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Zusammenfassung

Innerhalb der letzten Jahre haben sich die Bereiche Computer Vision und Photogrammetrie immer st�arker an-
gen�ahert. Computer Vision zielt vor allem auf die Entwicklung von Algortihmen zur automatischen Gewinnung
von Information aus Bildern; in photgrammetrische Prozesse wird h�au�g noch versucht, die ben�otigte Infor-
mation so genau wie m�oglich zu extrahieren. Die Verbindung und gegenseitige Befruchtung beider Disziplinen
verspricht dabei deutlich bessere Resultate als dies nur einem allein Bereich m�oglich w�are. Die vorgestellte Arbeit
setzt deshalb auf die Integration von Methoden aus beiden Bereichen. Das Ziel ist es dabei Geb�aude aus kom-
plexen Luftbildszenen zu extrahieren. Der Schwerpunkt liegt somit auf der Entwicklung neuer Konzepte und ro-
buster Verfahren zu einem hierarchischen, datengetriebenen Proze zur Rekonstruktion allgemeiner polyedrischer
Geb�audemodelle durch die Integration von Prozessen der Photogrammetrie und der Computer Vision. Der
vorgeschlagene Ansatz basiert zun�achst auf der pragmatischen Annahme, dass sich nahezu alle D�acher von
Geb�auden durch eine Kombination ebener Fl�achen darstellen lassen. Aus diesem Grund kann ein sogenanntes
polyedrisches Modell zur n�aherungsweisen Repr�asentation auch komplexer Geb�aude im Rahmen des Rekon-
struktionsprozessen verwendet werden. Um zuverl�assige und genaue Ergebnisse zu gewinnen wird in dem Ver-
fahren eine starke Verkn�upfung zwischen dem 2D Bild und dem 3D Objektraum eingesetzt. Zun�achst wird
eine Randwertbeschreibung einer ersten Geb�audehypothese in einem datengetriebenen Bottom-up Ansatz aus-
gehend von einfachen qualitativen geometrischen Primitiven im Bildraum hin zu komplexeren quantitativen
Modellprimitiven im Objektraum generiert. Anschlieend erfolgt die Veri�kation der ersten, groben Geb�audehy-
pothese in einem modellgetriebenen Top-down Ansatz, um dadurch zu einer verfeinerten, zuverl�assigeren und
genaueren geometrischen Beschreibung zu gelangen. Konzeptuell kann das gesamte Spektrum der Arbeit in
die drei grundlegenden Schritte Erkennung, Rekonstruktion und Veri�kation der Geb�audehypothesen unterteilt
werden. Obwohl diese Unterteilung keine scharf de�nierten Grenzen festlegt, liefert sie doch eine n�utzliche
Rahmen zur Kategorisierung und Beschreibung der einzelnen Prozesse, die die wesentlichen Komponenten des
autonomen Bildanalysesystems bilden. Die Erkennung beginnt mit einer groben Segmentierung eines Digitalen
H�ohenmodells (DHM) auf der Basis eines morphologischen Dilatationsverfahrens. Dadurch werden Regionen
innerhalb der Luftbilder zu bestimmen, in denen mit groer Wahrscheinlichkeit einzelne Geb�aude enthalten
sind (Interessensgebiete). Anschlieend werden geometrische Eigenschaften der Fl�achenelemente genutzt, um
ebene Bereiche innerhalb der Interessensgebiete zu detektieren. Die extrahierten Pixel dienen dann als Saat-
punkte eines Bereichswachstumsverfahrens, das mit Hilfe einer Kleinsten-Quadrate-Sch�atzung ebene Bereiche
selektiert. Dadurch wird die Bildober
�ache in Regionen unterteilt, die ebene Dach
�achen repr�asentieren. Die
Rekonstruktion zielt auf eine modellorientierte Repr�asentation der Geb�aude. Dazu werden zun�achst die zuvor
segmentierten 2D Bildbereiche in den 3D Objektraum projiziert, um dreidimensional bestimmte Dachpolygone
zu erhalten. Dies geschieht durch einen robustes Verfahren zur Parametersch�atzung, das im Rahmen dieser Ar-
beit entwickelt wurde. Anschlieend werden die topologischen Beziehungen zwischen den 3D Dachpolygonen bes-
timmt. Die Nachbarschaftsbeziehungen werden basierend auf Voronoi Diagrammen berechnet und beschreiben
die Nachbarschaftsbeziehungen zwischen den Grundelementen der Dachstruktur. Basierend auf den berechneten
Topologien werden zun�achst kompatible d.h. koplanare, benachbarte 3D Polygone zu gr�oeren ebenen 3D Dach-
polygonen vereinigt. Dar�uber hinaus werden Symmetrien bez�uglich benachbarter Polygone de�niert und als
Attribute f�ur die weitere Prozessierung gespeichert. Die resultierenden 3D Polygone mit ihren topologischen
Beziehungen und daraus abgeleiteten Attributen werden innerhalb des Programmpakets POLY-MODELER
zu einem ersten groben Geb�audemodells kombiniert. Dabei wird eine Randwertbeschreibung der vorl�au�gen
Geb�audehypothese durch die Verschneidung benachbarter Polygon
�achen generiert. Abschlieend wird ein ver-
feinertes Geb�audemodell im Rahmen der Hypothesenveri�kation in einem Top-Down Prozess generiert. Dabei
dient die grobe Geb�audehypothese zur Erzeugung von Vertrauenesintervallen im Bild, die einen Suchraum f�ur
korrespondierende 2D Bildelemente de�nieren und so die Ver�kation und Verbesserung der groben Geb�aude-
hypothese erm�oglichen. Die Modellparameter werden durch eine simultane Einpassung der geometrischen 3D
Modellprimitive an die 2D Bildprimitive bestimmt, wobei gleichzeitig die geometrische und topologische Mod-
ellinformation als externe und/oder interne Zwangsbedingung einbezogen wird.
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Abstract

In recent years, the �elds of photogrammetry and computer vision have naturally grown towards each other.
Computer vision seeks to develop algorithms for automatic extraction of information from imagery, while pho-
togrammetric routines force algorithms to obtain required information as precisely as possible. The con
uence
of these two disciplines promises to produce results much greater than the contributions of either �eld alone.
The present work is an attempt for integrating the contribution of both �elds for the collection of buildings from
complex scenes of aerial images. It is mainly concerned with introducing the new concepts and development
of robust methods in a hierarchical framework, for a data-driven reconstruction of generic plane-face building
objects through the integration of computer vision and digital photogrammetric techniques.

The proposed approach is based on the pragmatic assumption that building roofs are composed of generic plane-
surfaces, so that a plane-face solid model, commonly called polyhedral, can approximate a complex building and
is used to support the reconstruction process. In addition, there is a strong coupling between 2D image and
3D object space in order to achieve reliable and precise results. This is realized by a mutual design approach.
A boundary representation (b-rep) of a coarse building hypothesis is generated in a bottom-up, data-driven
approach from simple qualitative geometric primitives in image domain to more complex quantitative model
primitives in object domain. Subsequently, the hypothesis model veri�cation is performed in a top-down model-
driven process to determine a reliable and accurate geometric description of the 3D structure elements of a
reconstructed coarse building model.

Conceptually, the entire spectrum of this research work can be divided into three fundamental steps of recogni-
tion, reconstruction, and hypothesis veri�cation. Although this subdivision has no de�nitive boundaries, it does
provide a useful framework for categorizing and describing the various processes that are essential components of
an autonomous image analysis system. The recognition part starts with a coarse segmentation of DSM in order
to label areas (regions of interest)within aerial images, which have a high expectancy of representing individual
buildings. This process is based on a morphological top-hat transformation. Furthermore, geometric character-
istics of surfaces are used to extract 
at-pixel surface type within detected regions of interest. The extracted
pixels serve as the seed regions to a least squares planar �t region growing algorithm to partition the image
surface into meaningful plane-roof regional primitives. To move to the more model-oriented representation of the
buildings, which is carried out in the reconstruction part, the intermediate extracted 2D plane-roof regions are
projected back into the object space, called 3D plane-roof polygons. This is performed using a synthesis robust
parameter estimator technique developed in this thesis. In order to describe the interrelation between these 3D
geometric primitives, the Polygons Adjacency Relationships (PAR) is computed. The adjacency relationships
are de�ned based on Voronoi diagrams and describe the topological properties, in particular the neighborhood
relationships between the basic elements of the roof structure. Based on the computed PAR the compatible
adjacent 3D polygons are merged into the larger 3D plane-roof polygon and its symmetry with respect to their
adjacent polygons is also de�ned and stored as its attributes for further processes. These 3D primitives along
their adjacency relationships information and derived attributes are input to the POLY-MODELER, where they
are geometrically and/or topologically combined to generate the coarse building model. The POLY-MODELER
is a new model generator tool, which is originally developed in this study. It generates the boundary represen-
tation (b-rep) of a coarse hypothesis building model using the 3D intersection of adjacent polygons. Finally, the
modi�ed, highly accurate building model is generated in the hypothesis veri�cation process in a top-down fash-
ion. The reconstructed coarse building undergoes a re�nement process based on FBMV (Feature Based Model
Veri�cation) concept. Treating the generated coarse building hypothesis as evidence leads to a set of con�dence
intervals in image space that can be used as the search space to �nd the corresponding 2D image primitives and
performing a consistency veri�cation of the reconstructed coarse model. An important component of the FBMV
method is the ability to solve the model parameters by simultaneously �tting all the geometric primitives of
the 3D model into the corresponding 2D image features while at the same time the geometrical and topological
model information is imposed into the process as external and/or internal constraints.
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Chapter 1

Introduction

Man has always attempted to build machines that could make life somewhat easier or more pleasant. The speed
of this process has been ever accelerating since the beginning of the industrial revolution, and technological
development nowadays is moving faster than ever. The key issue in this progress is undoubtedly the computer,
which has found many applications in our contemporary lifestyle. This is so because it is an enormously e�cient
machine for managing data of all kind. Large memory carriers allow storage of hundreds of gigabytes of data, fast
processors can make millions of calculations with it and internet connections allow fast and low-cost transmission.
Computers certainly outperform humans at these tasks. However, they require that these tasks be unambiguously
de�ned. In other words, to perform a speci�c task by a computer, an algorithm must exist to tell it exactly
which operation is to be carried out at which level, without any possible confusion. This is where computers
di�er from living beings. They cannot think, guess or take responsibility for their action. They surely lack
intuition, i.e. the ability to decide which action to take in case of doubt. The latter properties which can be
attributed to living beings and not to computers can be described by intelligence, which enables us to interact
with our environment. Information is received from our environment by several receptors, e.g. the eye, the ear,
etc., and is led to the brain. The brain analyses and processes this information by matching it with previous
experiences and similar information stored in a vast array of quickly accessible knowledge (our memory), and
�nally decides what action to take to react to the received information. Therefore, a computer must have sensing
capabilities in order to enable it to interact promptly with its environment. Among these capabilities, vision has
long been recognized as the one with the highest potential to be built in into a computer environment because
of the availability, for quite some time now, of high-quality visual sensors that can easily be hooked up to the
computers (Faugeras 1996).

