation of the point clouds 

considering the captured timestamps (see figure 3.7). As the tilt of the system is already compensated 

and the heights of the point clouds are equalized in the pre-processing step, the registration process 

only consists of a rotation around the vertical axis as well as a translation in 2D space. The coordinates 

of the track points are directly considered as 2D translations. Rotations are computed, assuming the 

sensor is oriented towards the direction of the next track point. Equations (3.17) and (3.18) show the 

rotation angle   and translation components (XT, YT) for the registration of the point cloud 

corresponding to the i
th
 track point. Figure 3.7 depicts the registration of two exemplary point clouds 

of the hallway using only position traces. As it is visible in this example, the point clouds are coarsely 

aligned; the alignment will be refined in the next steps using the information extracted from the coarse 

model. 

 

 
Figure 3.7 – Initial point clouds alignment using position traces. Left to right: coarse model together with the 

aligned user’s track, position traces and top view of two initially registered point clouds.  
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3.2.2.6. Improving the Registration Using the Coarse 3D Model 

The registration can be further refined using the information extracted from the coarse indoor model. 

For example in this scenario, enforcing the parallelism of detected walls in the point clouds and the 

corresponding walls in the coarse indoor model is suggested. However, it should be mentioned that 

this refinement strategy is only possible in case the coarse model is not subject to significant changes; 

only slight changes in the room dimensions or the verification of available coarse models is possible 

by this solution. The following steps describe this constraining procedure in detail. 

Generation of 2D orthographic projected image: To imply this constraint, the problem is first reduced 

to two dimensions by projecting the point clouds onto a horizontal plane. A 2D grayscale orthographic 

projected image (2D histogram) is then computed from the projected points, using the same procedure 

as mentioned in section 5.2.1. The grayscale image is then converted to a binary image by setting a 

threshold (figure 3.8). Binarization also removes the ground and ceiling points as well as small 

features existing in the scene, as they correspond to smaller gray values. 

Morphological image processing: As depicted in figure 3.8, the traces of walls in the projected image 

are shapes which are not necessarily straight lines. In order to robustly estimate straight lines using the 

Hough transform (see appendix D), the trace has to be first pre-processed. For this purpose, the shape 

is converted to a closed structure by filling the holes using a morphological closing algorithm (dilation 

followed by erosion). This also removes some of the remaining noise in the binary image. The shapes 

are thinned to one pixel width elements passing through the middle of the shapes using the 

morphological skeletonization (see figure 3.9). Since a similar process is used in section 0, for more 

details please refer to this section. 

Estimation of straight lines: After the estimation of the skeleton of the walls trace, straight lines can be 

estimated using a Hough transform (see figure 3.10). A similar procedure is done for the estimation of 

straight lines in the 2D coarse model (the corresponding parts of the coarse model are selected 

considering a buffer around the track points).  

Line matching and constraining: To impose the constraints, the corresponding lines estimated in the 

projected image and the 2D coarse model shall be found and enforced to be parallel. The 

corresponding lines (walls’ projection) then can be assumed as the closest line segments having the 

most similar orientation (see figure 3.11). This assumption is valid due to the already existing coarse 

registration of the point clouds with the coarse model. Having found the corresponding line segments, 

the mean difference between the corresponding orientations is considered as the correction to the 

orientation of the corresponding point cloud in the horizontal plane. Figure 3.12 depicts the 

registration results after the constraining process. 

 

   
Figure 3.8 – A single point cloud and the corresponding 2D grayscale and binary images. 
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Figure 3.9 – Polygon closing (left) and skeletonization (right). 

 

  
Figure 3.10 – Estimated Hough lines in the orthographic projected image and the coarse model. 

 

 
Figure 3.11 – Corresponding line segments in a point cloud and the coarse model. 
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Figure 3.12 – Registered point clouds of the hallway after the constraining process. 

3.2.2.7. Accuracy Analysis of the Registration Approach 

The accuracy of this registration approach is directly related to the accuracy of the positioning method. 

As it is marked in figure 3.12 (bottom), the registered point cloud has a shift with respect to the coarse 

model. The reason is the existence of errors in the estimation of the user’s first track point, which is in 

fact the location that the user takes photograph of the evacuation plan.  

The internal accuracy (precision) of the registration approach is estimated by measuring and 

comparing the 3D coordinates of some corresponding features in the consecutive point clouds 

(equation (3.19)). This includes the error of the positioning method, measuring the coordinates of the 

features (due to the noise of the range images), and errors due to the change in the relative pose of the 

Kinect with respect to the foot-mounted MEMS IMU at different measurement epochs. The results are 

presented in figure 3.13. 
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In the abovementioned equation, 
j j 1   is the alignment accuracy between two epochs, 

j, j 1n 
 is the 

number of common matches between the two consecutive scans and 
i, j i, j i, j(X , Y , Z )  are the 

coordinates of the i
th 

point in the j
th
 scan. The estimated accuracies in the case study are generally 

better than 10cm, which seems rational regarding the mentioned sources of errors. However, in order 

to achieve higher accuracies, one may benefit from the combination of all the available observations, 

i.e. inertial, vision and depth measurements. The fusion of such measurements can be realized for 

instance by SLAM methods; for example (Leutenegger et al., 2013) tightly combine visual and inertial 

measurements and integrate them in SLAM, or (Endres et al., 2012) present an RGB-D SLAM 

approach that benefits from the scale information and 3D features extracted from depth images. 
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Figure 3.13 – Estimated precision of the registration in the sequence of scan positions. 

3.3. Kinect SWOT Analysis  

In this section, strengths, weaknesses, opportunities and threats of Kinect as a sensor system for point 

cloud collection are summarized. 

Strengths: The low price and accessibility of Kinect enable the wide usage of this sensor by many 

researchers. Kinect streams the range data and RGB data in 30Hz; the small size and weight of this 

sensor in comparison with TLS and indoor mobile mapping systems make it very flexible and popular 

for scanning of objects as well as indoor scenes. The Kinect high data acquisition rate makes the data 

collection task very fast in comparison with the laser scanners. Moreover, available open-source 

drivers and software simplify the interaction and data acquisition with the device. 

Weaknesses: As will be shown in section 6.1.2, the quality of the range data depends on the object 

distance. The sensor delivers range data with centimeters accuracy. Although Kinect supports range 

measurements within the range of 0.5 to 6m, in order to avoid having a noisy point cloud the practical 

object distance shall be less than the theoretical limit, depending on the required accuracy in each 

application. Considering the relatively small viewing angle of the system (57°H×43°V), the point 

cloud registration is a challenge in scenes having insufficient visual or geometrical features.  

Opportunities: Considering the price, availability, size, weight and accuracy of the delivered data, 

Kinect is a suitable alternative to available active range measurement systems. Having fused useful 

sensors, Kinect is becoming increasingly popular for many researchers focusing on 3D object 

reconstruction, indoor mapping, SLAM, robotics, etc. Moreover, it can be potentially used for 

crowdsourcing in 3D mapping of the building interiors that fulfills the LOD4 completion of CityGML 

representation of urban objects.  

Threats: Since the release of the Kinect, RGB-D cameras have become very popular; many companies 

are developing consumer-grade RGB-D cameras with more functionality (e.g. integrating SLAM 

methods for the automatic point cloud registration). An example is the Structure Sensor that collects 

and aligns the data in real-time, and provides a high-level SDK to enable a feasible development of 

indoor and AR applications (“structure.io,” 2014). Another example is the Google Project Tango that 

integrates the RGB-D sensor into Android platforms, and aligns the collected point clouds in real-time 

using visual-inertial odometry techniques. Moreover, the users are able to develop indoor applications 

using the SDK (“ATAP Project Tango,” 2015, “Tango Concepts,” 2015). 
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4. Overview of Available Indoor Modeling Approaches 

Indoor geometric modeling or representing the 3D shape of building interiors in terms of surfaces and 

volumes plays an important role in cost reduction and delivering high quality supports in many indoor 

applications such as supporting BIMs, interior architecture, risk management, security planning, etc. 

This task has been focused by researchers during the last two decades – specially in the last few years 

– due to advances in data collection platforms and vision algorithms, as well as requirements raised 

from a new range of applications. Due to the complexity of the reconstruction process, the automation 

of this task is still an ongoing research topic.  

Currently, the process of indoor modeling is widely performed in a manual or semi-manual fashion, 

either by means of fitting geometric primitives to different parts of the point cloud (e.g. planes, 

spheres, cones and cylinders), or by means of interactive recognition of features of interest based on 

multiple view geometry techniques. Therefore, the operator’s qualification can have a large influence 

on the quality of a 3D model (El-Hakim and Beraldin, 2006). Although the modeling of single objects 

can be fairly a quick task, still modeling of an average-sized building can be very tedious and may 

take several months (Panushev and Brandt, 2007), which is often the bottleneck in the generation of an 

as-built BIM creation project (Tang et al., 2010). Therefore, the need for the automation of the 

modeling process is obvious.  

The automation of the modeling process is a challenging task due to several reasons. First, there are 

often unrelated objects in the scene such as furniture, which have to be removed before the modeling 

process. Second, the geometry of the object can be very complex, and therefore the modeling tool 

should be general enough to be able to deal with such cases. Third, the visual texture of the interiors 

might be too poor to successfully apply vision algorithms such as the SfM method, in order to recover 

camera poses. Fourth, visibility and map connectivity are often too challenging in floor plans 

containing interconnected rooms, since the room connections appear only in a small part of an image 

which can result in a weak connection geometry (Furukawa et al., 2009a). To solve each of these 

issues, assumptions have to be made, which consequently scale down the generality of the solution. 

This chapter presents an overview about state-of-the-art approaches for the automatic and semi-

automatic modeling of building interiors. 
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4.1. Classification of Available Modeling Approaches 

Due to the availability of different data acquisition techniques, data processing algorithm and accuracy 

requirements, the variety of reconstruction approaches is very large. According to comprehensive 

reviews given by Remondino (2003), Remondino and El-Hakim (2006) and Tang et al. (2010), the 

approaches can be classified based on many different criterions. The criterions can be for instance the 

type of the input information, the type of the measurements, the spatial and mathematical 

representation format of the outputs, used assumptions, or the level of automation.  

Type of the input information: As the first and main classification criterion, the approaches based on 

the source of input information can be divided into two main categories: iconic (bottom-up modeling) 

and symbolic (top-down modeling). Iconic approaches generate models based on real measurements 

and observations, while symbolic approaches rely on hypotheses derived from the indoor 

reconstruction grammar, statistics and semantics. 

Type of the measurements: Iconic reconstruction approaches rely on two main types of observations 

and measurements. They either recover 3D models from 2D images based on single and multiple view 

geometry (image-based), or from depth information derived from laser scanners, range cameras or 

dense image matching techniques (range-based). 

Spatial representation: Another classification can be done according to the spatial representation of 

the output model. The output model can be represented either surface-based or volumetric. The 

volumetric representation (including solid geometric primitives and voxel representation) is more 

suitable for closed surfaces and objects. However, surface-based approaches (e.g. boundary-based 

representation) do not distinguish between closed and open surfaces. Most of the modeling approaches 

are categorized in this class. Moreover, it should be noted that some representations may belong to 

both classes; for example a geometric primitive can be considered as a surface, or at the same time, as 

a volume. 

Mathematical representation: A further classification can be done according to the mathematical 

representation of the output model. Parametric approaches use a small number of parameters to 

represent a shape, and therefore require smaller storage volumes and computational complexities. In 

contrast, despite the high storage requirements of non-parametric approaches (such as triangular 

meshes), they are more flexible to represent complex geometries (Tang et al., 2010). However, the 

complexity of the resulting model is reduced using region growing algorithms based on the surface 

normal vectors (for example see (Hähnel et al., 2003)). 

Used assumptions: The approaches can also be classified based on the assumptions regarding the 

object geometry and topology. Assumptions such as Manhattan-world scenario in most of the man-

made scenes not only guarantee constructing a topologically correct model, but also make the 

reconstruction procedure easier and more robust (Budroni and Böhm, 2009). Other assumptions 

regarding the object geometry enable automatic fitting of geometric primitives to the segmented point 

clouds.  

Automation level: The final classification is based on the level of user interactions during the 

reconstruction process.  

Choosing the correct reconstruction approach depends on the application. For example, parametric 

volumetric approaches are most relevant to BIMs, but surface-based approaches are more common 

(Tang et al., 2010). In fact, although parametric volumetric approaches are more intuitive for the 

manipulation by the user (Kemper and Wallrath, 1987), they are less flexible due to the limited size of 

primitives libraries (Rottensteiner, 2000). Moreover, surface-based approaches enable efficient 
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representation of partially occluded objects (Walker, 1989). This study deals with the representation of 

the rooms main structures (walls); they can be simply represented by planar surfaces. Due to this and 

aforementioned reasons, here, only parametric surface-based approaches are focused. Readers 

interested in the field of automated reconstruction of volumetric model of indoor environments are 

referred to the works presented by Jenke et al. (2009), Oesau et al. (2014), as well as Xiao and 

Furukawa (2012). 

The remainder of this chapter introduces state-of-the-art indoor reconstruction approaches, based on 

the source of the input data, which is the most general criterion according to the abovementioned 

classification scheme.  

4.2. Iconic Approaches 

Automatic and semi-automatic iconic (bottom-up) approaches for the reconstruction of geometric 

models use different sources of data, such as photographs, point clouds (collected by laser scanners, 

range cameras and dense image matching techniques) or available architectural plans to derive 

geometric models.  

4.2.1. Image-Based Modeling 

Image-based modeling is the process of reconstructing 3D models of scenes from measurements made 

on a single or multiple 2D images. According to Yu et al. (2011), the process includes detection, 

grouping and extraction of nodes, edges or faces, and interpreting them as 3D clues.  

4.2.1.1. Modeling Based on Single View Geometry  

Besides multiple view geometry in which 3D information is extracted from motion and parallax, in 

special cases, single view metrology can offer solutions to infer 3D information from single images 

(Criminisi et al., 1999, 1998; Hartley and Zisserman, 2003). Recovering 3D information from a single 

image is applicable, in cases where multiple views are not available, or the texture in images are too 

poor in multiple views for a successful camera pose estimation using SfM methods, or the baseline in 

multi-ocular systems is too short in comparison with the object distance. Such systems make use of 

geometric properties invariant to perspective projection, such as vanishing points and lines, straight 

lines, parallel lines and right angles (Criminisi et al., 1999). In practice, systems based on this 

approach need some prior knowledge about the scene geometry to enable simplifications and therefore 

automation of the modeling process. Figure 4.1 shows an example in which the 3D model is 

reconstructed using a single perspective image, from a scene containing three dominant and mutually 

perpendicular planes (building façades and the ground plane). The parallel lines in three main 

directions determine three vanishing points. This together with the estimated camera calibration and 

vanishing lines of planes which are not orthogonal, enable the reconstruction of 3D textured models 

(Hartley and Zisserman, 2003).  

Assumptions which are valid in most indoor scenarios (e.g. existence of constrained geometries such 

as planes and straight lines, as well as relationships such as perpendicularity and parallelism) make the 

automatic estimation of the geometric invariants more feasible. For example in Delage et al. (2006), it 

is assumed that the scene is a “floor-wall” geometry. Their algorithm then recognizes the floor-wall 

boundary in the image, and recovers 3D information based on Bayesian methods, in which visual cues 

are combined with a prior knowledge about the scene geometry, such as main wall directions and the 
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way they connect to each other. Geometrical constraints similar to Manhattan-world geometry for 

man-made scenes are also used by Coughlan and Yuille (2003), Delage et al. (2006), Han and Zhu 

(2009), as well as Huang and Cowan (2009), in the field of single view 3D reconstruction. Figure 4.2 

depicts an example in which the 3D model of a corridor section is automatically reconstructed from a 

single perspective cue, based on the extraction of geometric invariants (vanishing points, straight lines, 

etc.). Although this example presents a fully automated process of indoor reconstruction, assumptions 

such as existence of floor, ceiling and walls, as well as absence of windows and decorations under the 

horizontal line are necessary.  