Computer vision has emerged over the years as the discipline to develop the theoretical and algorithmic basis
by which useful information about the world can be extracted and analyzed from the observed image(s), in
an automated manner. It is a collection of processes that, to a varying degree, model the functionality of the
human visual and cognitive system in order to exploit the speci�c or generic knowledge of the imaged object
or scene. The required information can be related to the recognition of a generic object, the three-dimensional
description of an unknown object, the position and the orientation of the observed object, or the measurement
of any spatial property of an object, such as the distance between two of its distinguished points. So far, current
computer vision approaches are limited to highly restricted scenes and to particular application domains, e.g.,
industrial settings where illumination conditions, the type of objects and camera positions are rigidly inhibited.
This is due to several reasons, �rstly the embedding of an object in a scene and the imaging process itself
may introduce many di�erent kinds of noise and distributions. Objects may be partially occluded by other
objects, the scene may have particularly high contrast, the sensor may be particularly noisy, and so forth. Thus,
computer vision is confronted with the problem of processing noisy measurements. This is a very serious problem
since this initial uncertainty must be tracked through all the subsequent processes that are built up within the
system in order to achieve the �nal result. Secondly, recovery of three-dimensional (3D) information about the
shape of objects is di�cult. This is due to the fact that this information is usually lost in the imaging process,
which creates a two-dimensional (2D) representation of the 3D world. This 2D image is related in a complex
way to the structure of the real world through the physics of image formation and its geometry. Therefore,
computer vision is faced with the inverse problem of recovering the lost dimension from the 2D images. Thirdly,
an automated vision system must be able to determine the appropriate transition from the more image-oriented,
qualitative representation of the object in the lower levels to the more abstract model-oriented, quantitative
representation of the object at the higher levels. A major problem in precise de�nition of the nature of this
mapping is the modeling aspect. The system must contain models of what we consider as objects. In fact, the
creation of de�nitive models is di�cult due to enormous variations in the geometric and functional descriptions
of the objects of interest. Therefore, the system has to be built up based upon the more complex generic object
model, which in turn increases the complexity of the problem in hand. In the past few years, researchers have
attempted to employ computers to perform some tasks within a certain margin of error that are considered to
require intelligence such as teaching the computer to speak, to recognize words in natural speech, or to play
football, which have lead to promising results.
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Complementary to computer vision that is more in the favor of automation for knowledge extraction, pho-
togrammetry supports high quality knowledge acquisition and precise and reliable 3D description of an 2D
object taking the power of geometry, in particular 3D geometry into account. This is because photogramme-
try is inherently a three-dimensional measurement technique and therefore in principle is able to meet the
requirements (Fritsch 1999). It is one of the fundamental technologies that is needed to combine and fuse in-
formation from more than one image, thus increasing the reliability of the information extraction process. This
is achieved because of the presence of automated camera calibration methods and orientation techniques that
have been the groundwork of photogrammetry for decades. However, the extraction of scene knowledge remained
largely a manual or, at best, a semi-automated process and requires a shift from the conventional techniques
of photogrammetry to ones that are more compatible with real time, and fully automated constraints that are
emphasized in computer vision.

In recent years, the �elds of photogrammetry and computer vision have naturally grown towards each other.
Computer vision seeks to develop the algorithms for automatic extraction of information while the photogram-
metric routines force the algorithms to obtain required information as precisely as possible. The con
uence
of these two disciplines promises to produce results much greater than the contributions of either �eld alone
(Strat 1994). The present work is an attempt for integrating the contribution of both �elds for acquisition of
GIS objects from complex scene of aerial images. This is realized by devoting a great deal of attention to 3D
geometry, as well as the problem of uncertain data. Even though geometry plays a crucial role in this process,
this geometry has to be built from noisy measurements, which requires special attention to the �eld of statistics
and the theory of estimation.

1.1 Needs for 3D Model of Landscape

Modeling and 3D description of real world objects collected through an imaging system has become a topic
of increasing importance as they are essential for a variety of applications. Namely telecommunication for
planning of wireless networks in cities (Siebe & B�uning 1997, Leberl, Walcher, Wilson & Gruber 1999), urban
environmental planning and design to support the decision making processes for development projects (Danahy
1999, Lange 1999), virtual tourist information systems to support the on-line positioning, access and queries
on the information of the site of interest (Volz & Klinec 1999), defense and military organization to support
the training operation in virtual environment, architectural design for the realistic visualization of the drawing,
environment and resource management, monitoring, and control for disaster preparedness, simulation of air
pollution and noise distribution, to mention only a few. This broad range of applications and activities poses
a number of issues and open questions that have to be discussed. It should be emphasized as well that 3D
reconstruction and the representation of the geometry and shape of the world objects are important issues,
their semantic information, administration and maintenance also need special attention. Although some e�orts
have been reported to clarify the common interests between the producers and users of this type of data (Fuchs,
G�ulch & F�orstner 1998), however, more detailed study and strong research need to be tackled in the following
themes:

1. Type of the objects e.g., buildings, roads, trees, etc., their geometric speci�cation such as level of details
and accuracy have to be de�ned for di�erent type of applications. Although in practice, these prerequisites
can largely mimic the conventions of traditional 2D maps and GIS, i.e., geometric accuracy requirements,
there are new aspects that have to be taken into account. For example, the level of details in a traditional
2D map is limited to the exterior of the object of interest, while working in a 3D space allows reconstructing
the interior of the object as well, therefore imposing novel extension to the acquisition of spatial data.

2. The geometrical modeling and visualization are the milestones of the �eld of virtual world model. Technical
issues in structuring the 3D data e.g., vector or raster data structure, topics in geometric modeling such as
boundary (e.g., b-rep), or volumetric (e.g., CSG) representation, which have a strong role in the domain
of computer graphics have to be discussed and to a large extent standardized. The shortage, bene�ts,
and e�ciency of di�erent solutions from algorithmic, methodological, and logistical points of view should
be elaborated in the framework of a true 3D world model in the local (block, district) and global (city,
regional) geographical extensions. For example, the 3D real-time representation of the cities (3D Urban
GIS), where the user can visit the places, the streets, and the interior of the buildings as a virtual tourist,
may require extensive visualization equipment (Gruber 1999). But its realization certainly depends on the
geometric shape description and surface representation of the city objects and has to be supported with
high quality texture mapped photo-realistic visualization.
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3. Management, maintenance, fast interaction, data exchange policy and interoperability of the extraordinary
large quantities of 3D data has to be investigated. If a system is designed to handle such data, including
geometry, aerial and terrestrial photo-texture, and additional semantic information, as well as di�erent
viewing capabilities, it has to be aware of manipulating the hundreds of gigabytes of data. This introduces
the new and interesting research challenges aiming to view the 3D data, zoom it, modify it, and query it
with the objectives in mind to solve the problem based on a smart data organization (Ko
er, Rehatschek
& Gruber 1996), instead of utilizing special hardware con�guration, in order to prevent the mobility
characteristics of such a system, and its accessibility via the standard home computers by placing the
reconstructed virtual models in the WWW home pages.

4. An important issue that has been neglected so far is the primary source of data. It is still an open question
of how, when, where and why the di�erent data sources fuse. In fact, a great variety of techniques and
methods have already been reported by researchers (Haala & Anders 1996, Haala & Anders 1997), to
convert various data sources such as satellite, aerial, or terrestrial images taken by optical (i.e. color
or BW intensity-based images), laser (i.e., pulse or continuous wave range data), or microwave (i.e.,
Interferometric SAR) imaging sensors, existing 2D GIS and DTM, into the useful entries for generating
the 3D spatial information system. However, the potentials, e�ciency, and applicability, as well as the
impact of any individual source material in this process need to be further evaluated. Moreover, the
important issues of time, cost and availability of such data should be taken into account.

5. As a matter of fact, there are still other important issues to be cited and discussed, e.g., the mechanisms
of data revision, but it would overload this introductory reading.

The discussion above reveals a strong motivation and evokes a challenging research e�ort for integration and
interaction between di�erent disciplines (photogrammetry, computer vision, computer graphics, database design
and administration, as well as computer networking), which are required for shaping and developing a true 3D
spatial information system. In fact, a possible way to decrease the problem complexity associated with such a
system is to restrict the problem statement to a certain application area. For this reason, this study is only
restricted to the domain of recognition and 3D reconstruction of building objects from stereo aerial images.
However, the individual components and the complete framework as a whole are designed {whenever possible{
with special attention and a careful study of the above mentioned requirements. For example, the process
of reconstruction is based on a generic polyhedral-like object model, thus it would be possible to integrate
acquisition of other world objects if they can be approximated by a polyhedral object model. The hypothesis
veri�cation process allows re�nement of the �nal object model with a dynamic range of geometrical accuracy
simply by tuning the thresholding parameters. In addition, the system conceptually is capable to alarm the cases
that a visual control or a manual modi�cation of the �nal result is required (tra�c light concept (F�orstner 1996)).
Moreover, the geometric modeling process is based on a b-rep model, thus the geometric primitives along their
topological information is kept which enables an easy transformation of the reconstructed objects into any
speci�c format required by the end user.