 

 

Figure 4.1 – 3D reconstruction based on a single perspective image. Top: original image (the Fellows quad, 

Merton College, Oxford); Bottom: 3D model from different views. (from Hartley and Zisserman (2003)) 

 

 

Figure 4.2 – Extraction of geometric invariants and 3D reconstruction: a) taken photograph, b) Canny edges, c) 

extracted lines, d) floor detection, e) ceiling detection, f, g) junction detection, h) resulting 3D model. (from 

Huang and Cowan (2009)) 

 

 

 

 

 

 

 



54 4. Overview of Available Indoor Modeling Approaches 

4.2.1.2. Modeling Based on Multiple View Geometry 

3D reconstruction using photographs is more efficient and reliable using multiple view geometry, in 

comparison with single view geometry. Promising outcomes have been resulting using computer 

vision techniques during the last two decades in this field. In this modeling approach, the camera pose 

is estimated using corresponding points or line features across images. In the next step, the 3D model 

is generated either automatically having made some assumptions regarding the scene geometry, or in 

an interactive way by the user drawings. In the latter case, vanishing points and lines are turned to be 

powerful tools for 2D-to-3D applications that enable accurate sketching of polygonal faces in a single 

image, without the need for refinement in another image to build up a globally consistent model 

(Sinha et al., 2008).  

The automation of the modeling process versus accuracy and generality trade-off is a challenge, and 

the correct decision depends on the application. As mentioned by El-Hakim (2002), in traditional 

modeling which is a widely used method, the focus is on the accuracy without a high level of 

automation. In such approaches, data acquisition and registration by photogrammetric and computer 

vision techniques are followed by an interactive drawing by the user. Although efforts are made for 

the automation of the whole modeling process, the solutions still may fail in new environments, in 

which the standard assumptions are not valid anymore, due to the scene complexity, or fragility of 

algorithms and vision techniques (e.g. demanding accurate point or line correspondences) (Shum et 

al., 1998). Therefore, the most impressive results are achieved by the semi-automated systems in 

which the user is in the processing loop (El-Hakim, 2002). Currently, although improvements and 

progresses are made in the automation of the modeling process, still user interaction is necessary to 

achieve a robust and general solution. Recent works have shown that the interaction can be very 

limited, simple and smart, by making some assumptions about the scene geometry, as well as making 

use of geometric invariants. 

The semi-automated approach presented in Shum et al. (1998) makes use of panoramic image mosaics 

to efficiently cover the scene. It is one of the earliest works that uses regularities in man-made scenes 

as constraints in the modeling process. The problem of image registration in this case is decoupled into 

a zero baseline problem (for photos taken with a rotating camera) and a wide baseline stereo or SfM 

problem. Therefore, the camera pose for each mosaic is computed under the assumption of having 

some lines with known directions (e.g. horizontal or vertical lines). The baselines between the 

panoramic images can be recovered having some known points and using robust computer vision 

approaches. The modeling part of this system is an interactive process, in which the user draws the 

lines and polygons in one panorama, and completes it by projecting the current model onto the new 

panorama and recovering the new parts of the model subject to the constraints derived from the scene 

regularities.  

The approach presented by El-Hakim (2002), in contrast, uses a small number of perspective images 

from widely separated views (e.g. photos taken by tourists), and automatically deals with occlusions 

and unmarked surfaces. In this approach, image registration and segmentation are carried out by the 

user in an interactive way. This is followed by an automatic corner detection and correspondence. In 

this approach, in average, 80% of the points are generated automatically, by applying an edge detector 

and sampling new points on the edges.  

In the interactive solution proposed by Sinha et al. (2008), the 3D model is reconstructed from a 

collection of unordered photographs. In this approach, camera poses are estimated using SfM methods. 

This process also delivers a sparse 3D point cloud which is later used (together with vanishing 

directions) in the modeling step for the estimation of plane normal vectors and depths. Vanishing 

points are estimated automatically, by the automatic estimation of lines in the images. The system then 
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uses this geometrical information for the upcoming interactive modeling steps. The modeling process 

includes drawing the 2D outline of the planar sections over the photographs, which are automatically 

converted to 3D polygons. By projecting the image onto the created 3D surfaces, the model not only 

becomes photorealistic, but the user can also easily edit the sketches or draw lines which are observed 

even in one image. Figure 4.3 shows the described system in use for generating photorealistic 3D 

models.  

 

 

 

Figure 4.3 – An interactive system interface for generating 3D photorealistic models from unordered 

photographs. Top (from left to right): input photographs, 2D sketching of polygons, geometric model and 

textured model. Bottom (example in an indoor scene, from left to right): input photograph, overlay of the model 

on the photo and geometric model. (from Sinha et al. (2008)) 

 

    

    
Figure 4.4 – Exemplary data acquisition and the resulting 3D model using a smartphone application MagicPlan 

(“Sensopia Inc.,” 2014), supported by Augmented Reality.  

 



56 4. Overview of Available Indoor Modeling Approaches 

In another form of user interactions, Augmented Reality systems are used to fulfil some constraints 

during the data acquisition, as well as guiding the data acquisition task. Figure 4.4 illustrates an 

exemplary data acquisition process and the resulting indoor model using a smartphone application 

(“Sensopia Inc.,” 2014) supported by Augmented Reality. In this application, the user stands on a 

single position inside the room, and takes photographs of only the room corners, while interactively 

coincides the corners with markers indicated on the device screen. However, this application does not 

rely only on photos, and also benefits from other device’s sensors such as compass and gyroscope to 

recover a 2D plan. 

User interactions are replaced by making assumptions about the scene geometry in Furukawa et al. 

(2009a), in order to achieve a fully automated approach for indoor reconstruction based on state-of-

the-art computer vision algorithms. In this work, similar to the work presented by Sinha et al. (2008), 

camera poses and image registration is performed based on the SfM method. The approach then 

imposes Manhattan-world constraint on the scene, which is typical for many indoor scenes. Based on 

this assumption, in the next step, a stereo algorithm specifically designed for Manhattan-world scenes 

is used to derive axis-aligned depth maps from the images (Furukawa et al., 2009b). Afterwards, the 

depth map and the sparse point cloud resulting by the SfM method are merged to extract a simplified 

axis-aligned mesh model. After some refinement steps applying on the vertex positions up to sub-

voxel accuracy constrained with Manhattan-world assumption, the 2D plan is computed. Examples of 

a floor plan and a 3D model generated by this approach are depicted in figure 4.5. In this example, a 

simple and consistent model is generated from a sparse multi-view stereo point cloud and a noisy 

depth model, thanks to the refinement steps and the Manhattan-world constraining.  

 

 

Figure 4.5 – Input, interim and final results for indoor reconstruction from a sample dataset, using the approach 

described by Furukawa et al. (2009a). From left to right and top to bottom: Input image, textured points, 

Manhattan-world depth map, final 3D model and generated floor plan. (from Furukawa et al. (2009a)) 
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4.2.2. Range-Based Modeling   

Range-based approaches for modeling of building interiors use geometrical information collected by 

laser scanners, range cameras and dense image matching to represent the indoor space in terms of 

surfaces and volumes. In general, this process consists of different phases, such as data acquisition, 

data pre-processing (including registration, outlier and noise removal, furniture removal, etc.), 

segmentation of the point clouds and geometric modeling (line or plane fitting, topological 

corrections, possibly extraction of semantics such as openings, etc.). In this chapter, the special focus 

is on the geometric modeling process. 

Fitting planes and other geometric primitives to collected point clouds is the main approach developed 

for the reconstruction of building interiors from measured point clouds. Although in commercial 

solutions such as Cyclone (“Leica Cyclone,” 2014) the fitting is fulfilled in a semi-automatic manner, 

there are researches pointing to the automation of this process. In Toldo and Fusiello (2008), a novel 

and robust algorithm for fitting of geometric primitives to point clouds containing noise and outliers is 

presented. The algorithm (so called J-Linkage) is based on a random sampling scheme (as in 

RANSAC (Fischler and Bolles, 1981)) and Jaccard distance, and automatically groups the point cloud 

into corresponding clusters considering the preference set of each point, i.e., the set of models to be 

satisfied by the point within a tolerance. In other words, the models (characteristic functions) can be 

considered as conceptual representations of the points; therefore, the points are clustered in a 

conceptual space. Figure 4.6 shows an exemplary output of this algorithm applied on a room point 

cloud, using the implementation provided by Toldo and Fusiello (2014). The algorithm is robust in 

fitting applications, due to using powerful statistical tools; however, it still cannot be considered as a 

sufficient solution for the geometric modeling of the building interiors, as it does not control the 

topological correctness of the generated model. Another example of primitive shape detection using 

RANSAC is given by Schnabel et al. (2007). 

The plane fitting task is fulfilled by the linear and rotational plane sweeping algorithm in Budroni and 

Böhm (2009). In their approach, the room is considered to be a Manhattan-world scenario, and 

therefore, the main wall directions are perpendicular. A main direction in this approach is recovered 

by the analysis of the number of points laid on the rotating sweep plane located at different random 

positions. The walls are then identified based on a linear sweep along the main room direction, 

followed by a cell decomposition process. This process, however, requires the acquisition of ceiling 

and floor points. Floor and ceiling are identified by a linear plane sweep in the vertical direction, and 

the analysis of the point height histogram. Existence of noise, outliers and clutter has no impact on the 

output, as far as they do not gain the peaks in the resulting histograms. The proposed algorithm is 

robust in applications satisfying the Manhattan-world constraint. Figure 4.7 shows the 3D model 

reconstructed by this approach, for the same dataset used in the previous example. 

The Manhattan-world assumption is ruled out, and therefore wall detection becomes more general in 

the approach presented by Previtali et al. (2014). In this approach, besides the geometric 

reconstruction, semantic information such as location of doors and windows are recovered, assuming a 

known location of the laser scanner. For this purpose, the approach first detects and segments the 

planes constituting the room outer shell, based on the RANSAC algorithm and some topological 

measures. By recovering the ceiling and floor points based on the height histogram analysis of 

horizontal plane segments, a first floor plan is inferred by projecting the ceiling or floor points onto a 

horizontal plane, and a follow-up cell decomposition process. The floor plan then supports the 

extraction of walls amongst all the vertical segments (including those produced by clutter), by finding 

the vertical plane segments belonging to the boundary of the floor plan. To detect doors and windows, 

openings inside the walls are looked for. Holes produced by clutter and occlusions are distinguished 
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from doors or windows using a ray-tracing algorithm (similar to Adan and Huber (2011)), assuming 

doors or windows are not occluded in the point clouds, as well as the scanner position is known. Doors 

are distinguished from windows, if their corresponding holes intersect the ground. Figure 4.8 depicts 

an example of a reconstructed 3D model based on the mentioned approach for a scenario with an 

arbitrary shape. It should be noted that although this approach is compatible with more general room 

shapes, the collection of ceiling or floor points is still necessary for the cell decomposition process. 

While this is not an issue for data acquisition with TLS, indoor mobile mapping systems can face 

problems regarding data acquisition of such featureless and broad surfaces.  

 

    

Figure 4.6 – Plane fitting to a sample room point cloud using the algorithm presented by Toldo and Fusiello 

(2008). 

 

 

Figure 4.7 – 3D reconstruction using the plane sweep followed by a cell decomposition process. (from Budroni 

(2013)) 

 

 

Figure 4.8 – Sample 3D model with semantic information automatically derived from a laser scanner point 

cloud. From left to right: laser point cloud, binary occupancy map (cell decomposition) and 3D model with 

distinguished door and window features. (adapted from Previtali et al. (2014)) 

 

There are also approaches that focus on the reconstruction of 2D floor plans which are then 

convertible to 3D models by a simple extrusion. Besides that, in many applications, a 2D floor plan is 

the required output. A related work in this field is presented by Okorn et al. (2010). This approach 

recovers the 2D plan of the building interiors from a given 3D point cloud of the facility, based on the 

projection of the points onto a horizontal 2D plane. The projection of the points forms a histogram 
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from the point density, which is used for the extraction of line segments corresponding to walls using a 

Hough transform. In this approach, clutter is removed based on the point height histogram. Moreover, 

it is taken into account that walls have a higher intensity in the 2D point density histogram. Figure 4.9 

shows an exemplary output of this algorithm for one floor of a building. Although many of the line 

segments are correctly assigned by this approach, still the resulting 2D plan does not represent a 

topologically correct model. Moreover, this approach does not deal with occlusions.  

The aforementioned approach is semantically enriched in Adan and Huber (2011) by detection and 

modeling of wall openings, and filling the occluded regions. In this approach, first, walls are detected 

using a Hough transform just similar to that described in Okorn et al. (2010). Wall occlusions are then 

classified into occupied, empty or occluded, using a ray-tracing algorithm, assuming that the 3D data 

is obtained from fixed and known locations. In the next step, door and windows are detected using a 

learning-based method that extracts and analyzes rectangular openings. Finally, occlusions not within 

openings are reconstructed based on a hole-filling algorithm (see figure 4.10). 

The approach presented by Valero et al. (2012) improves the geometric modeling of the works 

presented by Okorn et al. (2010), as well as Adan and Huber (2011), using a more robust wall 

detection algorithm supported by some topological analyses. They firstly use a similar algorithm to 

derive the room’s boundary in 2D using the Hough transform. Due to the high density and low level of 

noise in the input data collected by the laser scanner, each wall is represented by a corresponding edge 

in the extracted room’s boundary, which is equivalent to a vertical plane in 3D. This supports the 

segmentation of points into individual walls by the analysis of the point-to-plane distances. A 

boundary representation model (planar surfaces) is then generated by the calculation of the best plane 

fit to the segmented points. Finally, the intersections between the planes are computed, considering the 

topological relationship between the already estimated boundary edges in the 2D projected image 

(figure 4.11, top right). The process steps are depicted in figure 4.11 for a sample room point cloud. It 

can be observed that for a successful process, having a dense point cloud of the room ceiling or floor is 

necessary to robustly estimate the room’s boundary. 

 

 

Figure 4.9 – 2D floor plan from point density histogram. From left to right: 2D point density histogram, 

estimated Hough lines and overly with ground truth (labeling based on detected lines): green and blue line 

segments are modeled by the algorithm, while red segments are missed. (adapted from Okorn et al. (2010)) 

 

 

Figure 4.10 – Opening detection. From left to right: opening detection using a machine learning model, openings 

superimposed on a 2D projection image and final marked out openings. (from Adan and Huber (2011)) 
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Figure 4.11 – From point cloud to a boundary representation model. From left to right and top to bottom: 

projection of the points onto a horizontal plane, detected edges, boundary detection using the Hough transform, 

point cloud segmentation, estimation of best plane fits and the final boundary representation model. (adapted 

from Valero et al. (2012)) 

 

4.2.3. Modeling Based on Architectural Drawings 

Architectural drawings are essential for the design and construction of buildings. They are made 

according to a set of conventions including symbols and annotations. Graphics recognition techniques 

for the analysis of available 2D architectural floor plans can deliver geometric and semantic 

information to reconstruct 3D models. Such approaches for 3D modeling can be classified as iconic, if 

the underlying floor plan represents the as-built state, and therefore indirectly require the real 

measurement of the building interiors. But on the other hand, they might be considered as symbolic, if 

they are linked to an as-designed plan, which does not necessarily represent the as-built status.  

The complexity of such modeling approaches depends on the provided input information, which can 

be of different level-of-details, as well as very different formats, ranging from CAD documents to 

scanned paper drawings. For instance the systems developed by Horna et al. (2007), Lewis and Séquin  

(1998) and Lu et al. (2007, 2005) take the floor plans in digital version as input, and focus on 

derivation of geometrical features, eventually semantic information and topological correction. But on 

the other hand, many floor plans are recorded as paper documents or scanned images. Therefore, the 

other category of approaches, such as those presented by Ah-Soon and Tombre (2001, 1997) and 

Dosch et al. (2000), try to extract geometric and semantic information using a raster-to-vector 

conversion process, supported by image processing and pattern recognition techniques. Another 

challenge in this modeling approach is differences in drawing conventions, as well as the architects’ 

creative way of generalization and representation. Therefore, user interaction in the analysis of the 

drawings becomes unavoidable, due to the limited size of the predefined symbols and libraries. 

According to a survey study presented by Yin et al. (2009), most of the available approaches in this 

field share a similar pipeline, however, they are different in terms of employed algorithms and 

strategies dealing with different process steps. In general, the main pipeline consists of image parsing 

(for the extraction of semantic information through text extraction and symbol detection), derivation of 

geometrical information (including noise removal, image processing, template matching and detection 

of architectural components such as walls, windows and the outer building shell), as well as 

topological corrections.  

This section describes in detail the approach presented by Peter et al. (2010), in which 3D indoor 

models are extracted from photographed evacuation plans. The resulting 3D model will later serve as 

the case study in demonstration of the capability of our reconstruction approach in the refinement of 
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available coarse floor models (see chapter 7). The existence of evacuation plans is compulsory in 

many countries for public buildings such as hospitals, universities, hotels, etc. Therefore, the 

accessibility to these maps makes this approach more suitable for 3D modeling by the mass 

(crowdsourcing). The approach first enhances the photograph to compensate for bad light condition to 

increase the image quality using automatic white balancing and Wallis filtering (Wallis, 1976). 

Afterwards, a binarization process is carried out using a single threshold so that the image can be 

segmented into closed polygons for further topological analyses, such as distinction of rooms and 

single stairs. The stair candidates are also used for the estimation of the floor height considering a 

standard value for a single stair’s height. The main lines in the image are then estimated in order to 

identify the building boundaries, using the Canny edge detector (Canny, 1986). Matching the 

identified boundary of the building with the available outer shell contour extracted from city maps 

further enables the derivation of geo-referenced metric models as well as computation of projective 

transformation parameters to convert the image coordinates into the world coordinate system. It 

additionally enables the removal of the perspective distortions caused by photography and cropping 

the image. Since parts of the plan might be occluded by symbols, symbol areas have to be detected and 

removed. Symbol areas are detected by template matching considering the image legend for the plan. 

This technique is replaced in their follow-up work (Peter et al., 2013b) by a more general and efficient 

method called Color Structure Code segmentation, in which symbols are detected based on their color 

properties (“Color Structure Code,” 2014). The image is then vectorised by the estimation of the 

skeleton of the cleaned binary image. The occluded lines (by symbol areas) then have to be bridged by 

the prolongation of free end node edges identified in the vectorised image. The mentioned image 

processing steps are depicted in figure 4.13. The resulting vectorised image, which is now the 2D floor 

plan of the building, is further refined by detection of doors, using the indoor positioning system 

described in section 3.2.2.1. Doors are detected by finding the intersection of the user’s track as well 

as evacuation routes and existing walls within an appropriate intersection angular range. The 2D plan 

is finally converted to a 3D model by an extrusion, having the floor height available (see figure 4.14). 

The initial point of the user’s track, which is required for indoor positioning, can be computed by 

detection of the “you are here” symbol using template matching. However, the distance between user 

to the evacuation plan can be computed only by having the plan dimensions or by map matching of the 

user’s route. Additionally, the user is able to collect geo-referenced semantic information in an 

OpenStreetMap-like fashion, i.e. collection of geo-tagged photos which will be added to the map in a 

post-processing step, e.g. location of fire extinguishers, doors, windows, room number, etc. The 

mentioned steps are summarized and depicted in figure 4.12. 
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Figure 4.12 – The main procedure to convert photographed evacuation plans to 3D models. 

 

 

 

 

 

Figure 4.13 – Left: a photographed evacuation plan; Upper right: image processing steps (left to right): original 

image, color enhancement, binarization, symbol detection using color segmentation or template matching, 

symbol bridging and vectorization, and stair detection (green); Lower right: vectorized floor plan. (adapted from 

Haala et al. (2011), Peter et al. (2013b) and Peter et al. (2013b)) 

 

 

 
Figure 4.14 – Generated 3D indoor 

model corresponding to figure 4.13. 
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4.3. Symbolic Approaches 

Symbolic (top-down) approaches can recover geometric models based on hypotheses, in case of 

having incomplete or erroneous data, where the iconic modeling approaches fail or deliver invalid 

results. The hypotheses are derived based on the knowledge inferred from the rules governing the 

regularities and relationships in the arrangement of structure elements. It is similar to a language’s 

grammar, in which words are put together according to grammar rules to construct a sentence. A shape 

grammar rule governing a special design principle can be derived, for example, from the analysis of a 

bottom-up modeling process, where the data is of sufficient accuracy and density to deliver valid 

results. 

Grammar-based approaches have successfully been used in the reconstruction of LOD3 models, by the 

integration of façade models to available LOD2 building models (e.g. see (Becker, 2009; Müller et al., 

2006)), as well as in indoor applications that reconstruct LOD4 models, according to CityGML 

representation standard (e.g. see (Becker et al., 2013; Gröger and Plümer, 2010; Khoshelham and 

Díaz-Vilariño, 2014; Philipp et al., 2014)). This section shortly introduces available grammar-based 

approaches used in indoor applications.  

In grammar-based modeling, mainly spatial grammar rules (particularly split rules) are used to 

reconstruct the more complex shapes from basic geometric primitives (e.g. splitting boxes and faces to 

their constructive sub-spaces) (Müller et al., 2006; Wonka et al., 2003). However, it does not 

guarantee the topological correctness of the models caused for instance by gap or overlap of the 

constructive elements. This problem is addressed by Gröger and Plümer (2010), and a solution is 

presented by explicit constraining based on topological concepts (such as adjacency, parallelism and 

perpendicularity), setting up a rout graph as a benchmark for the consistency (coincidence of doors) 

and use of semantics (such as distinction of rooms, hallways, staircases, as well as doors and ceilings 

floors and walls). Such criterions define a limited number of rules to subdivide the space and 

reconstruct the building interiors in more detail and rich semantics. The work is the first grammar-

based approach adapted for indoor applications, however, the grammar rules have to be defined 

manually for every case study.  

Grammar rules are derived automatically from observations in Becker et al. (2013), so that it becomes 

flexible to support the reconstruction of more indoor scenarios with arbitrary shapes. Their grammar 

design assumes building floors are composed of two parts: a hallway part which is designed for a 

convenient access to rooms, and a non-hallway part consisting of individual rooms mostly arranged in 

a linear sequence parallel to the hallway. Therefore, their grammar is a combination of two separate 

rules: a simulation of plants growth pattern (a so-called Lindenmayer system) for the hallways part, 

and split rules for the reconstruction of rooms.  

To create an instance of an individual grammar which is able to reproduce a specific building interiors, 

observations are required. A grammar instance can be generated for example from an available floor 

plan or a collection of odometry data. In the example provided by Peter et al. (2013a), the indoor 

model derived from a photographed evacuation plan yields a high level grammar instance using the 

reverse modeling process. In Becker et al. (2013) and the corresponding extended work (Philipp et al., 

2014), the hypotheses about the indoor geometries are generated from the observation of 250 

odometry traces collected by a foot mounted MEMS IMU (see figure 4.15). By means of constraints 

derived from the trace data, door locations are estimated. It is assumed that each room has only one 

door, which is the intersection of a trace with the corresponding wall. Therefore, it can also be 

assumed that walls can be located only between the door locations. In their example, 116 rooms are 

reconstructed from the trace data with an average width error of around 2 meters. Moreover, the room 
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sizes are estimated based on the grammar and the probabilities assigned to them, together with 

constraints, conjointly.  

 

 

Figure 4.15 – Grammar-based reconstruction of an indoor scene based on the observation of 250 odometry 

traces. From left to right: position traces, estimated door locations and hypothesized hallways (rooms are 

reconstructed only from traces; without the use of hypotheses), complete model with hypothesized rooms and the 

ground truth. (adapted from Becker et al. (2013)) 

 

In Khoshelham and Díaz-Vilariño (2014), the shape grammar is derived based on an architectural 

indoor design concept known as Palladian grammar (Stiny et al., 1978). The grammar rules in their 

work are automatically learnt from an available point cloud of the scene. The point cloud is first 

aligned with the main axes of the coordinate system based on the analysis of normal vectors. Floors 

are then distinguished based on the analysis of the point height histogram. Finally, grammar rules are 

defined and adapted automatically to each case study, based on the analysis of the x- and y- 

coordinates for each floor to find peaks corresponding to the location of walls and size of subspaces. 

This grammar-based learning approach, however, is only valid for Manhattan-world scenarios. 

Moreover, existence of ceiling points is necessary for the points-on-ceiling test that excludes invalid 

subspaces made by the integrating cell decomposition step. Figure 4.16 depicts the results of this 

reconstruction approach for a sample point cloud. 

 

 

Figure 4.16 – Grammar-based reconstruction based on grammar rules derived from the point cloud. From left to 

right: collected point cloud, cuboid placement (top-view) with points-on-ceiling constraining and cuboid 

placement without points-on-ceiling constraining. (adapted from Khoshelham and Díaz-Vilariño (2014)) 
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5. Automatic Reconstruction of Indoor Spaces 

In the previous chapter, state-of-the-art approaches for the reconstruction of building interiors were 

presented. The chapter started with image-based approaches, and showed that a robust modeling using 

images needs user interaction. In other words, automation versus accuracy is a trade-off in image-

based modeling. Although such approaches are very well suited for crowdsourcing applications due to 

availability, portability and the low-cost of cameras, for modeling of large interior spaces they become 

labor intensive tasks and nowadays, they are often not considered as optimum solutions.  

Due to advances in the technology and production of range imaging systems in the last few years, 

range cameras have become very low-cost, accessible and portable, and therefore very popular for the 

collection of geometric information. In fact, although image-based approaches have been most 

economical and flexible for a long time (Remondino and El-Hakim, 2006), systems based on range 

measurements are becoming the standard solutions for the modeling of building interiors. However, 

reconstruction from point clouds is a very hard and nontrivial problem in case of having incomplete or 

noisy data. Moreover, existence of clutter and the complexity of the object geometry make the 

automation of the modeling process very challenging. Therefore, fully automated approaches are 

based on special assumptions and constraints to deal with the issues. However, new approaches have 

to be developed in longer terms to model finer details and more general shapes, and to be flexible 

enough in new and different environments (Tang et al., 2010). 

In comparison with the mentioned range-based approaches, the approach presented in this work aims 

at modeling more general shapes of building interiors with fewer assumptions (e.g. no Manhattan-

world constraint) and a high level of automation. This is fulfilled by transforming the modeling task 

from 3D to 2D space by projecting the points onto a horizontal plane, which enables the topological 

correction of the reconstructed model using morphological image processing techniques, topological 

analysis in 2D and graph analysis algorithms. The transformation to 2D will preserve the important 

information necessary for the modeling of the main structure elements such as walls and doors. 

Besides robustly dealing with a high level of input data noise, this approach also deals with occlusions 

to some extent. Significant occlusions caused by windows are handled in section 7.2, and the 

corresponding gaps are reconstructed using a learning-based approach, employing the information 

extracted from available coarse indoor models. Moreover, opposed to most of the modeling 

approaches mentioned in the previous chapter, the collection of the ceiling or floor point cloud is not 

necessary in this approach, since no cell decomposition is required. Collecting the entire ceiling or 

floor data can be a challenge for mobile mapping systems, due to the poor texture and 3D information 

of such flat surfaces required for the registration of captured data from different viewpoints.  

This chapter explains in detail the presented reconstruction approach consisting of point cloud pre-

processing and geometric modeling steps, using a pilot study which is affected by point clouds 

misalignment errors, noise, small and large gaps, and at the same time has an arbitrary shape (in 

contrast with Manhattan-world scenarios).  
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5.1. Point Cloud Pre-Processing 

Pre-processing of the point cloud in this work includes outlier removal, downsampling, noise removal, 

point cloud leveling and finally furniture and clutter removal. 

5.1.1. Outlier Removal 

In comparison with TLS, data collected by range cameras contain more noise as well as outliers due to 

measurement errors. This affects the accuracy of further processing steps which include normal vector 

estimation and estimation of walls. In the first pre-processing step, outliers are removed using a 

statistical outlier removal filter implemented by the Point Cloud Library (PCL) (Rusu and Cousins, 

2011). The filter works based on the distribution of the distances between the neighboring points. The 

mean distance to K-nearest neighbors is computed at each point. Assuming a Gaussian distribution for 

the distances, points corresponding to the mean distances outside of an interval defined by the global 

mean and standard deviation are removed using a one-tailed normal distribution test. Figure 5.1 

depicts the mean distances computed for an exemplary scene. In this example, outliers are removed 

based on a 1  one-tailed normal distribution test: 

 2dist ~ N , P(dist ) 84.1%    
  (5.1) 

 

   

 

Figure 5.1 – Top: statistical outlier removal (9K out of 73K points are removed, equivalent to the 1  confidence 

level normal distribution one-tailed test); Bottom: corresponding mean distance (in meters) to the 20 nearest 

neighbors versus point index (mean: 0.011m, standard deviation: 0.005m). 
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5.1.2. Downsampling 

Point clouds collected by range cameras are usually very dense. The number of points is increased 

very fast soon after data acquisition starts; each range image frame captured by Kinect (for Xbox 360) 

delivers 640 480 300K  3D points, or 1920 1080 2Mio   points by Kinect V2. Reconstruction 

programs therefore can face difficulties handling a large number of points collected from large spaces. 

In order to efficiently manage the memory, as well as achieve a uniform point density, the registered 

point cloud is downsampled by a voxel grid filter implemented by the PCL software library, in which 

points are replaced by the centroid of the corresponding bounding voxel generated by an Octree data 

structuring process (see figure 5.2). The voxel size can be set based on the overall noise of the 

registered point cloud (e.g. 3-5cm in case of using Kinect), or for example the maximum allowed 

tolerance specified by the adapted standard for building reconstruction (e.g. surface flatness tolerance 

suggested by DIN 18202 standard). 

 

 

Figure 5.2 – Voxel grid filtering: points inside 

each voxel are replaced by the centroid of the 

corresponding voxel (red points). 

 

5.1.3. Noise Removal 

Noise in the point cloud causes erroneous object fitting or feature extraction. Although the wall 

estimation algorithm used in the following modeling process is capable of dealing with noise in the 

point cloud to some extent, noise removal significantly improves the accuracy of feature detection in 

modeling. The point cloud is smoothed using the moving least squares approximation algorithm, 

originally introduced by Lancaster and Salkauskas (1981), and implemented by the PCL software 

library. As described by Nealen (2004), the idea of the moving least squares algorithm is to start with a 

weighted least squares surface estimator (a degree n  polynomial) for an arbitrary fixed point, in 

which weights are proportional to the neighboring points distance within a given radius. The point is 

then moved over the entire parameter domain, where a weighted least squares fit is estimated for each 

point individually, in order to estimate the overall surface. The global function f (x)  is obtained from a 

set local functions xf (x)  that minimize the following cost function:  

2

x i x i i

i I

f (x) f (x), x x f (x ) f min


      
 

 (5.2) 

in which   is the weight function tending to zero at infinity distance. During the process, small holes 

can be filled by resampling techniques, e.g. based on a higher order polynomial interpolation. This can 

further remove the “double walls” artifacts caused by erroneous registration of multiple scans. Figure 

5.3 depicts an example in which an overall noise of 34mm is reduced to 25mm by local plane fitting 

using a moving least squares process within the search radius of 15cm.  
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Figure 5.3 – Before and after noise removal. In the cross section before the noise removal, the limited resolution 

of Kinect disparity measurements is noticeable as a stripe pattern. 