1.1.1 Building Objects are Prominent

Building objects are recognized to be the most prominent objects in a 3D Urban Information System (UIS).
'Virtual reality and three-dimensional visualization are on the verge of changing the practice of urban environ-
mental planning and design. Instead of presenting citizens with abstract maps and descriptive text to explain,
analyze and debate design ideas and urban processes, planners will be able to show people explicit photo-textured
information of what their city will look like after a proposed change . . . Photo-textured 3D models are easy for
people to understand quickly. They can recognize speci�c elements and orient their view in terms of spatial
position and scale. Unless people have had a lot of experience reading plans, the traditional products of planning
and GIS can be undecipherable or confusing to non-experts. This can leave people with the wrong impression
of a design's positive and negative aspects' (Danahy 1999, pp. 351{352). This quote is con�rmed by the result
of survey of the European Organization for Experimental Photogrammetric Research (OEEPE), on 3D city
model. 95 % of the participants has reported that buildings are the most interesting and important objects
in a 3D UIS (Fuchs et al. 1998). Consequently, a large number of research projects and e�orts have been
invested in the �eld of recognition, 3D reconstruction, and representation of building objects over the last
few years (Collins, Hanson, Riseman & Schultz 1995, Faugeras, Laveau & Robert 1995, F�orstner 1995, Gru-
ber, Pasko & Leberl 1995, Haala 1995, Kim & Mueller 1995, Lin, Huertas & Nevatia 1995, Weidner &
F�orstner 1995, Axelsson 1996, Bignone, Henricson, Fua & Stricker 1996, Henricson, Bignone, Willhuhn &
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Ade 1996, Weidner 1996, Englert 1997, Gruen & Dan 1997, Haala & Anders 1997, Hendrickx, Vandekerck-
hove, Frere, Moons & Gool 1997, Jaynes, Hanson & Riseman 1997, Kulschewski & Koch 1997, Nevatia, Lin
& Huertas 1997, Stilla, Geibel & Jurkiewicz 1997, Fritsch & Ameri 1998, Brenner & Haala 1998b, Fischer,
Kolbe, Lang, Cremers, F�orstner, Pl�umer & Steinhage 1998, G�ulch, M�uller, L�abe & Ragia 1998, Haala, Brenner
& Anders 1998, Ameri & Fritsch 1999, Baillard, Schmid, Zisserman & Fitzgibbon 1999, Brenner 1999, Fischer,
Kolbe & Lang 1999, F�orstner 1999, Gruen 1999, Haala 1999, Kulschewski & Koch 1999, Maas 1999, Nevatia,
Huertas & Kim 1999, Vosselman 1999, Ameri & Fritsch 2000).

The acquisition and 3D representation of building objects includes not only the detection of the buildings in
the scene depicted by one or more images, but also the production of a scene description. This is a complex
task consisting of di�erent processes such as recognition, feature extraction, feature's attributes computation,
grouping, structuring and geometric modeling, hypothesis generation, as well as hypothesis veri�cation, which
are assembled in a cautious manner. As a matter of fact, integration of all these processes in order to derive the
required 3D information from a complex scene image(s), in a traditional way, human-based image interpretation
system, would be a costly and labour intensive operation (Duperet, Eidenbenz & Holland 1997). The laborious
process of hand digitizing and interactively crafting each geometric model of buildings is too much time con-
suming. Therefore, there is an increasing demand towards fully machine-based image interpretation systems.
This is a di�cult task for several reasons:

1. The enormous variations in the structure and shape of the buildings prohibits using the speci�c object
models or a constrained model to support the scene interpolation. Even imposing too tight constraints on
the geometric regularity of the building structure, although it is an important component in architectural
design of buildings, prevents the detection of many structures that do not satisfy them perfectly. This
leads to selection of a generic object model, i.e., plane-face solid object model, in the expenses of increasing
the complexity of the problem at hand.

2. Occlusion of buildings or building-parts by themselves or with neighboring adjacent objects such as build-
ings, trees, or cars cause that recognition process fails to provide complete or at best su�cient information
for hypothesizing the major structure of the buildings. In fact, this problem can be partially overcome e.g.,
using the multiple images taken from di�erent view points, again in the expenses of increasing complexity
of the task and computational burden.

3. The e�ect of shadows, noise, low contrast, or small structures on the roof structure or presence of other
objects leads to extraction of additional or spurious data which are not relevant and cause ambiguities
or confusions in higher level processes of reconstruction and geometric modeling. This type of problems
can also be partially overcome utilizing other cues, e.g., 3D geometry, or to constrain the problem, e.g.,
minimum size threshold, in the expenses of disregarding some of the relevant data.

4. Recovery of 3D information about the shape of the buildings is di�cult. This is due to the fact that one
geometric dimension is lost in the imaging process. In other words, the 2D spatial sampling process carried
out by imaging sensor distorts the shape of the buildings in a non-reversible way. The homologous 2D
primitives of building structure are related to the structure of the real world buildings through a complex
relation based on the physics of image formation and its geometry. Therefore, the reconstruction process is
faced with the inverse problem of recovering the lost dimension from the 2D images. However, using stereo
image techniques, this relation can be established with a certain degree of precision using the well-known
theory of perspective geometry.

5. The detection of individual buildings in downtown areas, where the individual buildings are attached
and form the block of buildings, is an important issue in the particular application of automatic building
reconstruction. In fact, the human operator discriminates two adjacent but distinct buildings simply
based on the enclosure of the building contours. The current techniques for the detection of individual
building such as Mathematical Morphologic Operations (see section 4.4), or image classi�cation using
height information as a supporting source of data (Walter 1999), at best are only capable of detecting the
disjoint building objects. That means the fully automated reconstruction of buildings in densly built-up
areas is only feasible if the individual buildings are signalized by the interaction of a human operator,
or alternatively for the time being, utilizing the existing 2D GIS information such as ground plan of the
individual buildings (Haala & Brenner 1999, Brenner 1999).

In spite of current limitations mentioned above, techniques used in photogrammetry and computer vision are
now su�ciently developed and have resulted in sophisticated systems and led to promising result for acquisition
and reconstruction of GIS objects, in particular buildings (see appendix A).
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1.2 Objectives of the Thesis

This thesis addresses the problem of automatic detection and 3D reconstruction of buildings using aerial images.
It is mainly concerned with introducing the new concepts and development of robust methods in a hierarchical
framework, for a data-driven reconstruction of generic plane-face building objects through the integration of
computer vision and digital photogrammetric techniques. The term data-driven is used to indicate that the
process of recognition and reconstruction is performed without a priori knowledge about the building type or
its structure, and the term generic is used to emphasize the fact that this type of reconstruction is not based on
speci�c, user-de�ned building models, but rather on coarse, complex building models. It is designed to manage
buildings of di�erent shapes and complexities (exceptions are buildings with curve-like roof structure, such as
dome roof). Thus, most of the geometrical regularity constraints imposed in the low- and intermediate-level
reconstruction phases such as orthogonality, or parallelism, which are required in the speci�c model-based meth-
ods are not appropriate here. The proposed approach is only based on the pragmatic assumption that building
roofs are composed of generic plane-surfaces, so that a plane-face solid model, commonly called polyhedral can
approximate a complex building and is used to support the reconstruction process. In addition, there is a strong
coupling between 2D image and 3D object space in order to achieve reliable and precise results. This is realized
by a mutual design approach. A boundary representation (b-rep), of a coarse building hypothesis is generated in
a bottom-up, data-driven approach from simple qualitative geometric primitives in image domain to more com-
plex qualitative model primitives in object domain. Subsequently, the hypothesis model veri�cation is performed
in a top-down model-driven approach by back projecting the constructed model into the corresponding aerial
images. The veri�cation process is performed by simultaneously �tting the reconstructed model primitives into
the homologous 2D features in images taken from di�erent viewpoints while at the same time the geometrical
and topological model information is imposed into the process as external and/or internal constraints.

The next section presents an overview of the whole framework. It gives a summary on the interrelated processing

ow and concepts of our method for solving the task and the major contributions and achievement of this study.
The outlines and structure of the thesis conclude this chapter.

1.2.1 General Framework

Figure (1.1), schematically represents the work
ow of the subsequent processes and the interrelation between the
major components of the automated reconstruction method proposed in this thesis. The proposed components
form a general framework, in which in each step di�erent and more complex types of information are exploited.
Conceptually, the entire spectrum of our work can be divided into three fundamental steps of recognition, re-
construction, and hypothesis veri�cation. Although this subdivision has no de�nitive boundaries, it does provide
a useful framework for categorizing and describing the various processes that are essential components of an
autonomous image analysis system.