 

5.1.4. Leveling the Point Cloud 

The resulting point cloud has to be leveled for the upcoming processing steps, i.e. generation of the 

point height histogram and projection of points onto a horizontal plane. The leveling is performed by 

the analysis of the point cloud normal vectors. Since most of the surfaces in man-made scenes are 

aligned either horizontally or vertically, it is possible to cluster the normal vectors into two main 

groups. Assuming the vertical axis of the point cloud’s local coordinate system is inclined less than 

45° with respect to the vertical axis of the world coordinate system, the group of horizontal and 

vertical surfaces can easily be distinguished, as they constitute a difference of 90°. The average of the 

normal vectors corresponding to horizontal (or alternatively vertical) surface points is then used to find 

the tilt, and thus level the point cloud. This procedure is an iterative process; in each step, after 

leveling the point cloud based on the estimated tilt, the classification of horizontal and vertical surface 

points is updated based on the new (recently transformed) normal vectors. Figure 5.4 depicts an 

example of a normal vector histogram for a sample point cloud after leveling. 

 

       

Figure 5.4 – Left: computed point normal vectors. Right: histogram of the inclination of the normal vectors with 

respect to the vertical axis after leveling the point cloud.  
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5.1.5. Height Estimation and Furniture Removal 

The room height information enables the extrusion, and therefore conversion of generated 2D to 3D 

models. After leveling the point cloud, it is possible to estimate the room height by the analysis of the 

point height histogram. The floor and ceiling can be distinguished in the histogram by the 

identification of the smallest and largest local maxima, even if only small parts of them are captured 

(see figure 5.5). The number of histogram bins is corresponding to the voxel size used in the previous 

downsampling process. Therefore, the histogram values correspond to the surface area instead of the 

number of points, if the point cloud is downsampled by the voxel grid filter.  

As was mentioned before, the presented 2D modeling approach is based on the projection of the points 

onto a horizontal plane. Therefore, similar to Okorn et al. (2010), in order to remove furniture and 

clutter, a cross section of the 3D point cloud which is less affected by clutter is selected. By doing so, 

no important information is lost, as the remainder of points corresponding to walls will provide the 

required information about the room shape. The height range can be selected based on a typical height 

of the furniture (points with heights less than e.g. 1 – 1.5m) as well as lights or ceiling fans (points laid 

within e.g. 0.5m under the ceiling). Figure 5.6 depicts an example of furniture removal using this 

concept for a sample room. It should be noted that in practice the furniture removal process is 

recommended to be performed supervised (or in an interactive way), since the existence of possible 

remaining clutter may have a large impact on the subsequent modeling steps, unless the modeling 

parameters are selected manually.  

 

    

 

Figure 5.5 – Point height histograms and the corresponding point clouds. 
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Figure 5.6 – Furniture removal based on a selective height filter. The top view of the filtered points (bottom-right 

figure) delivers information about the room shape geometry. 

 

5.2. Reconstruction of Geometric Models 

The mentioned pre-processing steps enable the 2D geometric modeling of individual rooms based on 

the orthographic (top-down) projection of resulting points onto the ground plane. Further modeling 

steps extract lines corresponding to walls and main structure elements within the 2D orthographic 

projected image and apply topological corrections. 

5.2.1. Generation of Orthographic Projected Image 

For the orthographic projection of points onto a horizontal plane (e.g. the ground plane), one can 

simply neglect the point heights in the corresponding leveled point cloud, generate a 2D grid with a 

predefined resolution and finally count the number of the points falling inside each grid cell. 

Alternatively, similar to Okorn et al. (2010), this task can be fulfilled more efficiently by counting the 

number of voxels above each 2D grid cell (the voxel grid has been already generated in the previous 

downsampling pre-processing step). The grid size has a direct effect on the accuracy of the final 

model, and therefore shall not be larger than the overall noise of the point cloud. The 2D grayscale 

orthographic projected image is computed based on the number of points inside (or alternatively the 

number of voxels above) the grid cells, using the following equation: 

max

N(m, n)
I G

N
(m,n)  

 
 (5.3) 

in which, I(m,n)  is the gray value of the grid cell at row m  and column n , N(m,n)  is the number 

of the points inside (or voxels above) the corresponding cell, maxN  is the maximum value of N(m,n)  

over the entire grid and G  is the number of gray levels. 
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5.2.2. Binarization 

This study only deals with modeling of flat surfaces; curved surfaces are not considered here. The 

modeling of such surfaces is fulfilled by the extraction of lines in the orthographic projected image 

corresponding to walls and main structure elements in 3D, using the Hough transform. Line extraction 

algorithms use binary images as input; therefore, the grayscale projected image has to be converted to 

a binary image. The binarization process may also remove the noise and clutter remaining from the 

pre-processing step, by choosing a correct threshold that removes lower gray values. The threshold can 

be chosen based on probabilistic approaches, having the average and standard deviation of the gray 

values. For example, assuming a Gaussian distribution for the gray values, a 95% confidence interval 

is defined by pixels having gray values larger than the threshold TI  equals to 1.65   .  

 2I ~ N , P( 1.65 I) 95%     
  (5.4) 

A more perceptible threshold can be defined based on the ratio between the maximum possible height 

of remaining clutter and the height range of the selective height filter (equation (5.5)). The threshold 

gives the optimum results in case of having a uniform distribution of points, which is already fulfilled 

in the downsampling processing step. 

noise
T

filter

H
I G 1

H

 
  

   
 (5.5) 

In this equation, TI  is the grayscale intensity threshold, noiseH  is the maximum possible height of 

remaining clutter, filterH  is the height range of the selective height filter and G  is the number of gray 

levels. Figure 5.7 depicts the grayscale and binary orthographic projected images for an exemplary 

dataset. In this example, the binarization threshold is computed from equation (5.5), assuming noiseH  

being 5% of filterH . 

 

      

Figure 5.7 – Grayscale and binary orthographic projected image for a sample point cloud. 
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5.2.3. Morphological Image Processing 

As depicted in figure 5.8, due to remaining noise in the range measurements, erroneous alignment and 

leveling of the point cloud, the projection of walls onto the ground plane is represented by shapes 

which are not necessarily straight lines, and have widths more than one pixel size. Therefore, in order 

to reduce the risk of ambiguous estimation of lines within the binary image by the Hough transform, 

the skeleton of the shapes is first extracted and considered for the line estimation. However, this 

process requires closing small holes inside the shapes in order to avoid obtaining unrealistic skeletons. 

In mathematical morphology, a binary image A  is closed by a structure element B  (e.g. a 3 3  

kernel), using a dilation followed by an erosion, as denoted by the following equation: 

 A B A B B  ⊕
  (5.6) 

where ⊕  and  correspond to the dilation and the erosion operators, respectively. In morphological 

image processing, closing (that removes small holes) and opening (that removes small objects) 

operators are the basics of the noise removal process.  

After the closing process, shapes are thinned to one pixel width elements passing through the middle 

of the shapes using the morphological skeletonization, which is based on morphological opening (an 

erosion followed by a dilation). The algorithm iteratively erodes the image to remove the boundaries 

(while preserving end points), until the remaining structure has only one pixel width (Zhang and Suen, 

1984). Figure 5.8 depicts the results of the mentioned morphological image processing steps for the 

previous example. 

 

   

   

Figure 5.8 – Left to right: binary projected image, morphological closing and 

skeletonization. 
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5.2.4. Estimation of the Lines Representing the Walls in 2D 

5.2.4.1. Line Extraction 

The skeletonized image is appropriate for the extraction of straight line by means of the Hough 

transform (Duda and Hart, 1972; Hough, 1962). The idea of the Hough transform is to find all 

potential lines passing through each point, and select the candidates based on a voting procedure 

carried out in a parameter space. This work uses a variant of the Hough transform called progressive 

probabilistic Hough Transform (Matas et al., 2000), implemented by the OpenCV free software library 

(Bradski, 2000). This variant is an optimization to the standard Hough transform in speed and 

performance, by minimizing the number of points used in the voting process, while maintaining false 

positive and false negatives detection rates at the same level of the standard Hough transform. More 

details are provided in appendix D. 

In the Hough transform process, parameters such as minimum allowed number of votes, minimum line 

length and maximum allowed line gap between points on the same line can be set. However, the 

parameters have to be suitable enough, so that small structures are not generalized during the line 

extraction process. Figure 5.9 depicts an example, in which the Hough lines are extracted from the 

skeletonized image in the previous example. In this example, parameters are selected as follows: 

minimum votes of 15 pixels (equivalent to 15cm) on a line, minimum line length of 15 pixels and 

maximum allowed line gap of 20 pixels (equivalent to 20cm). Although such kind of parameter 

selection results in the extraction of multiple smaller line segments for each wall, it will preserve 

almost all significant details and avoids the generalization. The effect of parameter selection on 

modeling results, as well as the stability of the selected parameters from one example to another is 

presented in the next chapter. 

 

      

Figure 5.9 – Extraction of Hough line segments in a skeletonized image. 

 

5.2.4.2. Clustering and Averaging the Line Segments 

After the line extraction process, multiple smaller line segments corresponding to each wall have to be 

identified and averaged. The suggested identification process consists of three hierarchial clustering 

steps, in which line segments are grouped based on their orientation, distance to the centroid of the 

image and connectivity, respectively.  

The first clustering step groups the line segments based on their orientation. Since the modeling 

approach is not limited to Manhattan-world scenarios, it takes into account all possible orientations 
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distinguished by a small threshold (angular resolution of the model). The threshold, however, shall be 

able to tolerate the noise in the orientation of the extracted line segments. Various solutions are 

proposed for clustering; here the K-means algorithm suggested by Lloyd (1982) is used, which is the 

most common in the computer science community. The algorithm groups n observations 

 1 2 nx , x , , x  into K sets  1 2 KS , S , , S , so that the sum of the squared Euclidean distances 

between the observations and the nearest cluster centroid (mean) is minimized: 

i

K
2

i

i 1 x S

x x min
 

 
 

 (5.7) 

The solution to the abovementioned equation is an iterative refinement process, in which two steps are 

repeatedly performed after each other. In the first step, each observation is assigned to the 

corresponding cluster with the smallest distance to its mean, so that the equation is satisfied. In the 

next step, a new centroid is computed and assigned to each cluster. The process is iterated until no 

more change is observed. In this approach, the initial set of centroids is usually selected randomly, and 

is updated during the process.  

The number of clusters has to be pre-defined for the clustering algorithms. Estimation of the optimum 

number of clusters depends on the noise, distribution, as well as the resolution of the data, and 

therefore might be sometimes an ambiguous problem. However, in general there are different 

criterions that suggest the optimum number of clusters based on statistical approaches, many of which 

are summarized in Kodinariya and Makwana (2013). For instance, using the “elbow methods” 

(Thorndike, 1953), one can start the algorithm with one cluster, and increase the number of clusters 

until no more meaningful cluster is found (the corresponding chart has an elbow shape). This can be 

measured by the sum of the squared errors within the groups, or by the percentage of the explained 

variance (a goodness of fit index, equation (5.8)). In the previous example, as depicted in figure 5.10, 

having more than 3 clusters does not reduce the sum of squared errors within the clusters dramatically, 

nor does it increase the explained variance significantly. In this example, having 2 clusters results in a 

Manhattan-world scenario (97.5% percentage of explained variance). However, adding the 3
rd

 cluster, 

takes the line segment with 70° orientation (highlighted in the figure) into account as well (99.5% 

percentage of explained variance). The percentage of explained variance is high in both cases, and 

both results are acceptable, depending on the required details and the modeling accuracy.  

 

 

k

K
2

k k

k 1

NK
2

k,i

k 1 i 1

1
N (x x)

K 1Between groups variance
Explained variance

Total variance 1
(x x)

N 1



 

  


 

 





 

 (5.8) 

In this equation, kx  is the centroid (mean) of the k
th
 cluster, x  is the grand mean, kN  is the number 

of observations in the k
th
 cluster, K is the total number of clusters, k ,ix  is the i

th
 observation in the k

th
 

cluster and N  is the total number of observations. The between groups variance measures the 

variation of group means with respect to the grand mean; increasing the number of clusters, makes the 

between groups variance closer to the total variance. The explained variance in fact measures how 

good all the variances are explained, i.e. how good the predicted values fit the outcomes, in 

multivariate statistics. 

In the next step, using a similar clustering process, line segments within each orientation cluster are 

grouped based on their distance to the origin of the projected image, so that the parallel line segments 

are distinguished (see figure 5.11). The distance threshold will be set automatically based on the 
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number of estimated clusters, or alternatively one can set it to a fix value depending on the modeling 

accuracy.  

Line segments on the same direction are not necessarily adjacent; this can be caused by the situation 

where simply walls are nonadjacent, or due to occlusions in the point cloud that represents the same 

wall in multiple segments. The two cases are distinguished in the presented approach based on a 

tolerance according to the maximum expected size of occlusions in the data (except for the large 

occlusions caused by doors or windows). Therefore, a further clustering process is required to group 

(distinguish) the line segments laid on the same direction, but separated with a distance larger than the 

threshold. The threshold is set to 0.5m in the example depicted in figure 5.11. 

 

 
 

  

Figure 5.10 – Clustering the orientation of lines by the K-means algorithm. 
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Figure 5.11 – Clustering the line segments (groups are distinguished by colors). Left to right: clustering based on 

the orientations, distinguishing parallel line segments laid on the same direction and finally distinguishing 

nonadjacent line segments laid on the same direction.  

 

           

Figure 5.12 – Averaging the line segments corresponding to individual walls. 

 

After the assignment of the line segments to individual wall groups, they can be averaged within the 

groups. Averaging is realized by sampling the line segments (converting them to points), calculating 

the linear regression passing through the samples and cropping the resulting line according to the start 

and end points in the samples. Figure 5.12 depicts the averaging results for the same example.   

5.2.5. Topological Corrections 

Due to the erroneous point cloud alignment and the remaining noise as well as occlusions in the 

projected image of walls, the resulting model depicted in figure 5.12 does not necessarily fulfill a 

topologically correct geometry. The line segments do not meet each other at the end points. Moreover, 

the angles between the adjacent line segments (walls) are sometimes clearly inaccurate. Therefore, the 

following topological corrections are proposed for a robust reconstruction from noisy or occluded data. 

5.2.5.1. Refinement of the Orientation of Line Segments 

Although the proposed approach is not limited to Manhattan-world scenarios, still in many man-made 

scenes walls can be recognized that are aligned parallel or perpendicular to each other. Therefore, the 

proposed reconstruction approach suggests the detection of such cases, and enforcing perpendicularity 

or parallelism to the line segments whose orientations make a difference of 0 or 90 degrees within a 

tolerance. This will correct most of the small orientation errors. For this purpose, the line segments are 

first clustered based on their orientation, similar to the algorithm mentioned in section 5.2.4.2, and 

with the same estimated number of clusters. An analysis of the angular differences is then performed 
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on the cluster means (rather than individual line segments). The orientation of the line segments within 

the same groups are equated to the corresponding group mean, in order to fulfill parallelism. In the 

next step, cluster means making a difference of 90 degrees within a tolerance are identified, and are 

similarly corrected in order to make an exact difference of 90 degrees (see equations (5.9)). The 

tolerance is defined by the maximum standard deviation within the groups, or the angular resolution of 

the model. The cluster members are then updated by the same correction applied to their 

corresponding mean. Figure 5.13 depicts the results of this process for the same example.  

 

 

2 1

2 1

2 (corrected) 2
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(5.9) 

 

      

 

Figure 5.13 – Top: overlaying the model states before (red) and after (green) the angular refinement (left); results 

after the angular refinement (right). Bottom: orientations before (red) and after (green) the angular refinement, 

annotated by the standard deviations corresponding to each of the 3 clusters. 
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5.2.5.2. Extension and Trimming 

In this step, the intersections of line segments are analyzed. As depicted in figure 5.13, line segments 

do not meet each other at the intersection points (walls junctures). This issue can be resolved by the 

extension or trimming of the line segments within a given threshold. Similar to the last clustering step 

in section 5.2.4.2, the threshold can be set to the maximum expected size of occlusions in the data 

(except for the large occlusions caused by doors or windows). Figure 5.14 depicts the possible errors, 

which may occur in the intersection of two line segments.  

The extension and trimming is performed firstly in the original direction for all the line segments, in 

order to find valid intersections (figure 5.14 a-c). In the next step, possible existing free end points are 

detected, and line segments are additionally extended in the perpendicular direction at these points, in 

order to be connected to available structure elements (figure 5.14 d). The latter step can be more 

general in order to include the case depicted in figure 5.14 (e), if the perpendicular extension or 

trimming is performed continuously, while the line segment is being extended gradually along its 

original direction, until the first intersection is found. The proposed algorithm results in a model 

whose components are connected, and at the same time, the connections fulfill a correct topology. It 

should be mentioned that for the simplification of the analysis (e.g. finding free end points, etc.), and 

also for further usages mentioned in chapter 7, the model is converted to a graph whose edges and 

nodes are the line segments and the corresponding end points. Figure 5.15 depicts the result of the 

presented algorithm applied to the output of the previous example. In this example, the maximum 

expected size of occlusions (threshold for extension and trimming) is assumed to be 0.5m. More 

experimental results are presented in the next chapter.  

As it can be seen in figure 5.15, the extension process in the original direction may generate additional 

invalid line segments (the extension in the perpendicular direction may not cause this problem, as it 

connects the free end points to the available structure elements). Invalid line segments are detected by 

analyzing the overlap of the line extensions with the range data. In more detail, a line segment is 

marked as invalid if it is made by an extension in the original direction, and at the same time, has an 

insufficient (e.g. less than 50%) overlap with the point cloud resulting from the pre-processing step. It 

should be mentioned that for a valid overlap analysis, the angular refinement applied in the previous 

step has to be taken into account, which means, inverse corrections regarding the equations (5.9) has 

to be applied temporarily for this analysis step (see figure 5.16). Based on this approach, invalid line 

segments are detected and removed in the presented example, as depicted in figure 5.17. This results 

in the final 2D model fulfilling a topologically correct geometry. 
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Figure 5.14 – Finding the correct intersections and connections. (a-e): input line segments (black solid lines); (f-

j): corresponding topological corrected outputs. 

 

 

   

   

     Figure 5.15 – Left to right: before extension and trimming, extension and trimming in the original direction, 

and extension of free end points in the perpendicular direction. 
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Figure 5.16 – Analyzing the overlap of the line segments with the range data (the overlap percentage is annotated 

for the zoomed-in parts). 

 

 

      

Figure 5.17 – Left: line segments are marked as invalid (red), if they are made by an extension in the original 

direction, and at the same time, have less than 50% overlap with the range data; Right: the topologically correct 

2D model is generated after removing the invalid line segments. 
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5.2.6. 2D to 3D Conversion of Reconstructed Models 

In the last step the reconstructed 2D model is converted to 3D by extruding the line segments in the 

vertical direction, using the height of the room computed in section 0. Figure 5.18 depicts the 3D 

model generated from the 2D model of the previous example, by an extrusion of 2.65m. 

Evaluation of the reconstruction approach in different scenarios, accuracy analysis of the reconstructed 

models, reconstruction of gaps caused by large occlusions such as doors and windows, and finally 

fusion of the reconstructed 3D models with available coarse indoor models are presented in the next 

chapters. 

 

 

 

 

 

Figure 5.18 – Final 3D model resulting from the extrusion of the corresponding 2D model. 
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6. Experimental Results and Analysis 

This chapter evaluates the performance and accuracy of the developed system for the automatic 

reconstruction of indoor spaces, explained in the previous chapter. It starts with the system calibration 

and accuracy analysis of the range measurements by Kinect, and then continues with the performance 

evaluation of the modeling approach in different scenarios.  

6.1. Kinect System Calibration and Accuracy Analysis 

6.1.1. System Calibration 

As already mentioned in section 3.1.2, for colorizing the point clouds derived by the Kinect range 

measurement system, as well as making use of the information provided by the RGB camera for the 

alignment of the point clouds, it is necessary to perform a pixel-to-pixel registration of the RGB and 

depth values. The registration is possible having the system calibration parameters available.  

The system calibration is composed of the optical calibration of the IR and RGB cameras together 

with the estimation of their relative orientation, using a bundle block adjustment. In order to ensure the 

maximum accuracy, a planar test-field with no control point was captured from eight positions by the 

IR and RGB cameras synchronously, using a similar configuration recommended by Wester-

Ebbinghaus (1981) and Luhmann et al. (2014). In this configuration, corresponding images are taken 

perpendicularly and obliquely with a relative orientation of 90° around the optical axis, as depicted in 

figure 6.1. Measured image coordinates together with approximate object coordinates are processed 

within a bundle adjustment in order to estimate the interior and exterior orientation parameters for 

both cameras. In the test-field calibration, it is suggested to define the datum using an unconstrained 

technique, e.g. using a free net bundle adjustment, in order to prevent the effect of possible 

inconsistencies in the datum information on the estimated unknown parameters.  

The target points in the test-field are usually circular, in order to provide a radial symmetry. Circular 

targets are very suitable for the manual and automatic measurements and are invariant to rotation and 

scale. Luhmann et al. (2014) suggest a minimum diameter of the targets to be at least 5 pixels in the 

taken images. Moreover, considering the fact that the distortion parameters are dependent on the 

object distance (Dold, 1997), the distance to the test-field shall be chosen as similar as possible to the 

object distances in real applications. Therefore, the actual size of the targets can be computed having 

the scale of the images and the pixel size. In this study, the approximate object distance in the practical 

measurements is about 3m, which results in 5mm Ground Sampling Distance (GSD). Therefore, the 

target diameter shall be at least 25mm. Centers of the targets are automatically detected based on 

pattern matching techniques used by the Australis software (Photometrix) which is employed here for 

the performance of the calibration task. 
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Figure 6.1 – The calibration test-filed and the image configuration used for the system calibration (only images 

corresponding to the IR camera are depicted in this figure). 

 

Calibration Results and Evaluations 

Using the mentioned image configurations and the test-field setup, the parameters of the interior and 

exterior orientations are estimated based on the mathematical model mentioned in section 3.1.2. The 

interior orientation parameters as well as the lens distortion curves are presented in table 6.1 and figure 

6.2, assuming the pixel size of 1 m  for both IR and RGB cameras. The selected pixel size has no 

effect on the calculations, as far as the focal length and other camera intrinsic parameters are also 

expressed in pixels.  

The RMS of image coordinates residuals after the adjustment for the IR camera is around 0.13 pixels, 

and for the RGB camera around 0.08 pixels (without Brown’s additional parameters, the RMS for both 

cameras is around 0.4 pixels after the adjustment). The estimated RMS values for both cameras show 

that the Brown’s model has been able to sufficiently model the lens distortion parameters. The term 

“sufficiently” is deduced regarding the fact that in practical applications, image space observations 

will not be of higher accuracy than the estimated RMS values, due to the following reasons:  

a) The light condition in practice is not necessarily as ideal as the condition in which the camera is 

calibrated, and therefore measurements are subject to motion blur and more noise.  

b) The calibration task uses tie points which are signalized by well-defined circular targets, and are 

detected using pattern recognition techniques. In practice, interest points are extracted and matched 

typically based on the SIFT or other feature detectors, which expected to deliver an accuracy of about 

0.7 pixels, according to the investigations made by (Mikolajczyk and Schmid, 2004).  

c) It should be also considered that the noise of the Kinect range measurements is in the order of 

centimeters, which is more than the Kinect cameras GSD (5mm at 3m distance).  
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Therefore regarding the mentioned reason, in applications using Kinect, an accuracy of around 0.5 

pixels for image space observations is already sufficient. For this reason, there is no need to use more 

accurate and advanced calibration models, e.g. those introduced by Tang et al. (2012), as mentioned in 

section 3.1.2. 

The relative orientation of the IR and RGB sensors is computed using the exterior orientation of the 

cameras estimated in the adjustment, by averaging the transformation matrices estimated at each 

camera position (i.e. averaging the IR RGBH  matrix in equation (3.14)). The resulting relative 

orientation parameters are presented in table 6.2.  

It should be mentioned that the actual size of the IR sensor is 1280×1024 pixels, but due to the 

bandwidth limitation of the USB connection, the output of the IR camera as well as the disparity 

image are cropped to 640×480 pixels. Moreover, the disparity image has a shift of 4 pixels with 

respect to the IR image in the x direction, due to the application of a correlation window (9×9 pixels) 

in the calculation of disparity values (Khoshelham and Elberink, 2012). This value has to be 

considered in calculations in which RGB values have to be assigned to depth values. 

 

 IR Camera RGB Camera 

Parameter Adjusted value Std. Dev. Adjusted value Std. Dev. 

Focal length c  585.7 [pix] 6.6e-001 [pix] 521.9 [pix] 6.0e-001 [pix] 

Principal point offset 
px
 

0.6 [pix] 1.2e-001 [pix] -0.3 [pix] 1.1e-001 [pix] 

py
 

-9.1 [pix] 3.5e-001 [pix] -16.5 [pix] 3.2e-001 [pix] 

Radial lens 

distortion parameters 

1K
 3.75303e-001        6.7e-003 -6.63541e-001 7.401e-003 

2K
 -3.94502e+000 8.612e-002 6.59073e+000        1.082e-001 

3K
 1.37589e+001  3.608e-001 -2.02217e+001        5.147e-001 

Decentering lens 

distortion parameters 

1P
 2.60056e-004 1.084e-004 5.79941e-004        1.191e-004 

2P
 2.51454e-003 1.041e-004 -1.13229e-003        1.141e-004 

Image coordinates residuals 

(RMS) 
0.13 [pix] N. A. 0.08 [pix] N. A. 

Table 6.1 – Adjusted parameters of the IR and RGB cameras, assuming a pixel size of 1 m for both sensors. 

Radial and decentering distortion parameters are computed assuming the measurement unit is millimeters. 

 

Parameter Value Std. Dev. 

X  [mm] 23.9 1.4 

Y  [mm] 1.2 1.4 

Z  [mm] 0.7 2.3 

Heading  [deg] -0.2 1.4 

Elevation  [deg] -0.1 1.5 

Roll  [deg] 0.1 0.6 

Table 6.2 – Relative orientation of the RGB camera with respect to the IR local camera coordinate system. Only 

X  is significant. 
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Figure 6.2 – Radial and tangential distortion curves for the IR (top) and RGB (bottom) cameras, assuming a 

pixel size of 1 m  for both sensors. 

 

6.1.2. Accuracy of Kinect Range Measurements 

As already mentioned, Kinect range data is computed from disparity measurements. The IR laser 

beamer projects a semi-random (but known) speckle pattern on the object surface. The reflection of 

the pattern is then recorded by the IR camera in 30 frames per second. The disparity measurements are 

realized by the cross-correlation of the reference and collected patterns. In practice, the accuracy of the 

measurements is affected by factors such as: 

Existence of other sources of light: Any interference in the infrared component (e.g. existence of sun 

light) can significantly disturb the pattern matching, and therefore reduces the quality of range 

measurements (figure 6.3). 

Object properties: Smooth surfaces such as mirrors result in the specular diffusion of the incident 

light, and therefore no speckle pattern can be observed by the IR camera. Moreover, black objects can 

partly to entirely absorb the incident laser pattern.  

 

  

Figure 6.3 – Range measurement with (left) and without (right) the existence of the sun light. 
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Object distance: Increasing the object distance increases the GSD of the IR camera pixels; this 

consequently reduces the sensitivity of the detection of surface variations. 

Moreover, since Kinect is a triangulation system with parallel axes and a fix baseline (the distance 

between IR camera and laser projector is approximately 7.5cm), the precision of the range 

measurements is decreased by increasing the object distance. In this case, as also mentioned by Menna 

et al. (2011), the theoretical precision (as a measure of uncertainty) of the 3D coordinates of an object 

point located on the xy plane (normal to the optical axis of the sensors at the distance H) is related to 

the object distance by the following relationships (see figure 3.3): 

XY

H

c
     (6.1) 

2

H d

b c H
H

d b c


   


 (6.2) 

where   is the pixel size of the IR camera, c is the focal length of the IR camera, b is the baseline 

between the IR camera and the laser projector and d  is the precision of the measured parallax 

(disparity). Equation (6.2) shows a quadratic relationship between object distance and the range 

measurements precision (internal accuracy). Similar to Khoshelham and Elberink (2012), this effect is 

verified by a plane fitting test for the data captured from a planar object located at different distances, 

perpendicular to the optical axis of the sensor (see figure 6.4). In this test, the RMS of fitting errors is 

considered as a measure for the precision of the range data at the measured distance, as the points have 

approximately the same perpendicular distance to the sensor. However for this test, points are selected 

from an area in the middle part of range images. The reason for this selection is the existence of a 

radial error pattern in the range images, whose intensity is increased towards the image corners. The 

intensity of this error pattern also depends on the object distance, which may imply the unmodeled 

radial lens distortion of the IR camera as well as the IR laser projector in the image matching 

algorithm. The reason for this assumption is that the radial lens distortion causes shifts within the 

image plane that affects the computation of disparity values and therefore the range measurement 

accuracies as a function of the squared object distance. The effect is visualized in figure 6.5 that 

depicts the noise of range images acquired from a planar object (filling the whole image frame) at 

three different distances. The figure further depicts the existence of a vertical stripe pattern. The 

number of vertical stripes varies at different distances, which seems to be related to the image 

matching algorithm used by Kinect (more details cannot be provided, since the algorithm used by 

PrimeSense technology is not disclosed).  

 

 

Figure 6.4 – RMS of plane fitting residuals at the central part of the range image at different distances with a 

second order polynomial fit. 
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Figure 6.5 – Left to right: noise of the range data throughout the whole image format, at 1m (RMS: 3mm), 1.8m 

(RMS: 7mm) and 2.6m (RMS: 15mm) distance, respectively. 

 

             

 

Figure 6.6 – Depth resolution of Kinect at different object distances with a second order polynomial fit. 

 

Equation (6.2) can also explain the depth quantization effect observed in Kinect range measurements. 

As mentioned before, according to Khoshelham and Elberink (2012), Kinect disparity measurements 

are stored as 11 bit integers, where 1 bit is reserved for marking the pixels for which no measurement 

is available. Therefore, disparity values are quantified based on 1024 levels. The depth resolution is 

then defined as the difference between the depth values corresponding to two consecutive disparity 

levels, which is proportional to the squared object distance H ( d , b  and c are constant). This effect is 

visualized for the sample point cloud depicted in figure 6.6. The figure shows that at the distance of 

5.5m, one can expect a depth resolution (quantization) of more than 8cm. 