The recognition part starts with a coarse segmentation of DSM in order to label areas within aerial images,
which have a high expectancy of representing individual buildings. This process is based on a morphological
top-hat transformation,weidner:95. Furthermore, geometric characteristics of surfaces, the mean and Gaussian
curvatures are used to extract 
at-pixel surface type (Besl & Jain 1988). The extracted 4-connected 
at-pixels
serve as the seed regions to a least squares planar �t region growing algorithm to partition the image surface
into meaningful primitive plane-roof regions (Fritsch & Ameri 1998). To move to the more model-oriented rep-
resentation of the buildings, which is carried out in the reconstruction part. The intermediate extracted 2D
plane-roof regions are projected back into the object space, called 3D plane-roof polygons. The result is based
on a robust parameter estimator developed within this research study. Estimating the initial parameters of
the surface normal vector based on random sampling type estimators, Random Sample Consensus, RANSAC
(Fischler & Bolles 1981), or alternatively Least Median Squares, LMS (Rousseeuw & Leroy 1987), we proceed
with an iteratively re-weight M-estimator (Huber 1981, Hampel, Ronchetti, Rousseeuw & Stahel 1986). In order
to describe the interrelation between these 3D geometric primitives, the Polygon Adjacency Relationship (PAR)
is computed. The adjacency relationships are de�ned based on a Voronoi diagram (dual of Delaunay triangu-
lation). Polygons are considered adjacent only if their Voronoi regions touch. The Voronoi region computation
based on distance transformation in raster domain (Borgefors 1986), has extended in such a way that shape
and boundary of the polygons are also taken into account. In this manner, topological information such as
'contained-in' relationships are computed more e�ciently. Based on the PAR, the compatible adjacent 3D poly-
gons are merged into the larger 3D plane-roof polygon. These 3D elements along their adjacency relationships
information are input to the POLY-MODELER, where they are geometrically and/or topologically combined to
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Figure 1.1: Proposed setup for automatic recognition and 3D reconstruction of building objects

generate the generic coarse polyhedral-like building model. Note that in this study the provided object model is
generated in an image-driven, geometrically constrained process based on the intersection of adjacent 3D plane-
roof polygons. This is in contrast to the general approach that a speci�c user-de�ned model is introduced into
the system. Although, the speci�c models are attractive because of their ability to capture common symmetries
and represent certain shapes with few parameters and most importantly are simple to work with, obviously
they are inadequate for representing real-world objects that do not exhibit the set of regularities incorporated
into the primitives. Finally, the modi�ed, highly accurate building model is generated in the hypothesis veri�-
cation process in a top-down fashion. The reconstructed coarse building undergoes a re�nement process based
on FBMV (Feature Based Model Veri�cation) concept. Treating the generated coarse building hypothesis as
evidence leads to a set of con�dence intervals in image space that can be used as the search space to �nd
the corresponding 2D image primitives and performing a consistency veri�cation of the reconstructed coarse
model. Theoretically, in stereo image analysis systems, it is possible to solve the unknown parameters of the 3D
model from matches to the homologous 2D image features. However, in practice, the reliability and accuracy
of the parameter determination can be substantially improved by �tting the model into the images taken from
more than two viewpoints. The methods presented here can be used in either situation. The other important
component of the FBMV method is the ability to solve the model parameters by simultaneously �tting all the
geometric primitives of the 3D model into the corresponding 2D image features. This is important because it
allows the initial matches or the partial matches between the model primitives and the image features to force
the location of other structural elements of the model, thereby generating new matches that can be used to
verify or reject the initial estimated model parameters.

1.2.2 Achievements

The ultimate goal of this study was to develop a total solution for the automatic extraction and 3D reconstruction
of buildings using aerial images in order to ful�ll the requirements of a 3D spatial information system. This is
achieved through the extension of several existing concepts and developments reported by other researchers in
the �eld of computer vision or digital photogrammetry, as well as introducing novel, mathematically founded
concepts and methods, which are developed and implemented (as a prototype) in this study. In this regard,
one can classify the contributions of this thesis into two groups, minor and major contributions. The minor
contributions are those which are accomplished by extensions of existing methods and are itemized as follows:
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1. Development of a least squares planar �t region growing segmentation algorithm. This is the generalization
of the segmentation method introduced by Besl (1986).

2. Introducing a two-stage robust parameter estimation method, which is in fact the synthesis and extension
of the random sampling type estimators (Fischler & Bolles 1981, Rousseeuw & Leroy 1987), and the
M-estimator method proposed by Huber (1981).

3. Development of a new method for computation of adjacency relationships between disjoint objects, in
particular polygonal objects with di�erences in shapes and sizes. This is the extension of the point-wise
method originally proposed by Borgefors (1986) in 2D space and extended to 3D space by Chen et al.
(1994), and Pilouk et al. (1994).

a b c

Figure 1.2: Three di�erent building roof structures a) gable roof, b) hipped-gable roof, c) complex roof

The major contributions are those which are newly developed in this thesis and have strong roots in theory of
parameter estimation and 3D geometry, and are itemized as follows:

1. Introducing a new concept for geometric modeling of generic plane-face solid objects based on the 3D
intersection of adjacent polygonal primitives. The concept is implemented as a model generator tool
called POLY-MODELER.

2. Introducing a new concept called Feature Based Model Veri�cation (FBMV), for hypothesis validation
and modi�cation of polyhedral-like objects. The concept is implemented and applied for the veri�cation
of the coarse building hypotheses, generated by POLY-MODELER.

All the proposed methods and algorithms are implemented and the results and their performances are evaluated
utilizing real data, and are presented for the whole data set in appendix A. However, for convenience in following
up the subsequent processes within this thesis, three di�erent type of buildings, gable, hipped-gable, and complex
roof structures (see �gure 1.2), are selected from the residential scene of the international Avenches data set
(Mason, Baltsavias & Stallmann 1994), and are used through the di�erent chapters of this thesis.

1.3 Thesis Outline

A broad range of topics is covered in this thesis. An overview of the chapters is given in this section.

Chapter 1: an introduction to the problem statement, the motivation of this study and the proposed method
and strategy for solving the task.

Chapter 2: a survey covering broadly most previous works on 3D building reconstruction and related techniques
described in the literature, and explaining how they �t into the framework proposed in this study. In fact, this
is a background chapter and you may wish to skip it, if you are only interested to the development and the
contribution of this thesis.
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Chapter 3: shortly discusses the principle of the least squares criteria and its shortage to deal with data corrupted
by outliers. The concept, properties and general strategy of the major robust techniques for parameter estimation
are also reviewed. Finally, a robust parameter estimation method to handle expected outliers in the original
observations is developed and the required theory to apply it to the di�erent regression problems encountered
during an automated vision process such as 3D object reconstruction is discussed.

Chapter 4: all the low-level processes involved in the recognition part to extract the primary symbolic 2D
primitives are described in details. The main emphasis is given to the geometrical characteristics of digital
surfaces, extraction of regions of interest, and an iterative region-based segmentation algorithm.

Chapter 5: the subsequent mid-level processes for grouping, structuring and geometric modeling are discussed.
This includes the process of transferring intermediate 2D polygonal primitives into the 3D object space, compu-
tation of adjacency relationships and merging the compatible adjacent polygons. The second part of the chapter
is dedicated to the mathematical concept, notations and a detail discussion of how POLY-MODELER works.

Chapter 6: a brief discussion of the general framework of FBMV method and its internal work
ow is given
�rst. The subsequent sections look inside the method and give detail discussions on the fundamental concept of
FBMV, its formulation and its robustness. Evaluation of the proposed method, its performance and statistical
analysis of the result obtained by some experimental tests conclude this chapter.

Chapter 7: summarizes the contribution and draws our conclusions of this research work and indicates the
directions for future research.
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Chapter 2

Building Reconstruction in Literature

2.1 Introduction

Recent developments and research in the �elds of digital photogrammetry and computer vision for automat-
ing the measurement and the scene interpretation tasks have resulted in sophisticated methods, and led to
promising results for acquisition and reconstruction of GIS objects. Although a number of research e�orts on
the extraction of vegetation and forest boundaries are reported (Ebner, Eckstein, Heipke & Mayer 1999), major
research e�orts are currently put on the detection, extraction, and reconstruction of man-made objects such
as roads and buildings captured through passive or active sensors. The major challenge is the automation of
the interpretation process, which is usually carried out by operator in the conventional human-based vision
system. An automated object reconstruction process requires �rst an analysis or interpretation of the imagery
used, before extraction, structuring, and modeling processes can be performed. Looking at the techniques in the
�eld of digital photogrammetry and computer vision, which are already operational, mainly measuring process
of the known or salient points is realized, where no task of interpretation has to be solved. In contrary, the
extraction of GIS objects can be regarded as an interpretation problem, because of the variety and complexity
of the object of interest. Despite of all the progress that has been achieved in recent years, researchers have not
solved the complete automatic acquisition process so far, and there is no fully automatic acquisition system,
which could be used, in a wide range of applications. There are some systems that enable the user to acquire
buildings automatically, but they can be used only in speci�c areas of towns, e.g. suburban areas with negligible
occlusions and isolated buildings.

A wide range of approaches towards recognition and reconstruction of GIS objects is published in literature
(Gruen, Kuebler & Agouris 1995, Gruen, Baltsavias & Henricson 1997, F�orstner & Pl�umer 1997, F�orstner,
Liedtke & B�uckner 1999, Baltsavias, Eckstein, G�ulch, Hahn, Stallmann, Temp
i &Welch 1997, Ebner et al. 1999,
CVIU 1998). This chapter reviews some of the recent developments reported in the �eld of semi-automated and
automated 3D building reconstruction. The approaches vary a lot in the generality and degree of automation,
the used data sources, the geometric modeling techniques and the utilized strategy. Therefore, they can be
compared based upon di�erent aspects, and classi�ed based on di�erent criteria such as employed data sources
(single/multiple color/bw images, multi-spectral images, laser scanner data, 2D GIS, DSM), supporting object
model (speci�c, generic), amount of user interaction (semi-automated, automated), etc.

Several techniques are discussed from di�erent points of view, taking into consideration di�erent aspects, which
are in
uencing the chain and the result of the reconstruction process. The aim is to demonstrate diversity, and
variety of di�erent concepts and approaches, which are proposed and developed for the task of 3D building
reconstruction. The discussion is limited to an overview of the proposed acquisition systems, therefore the �ner
details of the algorithms used in reported applications are not treated here. However, papers describing speci�c
algorithms are cited in the chapters describing parts of the application utilizing similar algorithms, so readers
interested in literature describing these algorithms are able to �nd it there.