Side view Corresponding color image 
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6.2. Evaluation of the Reconstruction Approach 

In chapter 5, an approach for the automatic reconstruction of indoor spaces was introduced, and 

different steps were presented using an exemplary case study. This section aims at the evaluation of 

the reconstruction approach by the assessment of the robustness and efficiency of the approach in 

different scenarios. The robustness and efficiency can be described by the stability of the selected 

parameters in different noise levels and different room shapes. It further continues with the accuracy 

analysis of the reconstructed models, based on a comparison between resulting 3D models and the 

point clouds collected by a highly accurate TLS. 

6.2.1. Parameter Selection in Different Scenarios 

The proposed reconstruction approach consists of several parameters and thresholds which have to be 

set in different processing steps, from the point cloud pre-processing to final topological corrections. 

Criterions for parameter selection were suggested during the presentation of the modeling process in 

the previous chapter, which are summarized in table 6.3. The criteria mainly provide correct values for 

the parameters; however, for some processing steps supervision (the user verification) might be 

required, such as the furniture removal (section 0) and the binarization of the orthographic projected 

images (section 5.2.2).  

In the furniture removal process, although a selective height filter (see table 6.3) typically delivers 

satisfactory results, the effect of remaining clutter cannot be compensated by the modeling process, if 

a detailed modeling of indoor spaces is demanded. The remaining clutter can be removed manually, 

however, it can be very time consuming and tedious in case of dealing with a large number of rooms. 

Alternatively, one can remove the effect of the remaining clutter by setting a suitable threshold in the 

binarization process. In this study, according to equation (5.5), the binarization threshold is defined 

based on the ratio between the maximum possible height of remaining clutter and the height range of 

the selective height filter. Figure 6.7 depicts an example, in which the effect of remaining clutter is 

removed by changing the binarization threshold as a function of noise filterH / H  . Selection of a 

correct value for  is verified by the user; the parameter is increased until no more clutter is observed 

by the user. Moreover, as the core of the modeling process, the Hough transform parameters should be 

noticed and selected correctly. The parameters are expressed as the minimum allowed number of votes 

( 1 ), the minimum allowed length of the line ( 2 ) and the maximum allowed gap ( 3 ). In this 

example, the parameters are set to the same values used by the pilot study in the previous chapter. 
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Processing step Parameter/Threshold Selection criterion 

Outlier removal 
Mean distance to K-

nearest neighbors 
Standard deviation of distances (1  or 2  normality test) 

Downsampling Voxel size 
Noise of the point cloud (e.g. 3-5cm in case of using 

Kinect) or flatness tolerance based on DIN 18202  

Noise removal 

Search radius and the 

degree of the local 

fitting polynomial  

Noise of the point cloud (for Kinect, a local plane fitting 

with a radius search of 10-15cm delivered the optimum 

results in all of the examples) 

Leveling the point 

cloud 

Clustering threshold 

for finding horizontal 

or vertical surface 

points 

 45° tolerance, which is almost always fulfilled 

Furniture removal 
Height range of the 

selective height filter 

Typically a range of [1.5m, 2.5m] gives the optimum 

results. Supervision is recommended due to the possible 

existence of large clutter such as plants, etc. 

Generation of the 

orthographic 

projected image 

Grid size 
Noise of the point cloud (e.g. 3-5cm in case of using 

Kinect) 

Binarization  
Grayscale intensity 

threshold 

Based on the ratio between the maximum possible height 

of remaining clutter and the height range of the selective 

height filter (case dependent, supervision is recommended) 

Polygon closing  
Dilation and erosion 

kernel size 

Experience shows that a 3 3  kernel size delivers optimum 

results. Larger kernel size may wrongly attach the adjacent 

structures. 

Line extraction using 

the Hough transform 

Minimum votes, 

minimum length of the 

line and maximum gap 

Noise of the computed structure skeletons (expected 

deviation from straight lines), grid (pixel) size of the 

orthographic projected image and the modeling accuracy  

Clustering and 

averaging the line 

segments 

Maximum allowed gap 

in the connectivity 

clustering 

Case dependent. In the presented examples, observed 

occlusions and gaps are mostly up to 0.5-1m. 

Parallelism and 

perpendicularity  

Maximum allowed 

misalignment in the 

line orientations  

Maximum standard deviation within the orientation 

clusters, or the required angular resolution in modeling 

Line extension and 

trimming 

Extension and 

trimming threshold 
Maximum allowed gap (see above) 

Removing invalid 

generated line 

segments 

Minimum allowed 

overlap between the 

candidate lines and the 

point cloud 

Noise of the point cloud and the modeling accuracy; an 

overlap threshold of 50% (a preservative choice) was 

qualified in all of the presented examples 

Table 6.3 – Parameters and their selection criterion in different modeling steps. 
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Furniture removal by means of a selective height filter: 1.5m < h < 2.5m (data collected by a DPI-7 sensor system). Ceiling points are 

removed for visibility purposes. 

 

 

Binary image ( 5%)   

 

Binary image ( 15%)   

 

Binary image ( 25%)   

 

 

Hough lines 

1 2 3( 25%, 15, 15, 20)         

 

 

2D model 

 

3D model 

      Figure 6.7 – Top: furniture removal by means of a selective height filter. Middle: removing the effect of 

remaining clutter by adjusting the binarization threshold. Bottom: line extraction and modeling provides 

satisfactory results only for 25% <   < 30%.  

 

The quality (signal to noise ratio) of the binary orthographic projected image has a direct effect on the 

line extraction process using the Hough transform. In other words, the Hough transform parameters 

may vary from one example to another, depending on the quality of the skeletonized image derived 

from the binary image. In figure 6.8 (b), line extraction and modeling results are compared for 

different binarization thresholds and different Hough transform parameter sets for an exemplary point 
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cloud depicted in figure 6.8 (a). This will gain a clearer perception regarding the stability of the Hough 

transform parameters in different scenarios. In this example, furniture and clutter are completely 

removed using a selective height filter. Therefore, the binarization threshold does not play an 

important role here. As it can be seen in this example, the reconstruction results are valid for all the 3 

choices of the Hough transform parameter sets. However, a simultaneous increase in   and the 

Hough transform parameters makes the line extraction more sensitive, i.e. a smaller amount of lines 

are extracted from the skeleton. In this case, the extension-trimming threshold shall be increased in 

order to compensate the effect of missing line segments.  

The efficiency and robustness of the proposed reconstruction approach is further assessed for different 

types of sensors and room shapes, as depicted in appendix E figures. The point clouds in the presented 

examples are collected by 4 different sensors based on different measurement principles and therefore 

different range measurement accuracies: Kinect (active triangulation system), Kinect V2 (TOF 

camera), DPI-7 (active triangulation system) and Leica HDS3000 (TLS). In these examples, some user 

interactions (or verifications) were necessary in the furniture removal process, mostly for the 

verification of the range of the selective height filter and setting the binarization threshold  . 

However, Hough transform parameters were fixed in all of the presented examples, which shows the 

stability of the line estimation algorithm and parameters in different cases. The reason is that the input 

orthographic projected images have a similar quality, thanks to the pre-processing step. It should be 

mentioned that due to the existence of relatively larger occlusions in the point cloud of examples 

depicted in figures E.1 and E.2, the extension-trim threshold had to be increased in such examples, in 

order to reconstruct the gaps. The remaining parameters were selected based on the criterions 

suggested in table 6.3, and stayed untouched in different examples.  

 

  

Figure 6.8 (a) – Furniture and clutter removal using a selected height filter (1.5m < h < 2.5m) for a sample room 

point cloud captured by Kinect.  
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Binary image ( 0%)   

 

Skeletonized image 

 

1 2 35, 5, 20     

 

1 2 310, 10, 20     

 

1 2 315, 15, 20     

 

 

   

Binary image ( 5%)   

 

Skeletonized image 

 

1 2 35, 5, 20       

 

1 2 310, 10, 20       

 

1 2 315, 15, 20       

 

 

   

Binary image 
( 10%)   

 

Skeletonized image 

 

1 2 35, 5, 20       

 

1 2 310, 10, 20       

 

1 2 315, 15, 20       

 

 

  
 

Figure 6.8 (b) – Line extraction and modeling results for different qualities of the binary image and different 

Hough transform parameters for the example depicted in figure 6.8 (a).  
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6.3. Quality of the Reconstructed Models 

After presenting the modeling approach and its performance evaluation, the accuracy of the 

reconstructed models is investigated by comparing them with reference data. The comparison 

represents errors in the range measurement and alignment, as well as the error committed in 

representing interior structures by means of planar surfaces using the described modeling strategy. The 

reference data is obtained by means of a high-accuracy laser scanner (Leica HDS3000), with 1cm 

sampling distance, 4mm single point range measurement accuracy (1-50m distance, one sigma) and 

2mm surface modeling accuracy (one sigma) (“Leica HDS3000 Product Specifications,” 2015). This 

accuracy is one order of magnitude better than the noise of the registered point cloud obtained by low-

cost range cameras; therefore, the TLS data can be assumed accurate enough to serve as reference in 

this comparison.  

The results of comparison for an exemplary 3D model reconstructed from Kinect point clouds are 

depicted in figure 6.9. In this example, the accuracy measure is the distance between the TLS point 

cloud and the 3D model. Since the TLS point cloud is registered in a different local coordinate system, 

the point cloud is registered to the 3D model using the ICP algorithm. The comparison shows an 

overall mean difference of 0.030m with a standard deviation of 0.027m and a maximum of 0.137m. 

However, as depicted in figure 6.9 (c), for different walls, different accuracies can be estimated (see 

table 6.4). This effect can also be observed in figure 6.9 (d), in which 3 Gaussian fits can be 

distinguished visually. Since the Kinect point cloud has a noise level of approximately 3cm at 3m 

distance, the remaining error is assigned to the point cloud registration process. However, it should be 

noted that the averaging concept, which is the basis of the modeling process, together with suggested 

topological corrections to some extent have reduced the effect of range measurement and registration 

errors on the final results. 

In order to distinguish the data collection and modeling errors, a similar comparison is made between 

the 3D model of the same room, reconstructed from the TLS point cloud, and the point cloud itself. 

Figure 6.10 depicts the results of this comparison. The comparison shows an overall mean difference 

of 0.007m with a standard deviation of 0.006m and a maximum of 0.040m. In this case, the modeling 

accuracy is estimated from: 
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 (6.3) 

where, O  is the overall accuracy, M  is the modeling accuracy and D  is the accuracy of the data 

collected by the TLS. It should be noted that the modeling accuracy can be controlled by the 

parameters presented in table 6.3. The most affective parameter in the modeling process is the voxel 

size in the downsampling process (for the quantization of the input point cloud), as well as the pixel 

size of the orthographic projected image. In this example, both of the parameters are set to 1cm, which 

is consistent with the estimated overall mean difference (7mm).  

It is necessary to mention that according to Tang et al. (2010), the modeling accuracy and level-of-

detail required for a particular application are still open questions, however, there exist guidelines for 

the accuracy tolerances suggested e.g. by the U.S. GSA (“U.S. General Services Administration,” 

2009). According to this guideline, the accuracy tolerance may range from 3mm to 51mm, and artifact 

sizes may range from 13mm to 152mm.  

 



94 6. Experimental Results and Analysis 

 

 
a) 3D model reconstructed from Kinect point clouds  

 
b) TLS point cloud (colors correspond to the distance with the 3D model 

 

 
c) Registration of the 3D model to the TLS point cloud 

(top view) 

 
 

d) Histogram of the point distances to the 3D model 

Figure 6.9 – Comparing a 3D model reconstructed from Kinect point clouds with a TLS point cloud. 

 

 

Wall number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Mean distance [mm] 36 10 - 17 - 16 87 - 11 8 16 - 40 - 118 

Standard deviation [mm] 14 7 - 6 - 4 4 - 6 4 5 - 8 - 10 

Table 6.4 – Point distances calculated for each wall (corresponding to figure 6.9). 

 

 

     

Figure 6.10 – Comparing a 3D model reconstructed from TLS point cloud with the corresponding point cloud. 
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7. Application in the Refinement of Available Coarse Floor 

Models 

In the previous chapter, the performance of the presented approach for the automatic reconstruction of 

individual room models was demonstrated. As an application, this chapter demonstrates how the 

reconstructed room models can be used in the refinement of available coarse floor models. Available 

floor models may need a refinement or an update due to generalizations in the reconstruction process, 

or recent changes in the building interiors such as the addition of new elements (e.g. large cupboards, 

partitions, etc.). The refinement is demanded by many applications, for instance interior design, safety 

and security planning, indoor navigation, etc. Using low-cost sensor systems such as Kinect for the 

data collection makes the performance of this task faster and more efficient. 

The proposed refinement approach is presented using an example, in which a coarse floor model 

(figure 7.1) is automatically derived from a photographed evacuation plan using the work of (Peter et 

al., 2013b) (see section 4.2.3 for more details). The refinement approach firstly registers the detailed 

model of individual rooms with the coarse model. The models are then merged together, and finally 

possible gaps within the detailed models are automatically reconstructed using a new learning-based 

approach employing the information inferred from the coarse model. Similar to the reconstruction 

strategy mentioned in chapter 5, the algorithms of this process are designed for the 2D case; results are 

converted to 3D in the very last step using a simple extrusion. The process is presented in the 

following sections in more detail. 

Assumption: While the approach deals with changes inside the room models, it excludes three special 

scenarios in which a room is split, multiple rooms are merged, or a room is enlarged. 

 

  

Figure 7.1 – The case study is a coarse floor plan automatically derived from a photographed evacuation plan 

using the work of (Peter et al., 2013b). 
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7.1. Registration of Individual Detailed Models to an Available 

Coarse Floor Model 

As already mentioned, in the first step of the update and refinement process, the reconstructed detailed 

models have to be registered with an available coarse floor model. The registration consists of two 

steps: approximate and fine registration. In fact, the approximate registration provides initial values 

required for a fine registration, which is the optimal fitting of the detailed model to the coarse model 

using a least squares adjustment.  

7.1.1. Approximate Registration 

For the approximate registration, the initial position and orientation of the detailed model with respect 

to the coarse model is required. The translation is solved by the coincidence of the centroid of the 

detailed model with the centroid of the corresponding room in the coarse model. Therefore, it is 

sufficient to know the information about the room correspondences. This information can be provided 

by the user in an interactive way, or alternatively, by means of an indoor positioning solution during 

the data collection process. In the presented case study, the room correspondences are inferred by  the 

user’s track derived from the MEMS IMU positioning method, implemented and presented by (Peter 

et al., 2013b). In this positioning method, the user track is registered to the coarse model based on the 

initial position of the user and the building principal axes. The user initial position is assumed to be the 

location of the evacuation plan, where the user photographs it. Therefore, the user employs a foot 

mounted MEMS IMU and walks from the position of the evacuation plan into the room whose point 

cloud has to be collected. The corresponding room is the one that contains the last track point. 

Assuming the user starts capturing the point clouds while the sensor is oriented toward the door 

location, the initial orientation of the detailed model with respect to the coarse model is approximately 

known. According to Peter et al. (2013b), the door locations in the coarse model can be identified by 

the intersection of the user’s track with this model. Figure 7.2 depicts the results of this registration for 

an exemplary room. 

 

 

Figure 7.2 – Approximate registration to the coarse model. The user’s track is identified in red, and the 

corresponding room in the coarse model by green. 
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7.1.2. Fine Registration 

The approximate registration is further refined by the optimal fitting of the line segments in the 

detailed model to the corresponding line segments in the coarse model.  

Finding the corresponding line segments: To find the line correspondences, first the line segments 

corresponding to the outer shell of the detailed model have to be derived by analyzing the convex hull 

of the model (figure 7.3 (a)). Possible changes in the room geometry due to renovations or addition of 

new structure elements cause the addition of new line segments only inside the room model. 

Therefore, the room’s outer shell is assumed to be untouched, and consequently can be assigned to a 

wall (line segment) in the coarse model. The correspondences in the coarse model are then found by 

searching for the closest line segments having the most similar orientation. The search is performed 

using a ray tracing process, in which the corresponding line segments are assumed to be intersected by 

the same rays coming from the centroid of the model (figure 7.3 (b)). In order to deal with false 

assignments in case of having multiple candidates, which is often the case if the initial orientation is 

not accurate enough, candidates with the most similar orientations are selected. This assures a robust 

correspondence of line segments, if the initial orientation is estimated within a tolerance of  45°.  

 

  

a) b) 

Figure 7.3 – Finding the corresponding line segments. a) Extracting the rooms outer shell using the convex hull 

analysis (dashed lines); b) Ray tracing for finding the corresponding lines segments in the detailed and coarse 

models. 

 

Optimal fitting of the corresponding line segments: The corresponding line segments are optimally 

fitted together using a least squares adjustment. The adjustment model does not simply minimize the 

distance between the corresponding line segments (which is a “best fit”); instead, it firstly finds the 

best rotation that minimizes the orientation differences, and then the best translation that minimizes 

the distances between the corresponding line segments, in a separate process (here called an “optimal 

(constrained) fit”). The “best fit” and the “optimal fit” deliver different results in case of the shape 

asymmetry, as depicted in figure 7.4. The mathematical model of the “optimal fit” is presented as 

follows. 
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Figure 7.4 – A schematic comparison between the “best fit” (left) and the “optimal fit” (right) using the spring 

model for the distance minimization concept. 

 

a) For the estimation of the unknown rotation angle, the observation equation for each set of the line 

segments is given by: 

i id e   (7.1) 

in which, id  denotes the orientation difference between the corresponding line segments,   is 

the unknown rotation and ie  is the corresponding residual. The Gauss-Markov linear model for 

the least squares adjustment for n observations can be written as: 
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T 1 T( ) ( ) X A PA A PL  (7.4) 

in which, il  is the length of the corresponding line in the detailed model, and P  is the weight 

matrix based on the length of the line segments. 

b) For estimating the unknown translation by minimizing the distance between the corresponding 

line segments, it is sufficient to minimize the distance between the centroid of the line segments in 

the detailed model and the corresponding line in the coarse model. In this case, for each set of the 

line segments one can write: 

i i T i i T i

i T T
2 2

i i

a (X X ) b (Y Y ) c
f (X ,Y )

a b

   



  (7.5) 

in which, i T Tf (X ,Y )  is the distance between the centroid of a line segment in the detailed model 

i i(X ,Y )  to the corresponding line i i ia x b y c 0    in the coarse models, after applying the 

translation T TX ,Y  to the centroid i i(X ,Y ) . Therefore, the observation equation can be written as: 

i T0 T T0 T i T0 T0 if (X X ,Y Y ) f (X ,Y ) e      (7.6) 

The Gauss-Markov linear model for the least squares adjustment for n observations is given by: 



7.2. Fusion of Detailed Models to the Coarse Model  99 

 

 

T 0 T 0

i i
i i i T0 T0

X Y

1 1 1

2 2 2

T T 1 2

n n nn 2 n 1 n n

f f
, f (X ,Y )

X Y

l 0 0 0

0 l 0 0
, , , X Y

0 0 0 l



  

  
   
   

     
     
          
     
     
     

A L

A L

A L
A L P δ

A L

 (7.7) 

T T( ) ( ) min    E e Pe L Aδ P L Aδ   (7.8) 

T 1 T( ) ( ) δ A PA A PL   (7.9) 

Since the observation equation is non-linear with respect to the unknowns, the unknown 

translation is estimated iteratively. In each iteration, the estimated translation is updated by: 

T T0 T

T T0 T

X X X

Y Y Y

  

  
 (7.10) 

As the door thickness in comparison to the wall thickness is usually negligible, the coincident of the 

line segments corresponding to the door serves as a constraint in the adjustment process. Figure 7.5 

depicts the results of the constrained fit for the previous example. 

 

  

Figure 7.5 – Optimal fitting of the detailed model to the coarse model. Fitting residuals close to a typical value 

within a tolerance (e.g. 10-20cm) are considered as the wall thickness. 

7.2. Fusion of Detailed Models to the Coarse Model 

Computing the wall thickness: The actual value for the wall thickness is detectable after the 

registration process, by analyzing the registration residuals (distance between the corresponding line 

segments after the registration). In other words, residuals close to a typical value within a threshold 

(e.g. 10-20cm) are considered as the actual wall thickness for the room (see figure 7.5). The 

information about the wall thickness enables a correct fusion, and at the same time, a comparison 

between the detailed and the coarse models for finding the changes in the building interiors and 

updates to the coarse model. 

Model fusion and gap filling: After the registration of the detailed models to the coarse model, they 

have to be merged in a consistent way. Therefore, besides coincidence and merging of the doors in the 

previous step, possible gaps in the detailed models have to be reconstructed based on the shape of the 

coarse model. In other words, the gap parts are reconstructed by following the shape of the coarse 
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model, considering the wall thickness. This is realized by generating a parallel buffer (equivalent to 

the wall thickness) inside the corresponding rooms in the coarse model (figure 7.6 (a)), and filling the 

gap parts using the buffer shell. For this purpose, the line segments in the detailed model are first 

converted to graph edges (figure 7.6 (b)), and those containing a free end node (nodes of degree 1) will 

be extended simultaneously in the original and perpendicular directions, in order to find their first 

intersection with the offset shell (figure 7.6 (c)). Assuming the gap parts are less than 50% of the 

corresponding detailed model, edges constituting the shortest path from the two most distant degree 1 

nodes will be merged to the detailed model to fill the gaps (figure 7.6 (d)). Figure 7.7 depicts the 

fusion of the detailed model of some exemplary rooms with the coarse model using this approach. As 

already mentioned, the approach does not deal with the cases in which the detailed model is larger 

than the coarse model (see the rooms number 1 and 7 in figure 7.7), or multiple rooms are merged 

together (see the free space between rooms number 5 and 6). The main steps for the reconstruction of 

the detailed models of this example are provided in appendix E. 

Change detection: As already mentioned, computing the wall thickness enables the detection of the 

changes to the coarse model; walls outside of a buffer equivalent to the wall thickness are considered 

as updates to the coarse model. Updates in the mentioned example are distinguished in figure 7.8 using 

a different color. 

 

  
a) b) 

 

  
c) d) 

Figure 7.6 – a) Generating a parallel offset (black) inside the coarse model (green); b) Converting the line 

segments into graph edges; c) Connecting the degree 1 nodes in the detailed model to the offset shell ; d) 

Reconstructing the gaps by finding the shortest path between the two most distant degree 1 nodes in the detailed 

model (red). 
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Figure 7.7 – Refinement of the coarse model by the fusion of detailed models. Top: reconstructed gaps are 

marked by the red color in the top view; Middle and bottom: perspective views (front walls in the coarse model 

are removed for the visibility purpose). 
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Figure 7.8 – Walls outside of the buffer (red) are considered as update to the coarse model. 
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8. Conclusion 

8.1. Summary 

This work investigated the automatic reconstruction of building interiors using low-cost sensor 

systems. The system developed for this purpose consists of two main parts: data acquisition and 

2D/3D model reconstruction. 

The data acquisition part focused on using state-of-the-art low-cost sensor systems for the collection of 

range data in indoor scenes. Microsoft Kinect was selected as the case study, and the system 

calibration together with the computation of 3D object coordinates were focused for this sensor 

system. Afterwards, available approaches for the registration of Kinect point clouds were presented, 

and a new complementary approach was proposed. 

In the modeling part, the registered point clouds were first pre-processed in order to remove the 

furniture and clutter, reduce the noise of the range measurements, level the point cloud and project the 

points onto the ground plane. An orthographic projected image was then computed, in order to enable 

the modeling process in 2D space. Converting the reconstruction problem from 3D to 2D, besides 

simplification of the reconstruction task, enables efficient topological corrections using algebraic 

relationships and graph theories. The modeling process consists of estimating the line segments 

(corresponding to walls in 3D) together with some proposed topological corrections. The results were 

converted back to 3D using an extrusion. The parameters used in the modeling algorithm were 

discussed, and criterions for a correct parameter selection were presented. Experimental results 

demonstrated the robustness of the reconstruction approach, as well as the stability of the selected 

parameters in different scenarios, where different sensor types and different room shapes and sizes 

were used. 

Finally, as an application of the proposed reconstruction approach, it was shown how the resulted 3D 

models with a higher level of details can be used to refine available coarse floor plans. During the 

refinement process, existing gaps in the detailed models were automatically reconstructed using the 

information derived from the coarse model.  

8.2. Contributions 

The contributions of this work can be summarized in the following parts: 

Registration problem: Available approaches for the registration of point clouds collected from indoor 

scenes mainly rely on visual features extracted from color images, as well as geometrical information 

extracted from the rage data. Such approaches fail in scenarios, where not enough well-distributed 

visual features can be observed, or geometrical constraints cannot fix the sensor 6 DOF. Therefore, a 

new complementary approach is introduced, in order to support the registration task by employing the 



104 8. Conclusion 

user’s track information derived from an indoor positioning method, based on a foot mounted MEMS 

IMU. 

Line estimation, clustering and topological corrections: Available 2D reconstruction approaches 

mostly directly deliver the output of the line estimation process (e.g. using the Hough transform) as the 

final results. Therefore, the line estimation parameters play an important role in the final results, and a 

suitable balance has to be made between the noise level, the required level of details and the expected 

length of the line segments, in order to estimate each wall by a single line segment. In practice, the 

problem is usually handled by estimating the parameters in a typical scenario, and using the same 

parameters in similar cases. In the proposed approach, this problem is managed more efficiently. 

Inputs for the modeling algorithm provided by different sensors (with different noise levels) are firstly 

homogenized using a pre-processing step with minimal user interactions. Then the line estimation 

parameters are set in a way that the smallest allowed features are taken into account. Although this 

results in the estimation of each wall by multiple smaller line segments, the proposed hierarchical 

clustering algorithm assigns the resulting line segments to the corresponding walls. It enables the 

averaging and merging of multiple line segments, in order to estimate each wall by a single line 

segment. The results are further improved using the proposed topological steps to correct small line 

orientation errors (parallelism and perpendicularity check), and to assure a correct intersection 

between the line segments (extension and trim algorithm). Moreover, small gaps in the model are 

detected and filled by the extension of free end points (degree 1 nodes in the corresponding graph) in 

the original and perpendicular directions. This results in the reconstruction of interiors with an 

arbitrary level of details.  

Reconstruction of larger gaps in the models and refinement of available coarse models: Available 

coarse models (e.g. those derived from architectural drawings and floor plans) can be further refined 

by the fusion of the reconstructed model with the coarse model. For this purpose, a fusion algorithm is 

suggested, which also enables the reconstruction of remaining gaps in the detailed models using a 

learning-based approach based on the information derived from the coarse model and the fusion 

process. In other words, gaps are reconstructed by merging walls parallel to coarse model, considering 

the wall thickness (the term “learning” refers to the prediction of gaps from the behavior of the coarse 

model). 

8.3. Future Work 

The presented work has the potential of being used by the public for crowdsourcing, due to the 

affordability and accessibility of range measurement systems in the recent years. For this purpose, the 

following optimizations and extensions are suggested based on the experience gained in this work. 

Visual user guides for the data acquisition task: The data acquisition task can be a challenge, if the 

interior space is too complex and large, or the registration fails due to the weak estimation of the 

sensor pose. Failures are revealed only after the data processing step. Therefore, it is required to make 

use of SLAM and visual tracking techniques in order to develop an Augmented Reality system that is 

able to guide the user in the data acquisition task, to assure a complete and faultless data acquisition. 

This can be realized by the use of tablets or wearable devices such as Google Glass. Some of the 

available business products have already integrated such features (e.g. DPI-7/8 handheld scanners), 

however, the capability of capturing larger spaces and improving the tracking module by the fusion of 

visual and geometrical features can still improve the performance of the systems.  

Improving the pose estimation: As already mentioned, for an accurate registration of the range data, 

one may benefit from the combination of visual and geometrical features. The GPU-based RGB-D 
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odometry presented by (Whelan et al., 2013) is a successful example in this field. However, in public 

buildings, indoor scenes usually have poor visual texture or geometrical features. In such scenarios, 

one may benefit from the extraction and matching of line features instead of point features. Line-based 

SLAM approaches are well-suited for this purpose. Therefore, replacing the method used in this work 

(SfM) with such approaches can improve the registration results in challenging scenarios.  

Extending the model fusion algorithm: In this work, a model fusion approach for the update or 

refinement of coarse floor plan was introduced. The algorithm does not consider the case that a room 

in the coarse model is split, or multiple rooms are merged together, or the room in the coarse model is 

smaller than the corresponding detailed model. Therefore, including such cases in the algorithm is 

required. 

Extending the floor model reconstruction approach: The presented approach for the reconstruction of 

a complete floor model is based on the reconstruction of individual rooms, and fusing the results with 

an available coarse model. An extension to this work is the reconstruction of complete floor models 

from point clouds, independent from the existence of coarse models. For this purpose, the proposed 

topological concepts have to be extended, in order to assure a correct and consistent reconstruction and 

combination of different rooms and hallways. The performance of grammar-based approaches in this 

field is encouraging. 
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A.  Point Cloud Registration – Fundamental Principles 

As already mentioned in section 2.2.1, two point clouds are registered using a rigid-body 

transformation (Figure A.1). The transformation is a special case of a 7-parameters 3D similarity 

(Helmert’s 7-parameters) transformation, in which the scale factor is set to 1 (equations (A.1)). The 

rigid-body transformation parameters can be estimated using point correspondences in the point 

clouds. Closed-form solutions can be used in case the point correspondences are known, otherwise the 

point correspondences are estimated using the ICP algorithm.  

 

 
Figure A.1 – Rigid-body transformation. (figure and the corresponding relationships from Fritsch (2014)) 
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f ( )  d s Rs t   (A.2) 

In this equation: 

- d  is the point in the world coordinate system; 

- s   is the point in the local coordinate system; 

- R  is the rotation matrix; 

- t  is the translation vector. 
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A.1. Closed-Form Solution 

Equations (A.1) can be solved using the least squares adjustment; however, this needs initial values 

and linearization of the equations with respect to the unknown rotation angles. This not only slows 

down the convergence, but also may cause singularities in the system of equations. To avoid these 

issues, closed form solutions are proposed based on the unit quaternions, e.g. by (Horn, 1987; Sanso, 

1973). A quaternion as a representation of rotation is known to be well-conditioned in numerical 

solutions for the orientation problem to avoid singularities. A quaternion has four elements that 

uniquely represent a rotation in the space: 

0 1 2 3(q , q , q , q )q   (A.3) 

According to Jain et al. (1995), in order to understand how quaternions encode rotations in the 3D 

space, one can compare it with a circle in 2D and a sphere in 3D. In 2D, any position on the unit circle 

in the xy plane encodes a rotation around the z axis. The equation of the unit circle in 2D is given by: 

2 2X Y 1   
 (A.4) 

In 3D, any position on the unit sphere encodes rotations around only two axes. The implicit equation 

of the unit sphere is given by: 

2 2 2X Y Z 1    
 (A.5) 

In analogy, in order to represent three rotations, another degree of freedom is required. Three rotations 

are encoded by a position on the unit quaternion in 4D, which is defined by: 

2 2 2 2

0 1 2 3q q q q 1      (A.6) 

 The rotation matrix R  can be derived based on the elements of the unit quaternion: 
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 (A.7) 

By denoting the rotation axis by the unit vector 
x y z( , , )   ω  and the Cartesian axes unit vectors 

by , andi j k , the rotation axis can be represented by: 

x y z  ω i j k
  (A.8) 

The unit quaternion for a counterclockwise rotation   around this axis can be represented by: 
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 (A.9) 

which consists of a scalar (real) part and a vector (imaginary) part.  