Di�erent aspects and criteria, which are in
uencing the chain and the outcome of the process of recognition
and 3D reconstruction of building objects, are discussed in the next section. Some of the methods reported on
building reconstruction are picked up from literature and compared in the reminder of this chapter. The main
emphasis lies on semi-automated (section 2.3), and automated (section 2.4) approaches.

2.2 Theme in Building Reconstruction

Object reconstruction, in particular buildings, consists of several steps depending on the application, level of
required details, primary data sources and cues, methodology used, level of automation and interaction, etc.
It mainly consists of detection and features extraction, structuring and grouping, geometric modeling and
reconstruction, hypothesis veri�cation, and semantic attribution. All these elements have an impact on the
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process of reconstruction and its performance, and yield di�erent types and accuracy of output data. These
features can be grouped under several aspects, which are discussed in the following.

2.2.1 Primary Data Sources and Cues

The range of the data, which are used for acquisition and 3D reconstruction of building objects is very large.
There is aerial or close range imagery with single, stereo, or multiple image frames. The images are in b/w
or color, however multispectral images are also available which are rarely used in reconstruction but often for
classi�cation or detection. In addition, there are supporting cues such as DTM/DSM derived directly from
laser scanning data or photogrammetric techniques, scanned maps or existing 2D GIS data, beside additional
information and knowledge such as position of the sun, time of primary data acquisition, texture, shadows, and
re
ection properties. The reported algorithms for acquisition of building objects use mainly one or a combination
of the above data sources. In fact, depending on the type of basic data, the utilized methods vary. Recently, there
is a strong trend towards information fusion and introducing the external and/or a priori knowledge derived
from problem domain i.e. 3D geometric constraints, into the acquisition process.

In (Lin et al. 1995) a system is described for detection and describing the buildings from the monocular views
of arbitrary aerial scenes. The system uses a perceptual grouping approach (Huertas & Nevatia 1988, Mohan
& Nevatia 1989, Huertas, Lin & Nevatia 1993, Collins et al. 1995) to generate the roof hypotheses based upon
very speci�c geometric properties of the building structures, which restrict the shapes of buildings to be a single
or composition of rectangular parallelepipeds. The selected hypotheses undergo a validation process based on
the shadow (Huertas et al. 1993, Irvin & McKeown 1989, Oddo 1992), and wall veri�cation process (Wang
& Schenk 1992). A hypothesis could be validated by either shadow and/or wall evidence, which provide 3D
information to the system for creating the 3D model of the building structure. Weidner (1995) reported a
di�erent approach still using single DSM cue for acquisition of building objects directly in 3D object space. This
approach consists of two main steps. In the �rst step, building detection is performed based on the grayscale
morphological operation (see section 4.4), followed by a reconstruction process where a building model is �tted
to the underlying height data. Mass and Vosselman (1999) also reported two methods for extraction of building
models from a single high-resolution DSM cue (5 to 10 points per 1 m2) obtained directly by raw laser scanner
data. These methods have the advantage of working on 3D data, which are easier to analyze with respect
to buildings, but of course have much less resolution in the ground plane than comparable aerial images.
Kulschewski and Koch (1999) reported a method for building recognition based on a dynamic Bayesian network
in a single aerial image. The image features, faces of walls and roofs are detected in a face adjacency graph and
aggregate to buildings. The Bayesian network is used in order to deal with decisions under uncertainties (Brunn
& Weidner 1997, Nevatia et al. 1999).

In order to do object reconstruction, especially buildings, we are interested in 3D information, which can
be provided using stereo/multiple frame images. Reconstruction based on geometry of multi frame images is
helpful in providing redundant information and improving the reliability of the reconstruction and thus are
needed for very accurate measurements (see chapter 6), as well as for identifying occluded areas, or the process
of hypothesis veri�cation (Fua & Hanson 1988, Mohan & Nevatia 1989, Ameri 2000). Seen in this light, Nevatia
et al. (1999) extended their pervious work utilizing multiple view images both in hypotheses generation and
veri�cation process. In (McKeown & McGlone 1993) authors describe a method which uses area and feature
based matching techniques in 2D images and fuses the result in 3D object space. Wang and Schenk (1992)
introduce a feature based matching technique for interpolation and analysis of urban areas using a 2D edge
matching algorithm which generally works on the geometric attributes of the edge such as orientation, length,
or extend of overlap (Zong, Li & Schenk 1992, Collins et al. 1995). There are also increasing research e�orts in
the �eld of stereo matching performing directly in 3D object space (Haala 1995, Bignone et al. 1996, Baillard
et al. 1999), where the matching is performed based on the 2D description of symbolic image features (Brunn,
Lang & F�orstner 1996), or the multi-view geometry and photometric similarity of the image features e.g., 2D
edges (Schmid & Zisserman 1997) over all the images. O'Neill and Denos (1992) describe a couple of problems
encountered with stereo matching, such as discontinuities, and shadows.

It is important for the process of reconstruction of buildings to reduce the vast amount of information provided
by primary data sources. At the detection level, cues like color and DSM data have proven to be particularly
valuable for this task. Most of the proposed methods for building reconstruction focus on region of interest to
reduce the search space and to guide the reconstruction process. These cues are used to separate in a �rst step
the man-made structures from the natural ones and then to distinguish building objects from other man-made
objects, like roads, bridges, etc. Good success has been reported in the area with isolated buildings (Baltsavias,
Mason & Stallmann 1995, Weidner & F�orstner 1995, Eckstein & Munkelt 1995, Henricson et al. 1996, Fritsch &
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Ameri 1998), however, dense built-up areas still widely resist this approach.Working on DSM derived by airborne
laser scanner is reliable and directly supplies 3D coordinates about the surface and is even able to distinguish
between the tree canopy and the surface beneath. Laser scanning data is very precise in height but of course has
less resolution in the ground plane than comparable aerial images, but yields a higher density of height data.
To overcome this problem, there are techniques, which integrate range data from laser scanners and the result
from image analysis (Haala 1995). In (Haala 1996) a DSM is used to detect building areas. Instead of applying
grayscale morphology he uses height isolines to segment the DSM. The size and the compactness of the segments
are computed and those regions, which have building-like attributes are selected for the reconstruction step.
Then a stereo matching on straight lines extracted in the image pair is performed, using the height information as
approximate values. Taking into consideration that the major ridgeline of the roof structure is mostly elongated
in the maximum extension of the building, a building model is �tted to the candidate 3D edges. Lemmens et al.
(1997) work on building detection in irregularly distributed laser scanner data sets. He also applies a threshold,
which in contrast to previously mentioned methods takes the sensor model of the laser scanner into account.
The advantage of this approach is that the sensor characteristics are explicitly modeled and that the original
distance measurements are used (Maas 1999).

In the last years there have been a number of research e�orts to integrate the background knowledge such as
2D GIS, or existing map data into the process of building acquisition, in particular in detection level. These
data can be used very e�ciently in those regions in which inherent objects have been acquired already some
time before. First the known 2D ground plan extracted from GIS data (Haala & Anders 1997), or derived
from scanned map (Nebiker & Carosio 1995) are interpreted and projected into the data set. The projected
boundaries of the building in DSM (Nebiker & Carosio 1995, Brenner & Haala 1998b, Haala & Brenner 1999),
or aerial images (Axelsson 1997) are used as a starting point for 3D reconstruction of building objects.

Due to the complementary properties of di�erent data sources such as DSM, 2D ground plan, and image data,
the methods work on data fusion leading to an e�cient procedure and appearing comparably straightforward.
This is because they naturally require much less model knowledge to solve the problem, and the weaknesses
of the individual data set or cue are compensated by the others. Many of the approaches discussed above are
already working along these lines, wherever such data, external knowledge, etc. is available.

2.2.2 Supporting Object Model: Speci�c vs. Generic

The selection of the optimal building model is an essential step for building acquisition, and has to be made
before the acquisition step in order to guide the acquisition process. In fact, the goal of the reconstruction
process is the determination of the geometric properties and the topological relations between parts of the
object, thus requiring as prerequisite some sort of object model (Braun, Kolbe, Lang, Schickler, Steinhage,
Kremers, F�orstner & Pl�ummer 1995). To improve the geometric resolution of the utilized model, the number
of free structural elements and the number of free parameters have to be increased. Complex models ensure a
better �t to real buildings because in real world they vary a lot. However, in small-scale application sometimes
a low resolution is favorable. In these cases a generalization process can be performed. Of course, the intended
resolution has to be chosen with respect to resolution of the data.

The work on building reconstruction reveals essentially two di�erent basic modeling schemes for the description
of the building object, parametric and generic models. In the case of the parametric object model, the type and
relations between model primitives are �xed but their geometry is unknown. This type of model is usually realized
in a database of prede�ned building types, or simple volumetric building primitives which are matched with the
corresponding features in images or cues such as a DSM to estimate the correct geometry of the model primitives
and reconstruct the building instance. In the case of the generic object model, the numbers of model primitives
as well as their geometry and topological relations are unknowns. This type of model allows for variation in the
structure of the object model, thus they need a mechanism of specifying the internal structure of the object
based on a set of geometric parameters that is not �xed in number. The buildings are reconstructed by geometric
grouping of extracted image features. Thus its quality and the degree of completeness depends heavily on the
result of the feature extraction process, which deals in most cases with the extraction of the contour lines and/or
the homogeneous surfaces of the buildings in the scene. Whereas the former approaches yield both geometric and
to a certain extent semantic information of 3D buildings, their �xed number of prede�ned buildings, or building
parts limits their application. Indeed the practical use of parameterized models depends on the capacity of the
assembled building types. Urban scenes show irregular man-made structures and very complex combination
of buildings and building parts. These buildings and building formations cannot be modeled with this type
of models. In contrast, the generic model of the latter approaches allows the representation of the arbitrarily
shaped buildings, but provide no object speci�c interpretation of the reconstructed building. The major problem
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of generic models is that buildings can only be reconstructed completely, if the feature extraction process detects
all the signi�cant primitives of the building structure. As it does not take into account any a priori knowledge
about the building, thus, there is no prediction about the missing or occluded parts of the building. To circumvent
such conditions multiple images taken from di�erent viewpoints for hypothesis generation, or veri�cation process
can be used (Faugeras et al. 1995, Henricson et al. 1996, Fischer et al. 1998, Hendrickx et al. 1997, Baillard
et al. 1999, Ameri 2000).