Let be S a set of N points in 3R in the local coordinate system, and D a set of corresponding points in 

the world coordinate system, the rigid-body transformation ˆT( , )q t  is obtained by solving: 

N 1

i ii 0
E : min




   d Rs t

  (A.10) 
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in which ˆ( )R R q  and t  are the rotation and translation matrices. 

By computing the centroid of the points in the corresponding coordinate systems: 
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and constructing an auxiliary matrix :M  
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and a further auxiliary symmetric matrix :N  
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 (A.13) 

the singular value decomposition of N  delivers singular values and the corresponding vectors; the 

largest one represent the rotation matrix ˆ( )R R q .  

The translation vector is finally given by: 

 t d Rs  
 (A.14) 
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A.2. Iterative Solution (ICP)  

If the point correspondences are not provided for the calculation of the rigid-body transformation, the 

estimation of the transformation can be performed using common object surfaces in both point clouds. 

However, as also stated by Luhmann et al. (2014), the common surfaces must have at least three 

linearly independent normal vectors to achieve a unique solution. Moreover, if the common surfaces 

contain only one symmetrical shape such as sphere or plane, the registration is not possible. The most 

well-known registration algorithm based on common parts in the point cloud is the Iterative Closest 

Point (ICP) algorithm (Besl and McKay, 1992). The algorithm is an iterative procedure. Assuming the 

point cloud B has to be registered with the point cloud A, in each iteration, for every point in the point 

cloud B, a point in the point cloud A with smallest Euclidean distance is assigned. Based on the 

assigned correspondences, a rigid-body transformation is estimated, and is applied to the point cloud 

B. The iteration is continued by finding a new set of point correspondences, estimating the 

transformation and applying it, until the RMS of the distances is less than a given threshold (see 

Figure A.2). 

 

 

Figure A.2 – Flow diagram for the ICP algorithm. (adapted from Luhmann et al. (2014)) 

 

Distance Minimization 

For the minimization of distances between the corresponding points in point clouds A and B, 

parameters of the corresponding rigid-body transformation have to be estimated. The mathematical 

model of the transformation is given by: 

A 0B B 0B( )  X X R X X
  (A.15) 

Assuming small (differential) rotation angles, the rotation matrix is given by: 

Initial registration 
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Additionally, assuming small translation parameters, the transformation model can be replaced by the 

following linear model: 

A B 0B Bd   X X X B X
  (A.17) 

where: 
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is the vector of unknowns containing 3 rotation angles and 3 translation elements, and: 
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is the coefficient matrix containing partial derivatives with respect to the unknowns, in which i denotes 

the point index. 

The unknowns are estimated by iteration, if appropriate initial values for the unknowns are provided. 

In each iteration, after the estimation of the unknowns, the coordinates of the points in the point cloud 

B are updated. The iteration is continued until the estimated unknowns (differential rotation and 

translation elements) are smaller than a given threshold. 

According to Fritsch (2014), the appropriate adjustment model for solving equation (A.17) is the 

Gauß-Helmert model, since also the right side of the equation contains measured coordinates: 

2 1; D( )     Av Bx w 0 l P
  (A.20) 

In more detail, the update equations for every point correspondence are expressed by: 
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where, 00B 00B 00B 0 0 0X , Y , Z , , ,    are the initial (approximate) values of the unknown 

parameters. Therefore, the coefficient matrices in the equation (A.20) are given by: 
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Normal equations are given by: 

1

t

ˆ

ˆ

      
         

wλAP A B

0B 0 X
 

 (A.25) 

which are solved by iteration to estimate the unknown vector X̂  containing the transformation 

parameters. 

This is the strict solution of the ICP algorithm. Although there are modifications and other variants for 

this algorithm (e.g. different search algorithms or point-to-plane distance minimization instead of 

point-to-point distance), the main steps which are described in Figure A.2 remain essentially the same. 
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B.  RANSAC 

Random Sample Consensus (RANSAC) is an adjustment algorithm presented by Fischler and Bolles 

(1981), based on a voting scheme. The model is suitable for the estimation of any functional model 

from a set of observations containing a significant number of gross errors, even up to 80% (Schnabel 

et al., 2007). Opposed to many classical algorithms that fit the model to all of the presented data, this 

algorithm estimate the model parameters from a minimum set of observations using an iterative 

procedure.  

In more detail, as described by Luhmann et al. (2014), the algorithm first randomly selects a minimum 

required number of observations from the full set of the observations in order to estimate the model 

parameters. Afterwards, all the remaining observations are tested against the estimated model, their 

residuals are computed, and those which are consistent with the model within a certain tolerance are 

regarded as valid observations and form a consensus set. The procedure is repeated using a new set of 

random observations to create a new consensus set. After some iterations, the model corresponding to 

the consensus set with the maximum number of valid observations is regarded as the best solution. 

The success of the algorithm depends on the mentioned tolerance and the termination criterion which 

can be the number of iterations, or the minimum size of the consensus set. Probabilistic criterions for 

the minimum number of iterations or the minimum size of the consensus set are proposed by (Fischler 

and Bolles, 1981). For instance, assuming w be the probability that any selected data is within the 

error tolerance of the model, k the number of trials required to select a subset of n valid observations, 

in order to ensure with probability of z that at least one of the random selections is an error-free set on 

n observations, then the number of iterations is given by: 

nb w  

k(1 b) (1 z)    

log(1 z)
k

log(1 b)





 

 (B.1) 

According to Fischler and Bolles (1981), the algorithm is very well-suited for applications in 

automated image analysis that rely on the data provided by error-prone feature detectors, such as 

relative orientation. Other applications are for instance data association (e.g. 2D or 3D points in 

different coordinate systems), feature detection and fitting of geometric primitive to a set of points 

(e.g. line and circle in 2D or sphere and plane in 3D). 
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C.  SLAM Problem 

Simultaneous Localization And Mapping (SLAM) was originally introduced by Leonard and Durrant-

Whyte (1991) based on the work of Smith et al. (1990) for mobile robot navigation. SLAM aims at 

creating a map of an unknown environment, while at the same time localizing the mobile robot within 

the environment. In fact, the localization supports the mapping process, and the created map supports 

the continuation of the localization process, similar to the well-known “chicken and egg” problem.  

Figure C.1 illustrated this concept for a mobile robot using an example provided by (Frese et al., 

2010). In this example, the robot observes the environment (artificial features on the floor) relative to 

its own unknown location using a camera mounted on the top of it. At the same time, the robot relative 

motion is measured using odometry. If the environment was known, the robot’s pose could be 

estimated using the provided observations (called localization). Conversely, if the robot’s pose was 

known, measuring the feature points could lead the positioning of the points in a global reference 

frame (called mapping). In general, neither the environment is known, nor the robot’s pose; they both 

have to be estimated using the same data (called simultaneous localization and mapping). 

 

 

Figure C.1 – A mobile robot observes the environment and measures its relative motion, in order to estimate its 

pose and the scene geometry using a SLAM algorithm. (from Frese et al. (2010)) 

 

According to Riisgaard and Blas (2003), the standard SLAM process typically consists of following 

steps: 

a) Landmark extraction: Landmarks are the features that can be re-observed by the robot and be 

distinguished in the environment for the localization purpose. Depending on the type of the 

SLAM variant, landmarks can be extracted from different sources of data, e.g. laser scan data 

or image features.  

b) Data association: This problem deals with the searching and matching of the landmarks in an 

uncertainty area, in order to realize if a landmark has been re-observed. 

c) State estimation: In this step, it is assumed that the map is provided, and at least temporarily it 

does not require any update. When the odometry data is changed, the robot pose is estimated 
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using the new data (e.g. laser scan data, IMU data and visual features). This can be performed 

using different solutions, such as filtering methods (e.g. Extended Kalman Filter (EKF)) or 

keyframe-based methods that optimizes the solution using a bundle adjustment.  

d) State update: The robot’s state is updated, as soon as landmarks are re-observed, in order to 

reduce errors in the pose estimation. 

e) Landmark update: Extracted landmarks which have not been observed before are regarded as 

new landmarks and added to the landmarks library.  

Each of the mentioned steps of the SLAM process can be modified based on the application 

requirements. In the overview presented by Frese et al. (2010), different types of applications are 

distinguished, in which the standard SLAM algorithm is modified, in order to fulfil special 

requirements of the application: 

Offline-SLAM for mapping (map learning): In such applications, the robot is manually navigated 

within the environment and sensor data is recorded. Then in a post-processing step, a map is computed 

using the computed trajectory. The map is later used for the actual operation of the system, e.g. 

localization, rout planning, etc. 

Online-SLAM for localization: In this SLAM mode, both localization and mapping are performed in 

real-time, but the application only uses the localization results, and the mapping is performed just to 

support the localization. In this mode, the whole or parts of the map are known; therefore, the 

localization error only grows when the map has to be extended. 

Online-SLAM for continuously updating the map: This mode is the most complex way of using 

SLAM, which is also the main motivation of SLAM research. In this mode, the map is generated and 

extended and the robot is localized within the generated map. Both localization and mapping results 

are further used for the robot navigation purpose.  

The SLAM problem is a very active topic of research and still many problems have to be solved in 

order to reach a fully automated approach for the robot navigation and exploration in real world 

scenarios.  
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D.  Hough Transform 

D.1. Standard Hough Transform 

Hough transform (Duda and Hart, 1972; Hough, 1962) extracts a certain class of shapes (most 

commonly lines, circles or ellipses) in a binary image, based on a voting scheme. The voting process is 

performed in a parameter space, which is defined by the parametric representation of the shape. For 

instance for the extraction of straight lines or collinear points in an image, the parameter space is 

defined by ( , ), [0, ]    , corresponding to the slope-intercept representation of the line (equation 

(D.1)). In this space, points in the (x, y) domain are represented by sinusoidal curves, and straight lines 

by points which are the intersection of sinusoidal curves corresponding to collinear points (see Figure 

D.1). Likewise, pointes lying on the same sinusoidal curves correspond to lines passing through a 

common point in the (x, y) domain.  

The Hough transform algorithm detects lines (collinear points) in the (x, y) domain using a two 

dimensional array corresponding to ( , )  , called an accumulator. The size of the array depends on 

the quantization error (step size) of   and   values. Each cell in the accumulator is incremented by 

the number of curves passing through the corresponding point in the ( , )   domain. Therefore, the 

count in a given cell i i( , )   determines how many points in the (x, y) domain lie along the line 

whose parameters are i i( , )  . The algorithm afterwards searches for the cells having counts more 

than a given threshold (counts are the number of collinear points for that line within the quantization 

error). 

x cos( ) ysin( )    
  (D.1) 

 

 

Figure D.1 – Hough transform concept for the extraction of lines. (from “EBSD-Image, Hough Transform” 

(2011)) 
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D.2. Progressive Probabilistic Hough Transform 

This variant of the Hough transform improves the speed and efficiency of the standard Hough 

transform by minimizing the amount of computation needed for the detection of lines, which is 

realized by reducing the number of candidates and votes needed to reliably detect lines with different 

numbers of supporting points (Matas et al., 2000). 

According to Matas et al. (2000), the algorithm repeatedly selects a random point for voting. After 

casting a vote, the hypothesis that “could the count be due to random noise?” is tested, based on a 

single comparison with a threshold per bin update (the threshold is also updated as votes are casted). 

In other words, the algorithm checks if the highest pick in the accumulator that was updated by the 

new point is higher than a threshold. After the detection of a line, the supporting points draw back 

their votes. Additionally, the remaining points supporting the lines which are not yet participated in 

the voting process are removed from the process. This reduces the amount of the remaining process, as 

the new random point is selected from the remaining points, and therefore only a small fraction of 

points are voted. This further reduces the number of false positives, where the assignment of points to 

lines is ambiguous, i.e. points are located in the neighborhood of more than one line.  
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E.  Reconstruction of Detailed Models – Case Studies 

This appendix presents study cases used for the assessment of the efficiency and robustness of the 

proposed reconstruction approach regarding parameter selection, different types of sensors (with 

different accuracies) and different room shapes, as explained in section 6.2.1. Existing gaps in the 

presented models are reconstructed in section 7.2, as a result of the fusion of these models to an 

available coarse model. 

 

  
Data collected by a Kinect sensor system  Pre-processed point cloud. Clutter is removed by means of a selective 

height filter (1.5m < h < 2.5m) 

 

 

 
Binary image ( 5%)   

 
Skeletonized image 

 
Hough lines 1 2 3( 15, 15, 20)       

 

 

 
2D model (extension-trim threshold: 0.6m) 

 
3D model 

 

Figure E.1 – Modeling of a sample room captured by a Kinect sensor system. 
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Data collected by a Kinect V2 sensor system  Pre-processed point cloud. Furniture is removed by means of a selective 

height filter (1.5m < h < 2.5m), remaining clutter is removed manually. 

 

 

  
Binary image ( 20%)   

 
Skeletonized image 

 
Hough lines 1 2 3( 15, 15, 20)       

 

 

 
2D model (extension-trim threshold: 0.8m) 

 
3D model 

 

Figure E.2 – Modeling of a sample room captured by a Kinect V2 sensor system. 
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Data collected by a DPI-7 sensor system (ceiling points are 

removed for the visibility purpose) 
Pre-processed point cloud. Furniture is fully removed by means of a 

selective height filter (1.5m < h < 2.5m). Remaining clutter is 

removed in the binarization process. 

 

 

 
Binary image ( 15%)   

 
Skeletonized image 

 
Hough lines 1 2 3( 15, 15, 20)       

 

 

 
2D model (extension-trim threshold: 0.5m) 

 
3D model 

 

Figure E.3 – Modeling of a sample room captured by a DPI-7 sensor system. 
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Data collected by a DPI-7 sensor system  Pre-processed point cloud. Furniture is fully removed by means of a 

selective height filter (1.5m < h < 2.5m) 

 

 

 
Binary image ( 5%)   

 
Skeletonized image 

 
Hough lines 1 2 3( 15, 15, 20)       

 

 

 
2D model (extension-trim threshold: 0.5m) 

 
3D model 

  

Figure E.4 – Modeling of a sample room captured by a DPI-7 sensor system. 
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Data collected by a Leica HDS3000 laser scanner Pre-processed point cloud. Furniture is removed by means of a 

selective height filter (1m < h < 1.5m), remaining clutter is 

removed manually. 

 

 

 
Binary image ( 5%)   

 
Skeletonized image 

 
Hough lines 1 2 3( 15, 15, 20)       

 

 

 
2D model (extension-trim threshold: 0.5m) 

 
3D model 

 

Figure E.5 – Modeling of a sample room captured by a Leica HDS3000 laser scanner. 
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Data collected by a Leica HDS3000 laser scanner Pre-processed point cloud. Furniture is removed by means of a selective 

height filter (1.5m < h < 2m), remaining clutter is removed manually. 

 

 

Binary image ( 5%)   Skeletonized image  
Hough lines 1 2 3( 15, 15, 20)       

 

 

 
2D model (extension-trim threshold: 0.5m) 

 
3D model 

 

Figure E.6 – Modeling of a sample room captured by a Leica HDS3000 laser scanner. 
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