As it discussed above, the type of modeling used to express the building objects in the scene limits the class of
buildings to be recognized. In (Fua & Hanson 1988, Huertas & Nevatia 1988, Irvin & McKeown 1989, Mohan
& Nevatia 1989, Price & Huertas 1992, Shufelt & McKeown 1993, Nevatia et al. 1997) building objects are
modeled as rectangular shaped blocks with vertical walls. This approach is extended to 
at-roof arbitrary
shaped prismatic model (Shi, Shibasaki & Murai 1997, Weidner 1996), and non-
at roof parametric model
(Mueller & Olson 1993, Haala 1995, Spreeuwers, Schutte & Houkes 1997, Maas 1999). A disadvantage with
these ways of modeling is that it is very di�cult to recover the correct structure of the buildings, which have
complex structures. This is due to the limited number of prede�ned building types, thus only buildings which
are explicitly stored in the database can be reconstructed.

To model complex buildings a generic object model is required. This type of model can be realized either in
the form of constructive solid geometry (CSG) model, or in the form of a boundary representation (b-rep). The
CSG model is an aggregation of a set of parameterized volumetric primitives along with given relation rules
which could be a Boolean operation such as intersection, union, or subtraction (Englert 1997). The parameterized
volumetric primitives are building models with �xed topology and variable size. Modeling buildings by volumetric
primitives has several particular advantages. First, as every building type is explicitly modeled, their di�erent
forms of appearance can be derived a priori. Second, even partially occluded buildings can be fully reconstructed.
However, the identi�cation of an instance of a volumetric primitive in the scene required a priori knowledge, or
a hint by the operator. The other shortage is the lack of 
exibility with respect to di�erent building shapes, in
particular when there are irregularities in building structure. Parameterized volumetric primitives are employed
by, among others (Lang & F�orstner 1996, Jaynes et al. 1997, Brenner & Haala 1998b, Haala & Brenner 1999,
G�ulch, M�uller & L�abe 1999).

Polyhedral models in the form of a b-rep have shown to be adequate and most 
exible supportive generic object
model for building reconstruction (Henricson et al. 1996, Hendrickx et al. 1997, Ameri & Fritsch 1999). There is
no restriction on the form of the building, except the planarity of the surfaces. Obviously this is a quite general
model, just excluding curved surfaces, thus allowing various roof structures for representing arbitrarily shaped
buildings.

As it mentioned above, the reconstruction methods based on the generic building models are heavily dependent
on the low-level geometric primitives extracted from the scenes. As these are so far very hard to derive from
the complex scenes such as aerial images, detection and extraction of image feature is regarded as a bottleneck
for object reconstruction.

2.2.3 Methodology

The discussion on methodologies applied in building acquisition is categorized into the three topics of work 
ow,
feature extraction, and structuring and grouping. This is due to the fact that each unit has a signi�cant impact
on the �nal methodology used to solve the problem.

Work 
ow: From a work 
ow point of view, there exist two basic approaches, bottom-up, and top-down pro-
cesses. Bottom-up process is a data-driven strategy, which extracts in a �rst step image primitives such as points,
edges, and/or homogeneous regions, groups them to higher level entities and through the process of hypothesis
generation, builds up the complete object. The main problem here is the instability of the segmentation process
at the lowest level, which is mostly caused by the presence of the noise in the input data, and the ambiguity
of higher level process of grouping, which is normally controlled using domain speci�c knowledge. Man-made
objects such as buildings represent structures that are not random but have speci�c geometric properties. Those
properties can be used to organize the extracted features or image primitives into roof and building hypotheses.
There exists a multitude of techniques that take advantage of di�erent kinds of knowledge about the object in
order to generate building hypotheses such as probabilistic relaxation (Heuser & Liedtke 1990), Bayesian rea-
soning (Kulschewski & Koch 1999, Brunn & Weidner 1997, Nevatia et al. 1999), constraint satisfaction networks
(Mohan & Nevatia 1989, Price & Huertas 1992), geometric (Wiman & Axelsson 1996, Hendrickx et al. 1997),
and semantic reasoning (Lang 1999).
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The top-down approach is model-driven and usually starts with extracting features, followed by matching them
to a library of stored objects (Jaynes et al. 1997, Stilla et al. 1997, Spreeuwers et al. 1997). Various geometric
constraints help to reduce the search space thus keeping the combinatorial explosion of searching under control.
Essential to this technology is the object model itself, which is often used in explicit form. The object data
structure inferred from the image(s) is matched to the model structure. While this concept has a certain
justi�cation in robotics and navigation, where the environment might be of reduced complexity, we encounter
some problems where it comes to recognizing objects with complex shapes in outdoor scenes. Even rather simple
structures, such as buildings, come in such a variety of di�erent sizes and shapes that it is a fruitless attempt
to precisely describe and store all of them in a model library (Schenk 1993).

In more recent approaches of building extraction we see elements of both strategies used together in an in-
terrelated manner (Henricson et al. 1996, Gruen et al. 1997, Fischer et al. 1999, Ameri & Fritsch 1999). This
seems to be the right way to approach the problem. Following this approach, �rst hypotheses are generated
about the existence of objects in the scene. These are later veri�ed with a robust veri�cation mechanism (Fua
& Hanson 1988, Lowe 1991, Zhang, Sullivan & Baker 1992, Ameri 2000).

Feature extraction: The process of object acquisition or reconstruction is usually initialized by the detection
of the object of interest e.g., building, in the scene. This is performed by a coarse segmentation or classi�cation
of the scene to the regions, which have the potential of being an object of interest. In fact this is an application-
dependent scene interpretation process (Schenk 1993), where the problem-domain knowledge is used to reduce
the dimensionality of the search space, and thus the amount of the raw data which has to be analyzed. This is
in contrary to the general domain-independent scene interpretation system (Brooks 1981), where the reasoning
engine is independent of the scene type studied. The detection process and extraction of geometric primitives
are technically di�erent in 2D intensity images, and in 3D cues such as a DSM. Detection of buildings can rely
on simple attributes that distinguish buildings from non-buildings. In DSM this might be the relative height
and the size of regions with heights larger than the surrounding (Haala 1995, Baltsavias et al. 1995, Weidner &
F�orstner 1995, Eckstein & Munkelt 1995, Henricson et al. 1996, Fritsch & Ameri 1998). In images the situation
is much more complicated due to the loss of the third dimension. In fact the extraction of relevant low level
image primitives from a complex scene such as an aerial image is a complex procedure and its complexity is
increased with a decrease in the dimension of the image primitives (see section 4.2). This operation is usually
regarded as a bottleneck process in automated building acquisition systems due to several reasons. Low contrast
between the roof and the surrounding area causes the low-level segmentation to be fragmented. In addition cars
and neighboring trees cause further fragments and noisy borders.

Several methods have been reported which extract di�erent image primitives to initiate the reconstruction of
building objects in the scene. There are approaches which extract corner points with long neighboring image
edges for 3D reconstruction of corners of buildings (Lang 1999), the methods which use image edges directly
to setup building hypotheses (Collins et al. 1995, Nevatia et al. 1999), or those methods which �rst extract
3D edges from the images to group them to the planar patches of the building roof structure (Henricson
et al. 1996, Hendrickx et al. 1997, Baillard et al. 1999), or the methods which directly extract the planar
polygons (Ameri & Fritsch 1999, Fradkin, Roux & Maitre 1999), and the one which use the combination of
points and edges primitives (Jaynes et al. 1997), as well as regions (Fischer et al. 1999).

Structuring and grouping: Structuring and grouping of the data is another di�cult part of a 3D building
reconstruction process, in particular when a generic model is used. Structuring essentially is setting up the
neighborhood relations, e.g., the topology between the di�erent parts of a building, organizing and representing
them in a suitable form in order to generate building hypotheses or an image model being the projection of the
building model.

Instantiating the building models by extracting distinct features from single image and grouping them on
the sole basis of 2D geometry (Huertas & Nevatia 1988, Price & Huertas 1992) is bound to be combinatorially
explosive since the 2D geometry alone does not su�ciently constrain the 3D reconstruction problem. In addition,
derivation of 3D structures of the object from one image is not unique, as an image is a 2D projection of the 3D
real world object and it therefore contains only a part of the object information. Therefore, it is necessary to
incorporate information from other sources of data e.g., DSM, or using multiple or at least two images (Fua &
Hanson 1988, Mohan & Nevatia 1989, Nevatia et al. 1999). In recent years, the use of 3D information has emerged
as a powerful means to disambiguate complex scenes, since the expressiveness of 3D data is higher that that of
2D data. A strategy being traced by many researchers is an early transition from 2D to 3D in the reconstruction
process, this way reducing the overall number of future hypotheses. This is done by extracting meaningful
features in the image, which have correspondences to building primitives, such as 2D points corresponding to
3D building corners (Fischer et al. 1998, Faugeras et al. 1995), 2D edges correspond to 3D edge structure of the
building (Haala 1995, Baillard et al. 1999, Bignone et al. 1996), or 2D planar regions correspond to 3D planar-
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patches of roof structure (Fradkin et al. 1999, Ameri & Fritsch 1999). The extracted 2D features are transferred
to 3D objects using 3D stereo matching techniques, or are based on the approximate terrain surface model, thus
the geometric modeling and structuring consistently is performed in 3D, imposing the 3D geometry constraints
derived from problem-speci�c knowledge (Henricson et al. 1996, Jaynes et al. 1997, Haala et al. 1998, Ameri &
Fritsch 1999, Baillard et al. 1999, Fischer et al. 1999). Note that mutual interaction of 2D and 3D processes is
required at all levels of reconstruction in particular the structuring phase. Whenever 3D features are incomplete
or entirely missing, additional 2D information should be used to infer the missing features and structures.

2.3 Semi-Automated Methods

It is discussed above that the 3D building reconstruction consists of several processes mainly detection, extraction
of distinct feature, structuring, and geometric modeling. The concept of the semi-automatic approach is that
the operator performs the interpretation, while the measuring tasks are performed by the system as far as
possible. Interpretation can be regarded as detection and/or structuring, which usually takes place in one single
image/cue. The automatic measurement then may use multiple images for feature extraction and geometric
reconstruction depending on the utilized methodology. Actually, the goal is to increase performance of purely
operator driven systems by inclusion of automatic techniques and assisting the operator from doing structured
measurements. The semi-automatic method aims at taking the advantage of both, the operator's skills to
interpret the data and controls the acquisition process, and the machine's skill to e�ciently handle large amount
of data and accelerate the measurement process, thus, achieving higher productivity in acquisition.

Semi-automatic systems can make intensive use of automated procedures. For example, automatic extraction of
geometric features, e.g., 2D corner points or edge segments, assist the operator to do the measurement right in
the extracted primitives, thus reducing the operator's task to pointing at the correct image features or to provide
accurate enough approximate values. Automatic stereo matching techniques enable automatic measurement of
heights for the extracted 2D features by �nding corresponding features in two or more images. Automated
matching of model primitives to their homologous features in the image(s) allows automatic determination of
model parameters, to mention a few.

Several systems have been developed in the last years. Three systems, among others, are selected and discussed
in this section, which are operational and productive. The selected systems are presented and reported in several
publications, while this section only refers to the recent publication.

CC-Modeler (Gruen 1999): CC-Modeler is a semi-automated 3D object reconstruction system. The feature
identi�cation and measurement of the 3D point clouds is implemented in a manual mode, on an analytical plotter
or a digital station. During the data acquisition, 3D points belonging to a single object should be coded into
two di�erent types according to their functionality and structure, boundary or interior points. Boundary points
must be measured in a particular order, either clockwise or counter-clockwise. Interior points can be measured
in an arbitrary sequence. Since the human operator is responsible for the interpretation and measurement, it is
possible to acquire any level of object details for buildings, roads, waterways, and other objects, which may be
approximated by a polyhedral model. The next step is �tting planar structures to the measured sets of point
clouds. A Consistent Labeling algorithm implements this by probability relaxation operations. As the results of
Consistent Labeling, CC-Modeler delivers the face de�nition for every face. Then, a least squares adjustment
is performed for all faces simultaneously, �tting the individual faces in an optimal way to the measured points
and considering the fact that individual points may be member of more than one face. This adjustment is
amended by observation equations, which model orthogonality constraints of pairs of straight lines. Finally,
a vector description of 3D objects is obtained. Although the procedure of geometric modeling is automated,
human intervention and interaction with the automatic procedures is also available. The CC-Modeler has been
tested successfully in several projects.

ObEx (G�ulch et al. 1999): The reported system works on the principle of constructive solid geometry (CSG)
for the modeling of complex buildings, the operator guidance, the assistance of automated modules to perform
a certain number of measurement tasks, and utilizing multiple images. Within this approach buildings are
reconstructed by combining a series of 3D volumetric primitives until the complete building has been modeled.
In addition, for reasons of e�ciency three di�erent parameterized building models are stored in the system as
well. The task of the operator is to choose a primitive which will be projected as a wire-frame model into the
focussed building in a single image, and adjust the parameter of the model. The adoption of the model parameters
can be done in three di�erent ways, 1) a purely manual adoption based on a series of point measurements, 2)
a guided adoption using a priori extracted image edges, and 3) an automated adoption based on the automatic
correlation and matching techniques. The operator is, however, at all stages in the position to interact and
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perform a purely manual �tting of the models. The method has been tested in several projects. It works very
well in suburban areas and moderate building roof structure, however, for modeling very complex buildings
in downtown areas, with many small details, some unsolved problems are reported which are mostly inherited
due to the limitation of CSG modeling to describe the geometrical structures in details. In fact, they fail to
represent the irregularities in the building structure, which are nowadays increasing due to the new styles being
developed or invented.

Ifp method (Haala & Brenner 1999): This system uses a high resolution DSM, mostly derived directly
by laser scanning, and 2D ground plans as basic data sources. Since there is not necessarily any interaction
during the reconstruction process, this method can be categorized as an automated system as well. However,
as the process uses the digital 2D ground plans, which is acquired or digitized manually, there are limits to
be overcome by semi-automated editing. The method also follows the CSG modeling paradigm, a complex
building is reconstructed by combining its basic units (parameterized volumetric primitives). The process starts
by decomposing the polygonal ground plan of the building into the 2D rectangle primitives. Each 2D primitive is
the footprint of a corresponding 3D primitive. The location, orientation and the size of the 2D primitive applies
for the 3D primitive as well. The remaining parameters of the roof structure such as roof type and its slope, as
well as height of the building are determined in a least squares estimation process, which �t the model to the
underlying DSM. When several models are suitable, the one with the smallest residual is selected. In order to
provide a visual control on the reconstructed building and to allow the manual re�nement and modi�cation of
the building models an e�cient editing tool is also implemented. The system has been successfully tested on a
number of large projects, and achievement of very high reconstruction rate is reported.

2.4 Automated Methods

Automatic techniques for building extraction have evolved rapidly in the last years. They show great potential
for 3D reconstruction of building objects. Moreover, due to the higher amount of data required for 3D data
acquisition and the need for generating topologically consistent description of the object, they appear to be the
only way to satisfy the needs of the users (F�orstner 1999). However, up to now they are not reliable enough to
be used in practice. They are mostly in experimental level and new development is on the way. The reported
techniques vary depending on e.g., feature segmentation and grouping, or geometric modeling either in 2D or
3D, and have been mainly applied to suburban areas with isolated buildings without or little vegetation in their
vicinity.

Two systems, among others, are selected and discussed in this section. The selected systems are also presented
and reported in several publications, but in this section only the recent publication is referred to.

ARUBA (Henricson 1998): ARUBA utilizes multiple color aerial images, and a generic polyhedral models
to support the reconstruction process. The process starts with extraction of regions of interest by detecting the
elevation blobs from the DSM and combining this information with color analysis. The fact that each region of
interest may include only one building simpli�es the automatic reconstruction to a large extent. The general
assumption is that a complete roof consists of a set of planar parts, which mutually adjoin along their boundary.
In a �rst step, straight 2D edges from one image are matched to the corresponding edges in other images, thus
producing 3D edges, which are then grouped to plane hypotheses. The object boundary of each plane hypothesis
is then found by extracting 2D enclosures employing a new grouping technique, which is based on similarity in
proximity, orientation, and photometric and chromatic region attributes. The most evident and consistent set of
planar roof hypotheses is �nally selected based on simple geometric criteria. Vertical walls are added afterwards
by projecting the eaves of the roof down to the underling DTM. The �nal result is a complete CAD model of
the roof and its vertical walls, including their topological relations.

Bonn method (Fischer et al. 1999): This method uses multiple aerial images and a CSG modeling scheme,
where the primitives are building parts, representing either end parts of basic buildings or connecting parts
between pairs of basic buildings. The process starts with extraction of 2D image features such as points, edges,
and regions. The extraction process leads to the 3D reconstruction of corner points, which are promising features
for generating building part hypotheses. Building parts are classi�ed by their roof type. A strongly model-
driven aggregation combines 3D local building parts to more complex 3D building aggregates. The resulting
3D building hypotheses and their components are projected into the images to allow a component-based and
robust hypothesis veri�cation applying constraint-solving techniques.
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Chapter 3

Robust Parameter Estimation

3.1 Introduction

Given a mass of qualitative observations, e.g. grey value pixels which are normally ordered in a digital image
format, an automated image interpretation system intends to summarize and describe the data by a series of
quantitative geometric primitives or an instantiation of an appropriate model. The basic approach of estimating
the model parameters is usually the same. A cost or merit function that measures the agreement between
the observations and the hypothesis model is de�ned. The cost function is conventionally arranged so that
small values represent close agreement. Accordingly, the parameters of the model are adjusted and estimated
in order to achieve a minimum cost, thus yielding best-�t parameters, in other words solving an optimization
problem. There are also other important issues in this process that go beyond the problem of �nding best-�t
parameters. In fact, observations are generally not exact and they are subject to measurement errors which in
the context of computer vision are called noise. Thus, they never exactly �t to the model, even when the model
is correct. Therefore, tools to assess whether or not the model is appropriate, to measure the quality of the �t,
and to estimate the accuracy of the derived parameters are required. In addition, it is often the case that the
cost function has many local minima, whereas the best result of the optimization is obtained when the global
minimum is found among the many local minima.

Traditionally, standard least squares (LS) framework has been used for regression analysis or model �tting. In
fact, it is the basis for many estimation procedures which attempt to minimize the cost of the errors in the
estimate (Mikhail 1976). Although LS criteria may be optimal and reliable if underlying noise in the original
measurement can be modeled as a Gaussian distribution, it is not optimal for other type of noise distribution.
If the noise distribution includes outliers, the distribution is heavy-tailed and LS criteria can lead to very
poor estimators (Fischler & Bolles 1981, Rousseeuw & Leroy 1987, Schunck 1990). In such circumstances,
utilization of a robust parameter estimation method is esential. There are classes of computations in the �eld
of robust statistics that have been designed to handle outliers (Huber 1981, Hampel et al. 1986, Rousseeuw
& Leroy 1987, F�orstner 1987). These methods are currently gaining popularity in the �eld of computer vision
and have been applied in the number of vision procedure (Bolles & Fischler 1981, Haralick & Joo 1988, Lee,
Haralick & Zhuang 1989, Sester & F�orstner 1989, Kumar & Hanson 1990, Sinha & Schunck 1989, Schickler
1992, Axelsson 1996, Torr & Zisserman 1997, G�ulch et al. 1998). The main contribution of this chapter is to
design a { or to extend the existing { robust parameter estimation to handle expected outliers in the original
observations and develop the required theory to apply it to the di�erent regression problems encountered during
an automated vision process such as 3D object reconstruction. In particular in this study the proposed method
is used to transfer extracted 2D plane-roof polygons in image space into the 3D plane-roof polygons in object
space by �tting the 2D primitives over the existing DSM. This process is elaborated in more detail in section
(3.4).

The next section shortly discusses the principle of the least squares criteria and its shortage to deal with data
corrupted by outliers. The concept, properties and general strategy of the major robust techniques for parameter
estimation is discussed in the subsequent section. Finally, a synthesis, two-stage robust parameter estimator
developed based on a random sampling type estimator (Fischler & Bolles 1981, Rousseeuw & Leroy 1987)
complemented by the robust estimation technique M-estimator proposed by (Huber 1981) is introduced. The
ability to couple these robust techniques enables us to arrive at an empirically optimal, and statistically satisfying
method. The technique used and conclusions drawn have applicability to the broad range of computer vision
problems troubled by outliers.

3.2 Least Squares Principles

Computer vision algorithms generate interpretations of the observed data. These algorithms are typically cast
in terms of the minimization of an appropriate cost function, and in many cases this cost function is the sum of
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squares of a set of residuals, the least squares solution. This is usually for the reason that LS is the maximum
likelihood estimator when the observation error is Gaussian. Consider �tting a set of n observed points (xi; yi),
i = 1; :::; n to a model that has u adjustable parameters aj , j = 1; :::; u. The model predicts a functional
relationship between the measured independent and dependent parameter variables as follows:

yi(x) = y(xi; a1; a2; :::; au) (3.1)

where the dependence on the parameters is indicated explicitly on the right-hand side. According to LS criteria,
the best parameters are obtained by minimizing the following cost function:

nX
i=1

r2i =
nX
i=1

((yi � y(xi; ai; :::; au))
2 ! minimize: (3.2)

Now, suppose that each data point yi has a measurement error that is independently random and distributed
as a Gaussian distribution around the true model y(x). In addition, the standard deviation � of the error
distributions are the same for all the points. Then the probability p of the data set is the product of the
probabilities of each point and it can be expressed as:

p =

nY
i=1

fexp
�
�1

2
(
yi � y(xi)

�
)2
�
�yg: (3.3)

Maximizing equation (3.3) is equivalent to maximizing its logarithm, or minimizing the negative of its logarithm,
that is :

� log p =

 
nX
i=1

(yi � y(xi))
2

2�2

!
� n log�y (3.4)

since n; �, and �y are all constants, minimizing this equation is equivalent to minimizing equation (3.2). The
above formulation expresses that the least squares �tting is a maximum likelihood estimation of the �tted pa-
rameters if the measurement errors are independent and normally distributed with constant standard deviation.
However, when outliers contaminate the data, this justi�cation no longer holds. Outliers, which are inevitably
included in the original measurements can distort a �tting process in such a way that the resulting �t can be
arbitrary. This is illustrated in �gure (3.1), taken from Fischler and Bolles (1981), which shows the result of the
linear regression using two di�erent estimators on a data set, which contains a gross error, point 7.

The least squares estimator provides an erroneous solution, �t 2, whereas their proposed RANSAC robust
estimator, which will be described in next section, gives a solution, �t 1, that well �ts the six inliers. This
data set demonstrates the failings of the standard least squares and heuristic attempts to remove outliers.
Disregarding the point with largest residuals after LS �tting, remove point 6 not point 7. Indeed repeated
application of this heuristic method to convergence results in half the valid data being discarded, and point 7
remaining as an inlier to a completely erroneous �t.

The physical analogy shown in �gure (3.2) may make this discussion more clear (Schunck 1990). Given a set of
points in the plane, the center of the mass is required. "Attach springs with equal constants to the �xed points
and to a small object that can move freely. The object will be pulled to the average of the locations of the points.
The springs implement a least squares norm through the spring equation for potential energy. This physical
analogy corresponds to the derivation of the calculation of an average from the criterion that the sum of the
squares of the residuals, the di�erence between each point and the average, should be minimized. Now suppose
that one of the points can be moved. Call this point a leverage point. It is possible to force the location of the
average to be shifted to any arbitrary point by pulling the leverage point far enough away. This illustrates the
extreme sensitivity of the estimators based on least squares criteria to outliers. Even a single outlier can ruin an
estimate"(Schunck 1990, pp. 4). Because of the lack of robustness e�orts have gone into producing estimation
methods that are more robust than least squares.
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Figure 3.1: Linear regression: �t 1) six of the seven points are selected as inliers and the best �tted line are obtained by

RANSAC (courtesy of Fischler and Bolles 1981), �t 2) least squares estimation provides an erroneous solution

For example, changing the spring constants in such a way that the points which are far away have little in
uence
on the estimated parameters, this is equivalent to the idea of giving less weight during the estimation process to
a point with a larger error (Huber 1981, Hampel et al. 1986). Or alternatively, breaking the springs attached to
the outliers so that the estimate remains unharmed which is the concept of a random sampling method (Fischler
& Bolles 1981, Rousseeuw & Leroy 1987).

Figure 3.2: Physical analogy that illustrates the sensivity of least squares methods to outliers (courtesy of Schunck 1990)

The principle of LS estimation is the essential part of many robust techniques. In addition, its theoretical concept
complemented by statistical test theory provides a comprehensive framework for assessment and evaluation of
the estimated results as well as improvement of the measuring con�guration when the underlying noise model
is normally distributed. Therefore, because of its importance and in order to complete our discussion, a short
overview of the quality analysis of the least squares estimation and its quality measures is given. A detail
discussion of this topic can be found in (Baarda 1967, Baarda 1968, F�orstner 1987, Koch 1999).

Let the linear model (3.5) with the assumption (3.6) be given

E(l) = Ax ) l+ v = Ax (3.5)

D(l) = �20P
�1 (3.6)

where
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� A is the associated design matrix including partial derivatives of the observations with respect to the
unknowns,

� x is the vector of u unknown,

� l is the vector of n observations

� E(l) is the expection of the observations

� P is the corresponding weight matrix,

� D(l) is the dispersion or the variance-covariance matrix of the observations,

� v is an added random errors vector, and

� �20 is an unknown variance factor.

The system of (3.5) is the well-known Gauss-Markov model. The least squares principle in this model leads
to estimates x̂ for the unknowns, v̂ for the residuals, and �̂20 for the variance factor according to following
formulation:

x̂ = (ATPA)�1ATPl (3.7)

v̂ = Ax̂� l (3.8)

�̂20 =
v̂TPv̂

r
(3.9)

where r = n� u is the redundancy of the system. Quality aspects of LS estimation basically refer to precision
and reliability. The analysis of the precision of the estimates is mainly based on the variance-covariance matrix
of the result which re
ects the in
uence of random errors in the observations onto the estimated parameters
and can be derived by the error propagation law as follow:

D̂(x̂) = �̂20(A
TPA)�1 (3.10)

D̂(̂l) = ATD̂(x̂)A (3.11)

D̂(v̂) = D̂(̂l)�D(l): (3.12)

The reliability analysis 1 uses reliability measures such as sensitivity or robustness factor, contribution numbers,
and redundancy numbers, which determine the maximum in
uence of undetectable errors in the observations
onto the estimates, the contribution of each observation onto the determination of the unknown parameters,
and how the model errors show up in the corresponding residuals, respectively. The later measure, redundancy
numbers, is used in our synthesis robust parameter estimation method (section 3.4) for the detection of outliers
and computing the standardized residuals. The quality analysis of the LS estimation as discussed above com-
plemented by the available statistical test under the assumption of a Gaussian noise model can be used as a
mechanism for quality control of the vision tasks as well as the planing purposes and design of the measurement
con�guration.

1According to Baarda (1968), one can distinguish between i) internal reliability, a quality measure with respect to the delectabil-
ity of the model errors, which de�ne a lower bound for detectable errors, and ii) external reliability, a quality measure with respect
to the sensitivity or robustness of the result, which uses relations describing the maximum in
uence of undetectable errors onto the
estimates.
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3.3 Robust Parameter Estimation Methods in Computer Vision

An automated vision process such as object reconstruction requires not only describing the geometry of the
object of interest but also the ability to deal with incorrect data which will inevitably arise in a real system.
They must be able to interpret the data while simultaneously reject the gross errors, called outliers. These
are data points with large errors that do not agree with the postulated error model, in other words, they
do not �t the assumed error distribution. Many image analysis procedures assume that errors in the original
observations have a Gaussian distribution or are normally distributed. The Gaussian distribution does not have
broad tails, which means that most errors are small and are concentrated around the center of the distribution.
As discussed in the previous section, standard LS methods which are popular in many areas of science are not
robust to violations in problem assumptions. There are classes of computations in the �eld of robust statistics
that have been designed to be robust to wide deviation from the assumptions. They are able to perform when
the assumptions underlying the estimation, say the noise model, are not wholly satis�ed (Huber 1981, Hampel
et al. 1986).

There are two important measures used by robust statistics and vision community to evaluate the robust
algorithms. These are the statistical or relative e�ciency and breakdown point. The breakdown point is the
smallest fraction of outliers present in the original data that may cause the output estimate to be arbitrarily
wrong. In other words, it is the largest percentage of the outliers that can be tolerated by the estimation
algorithm before the breakdown occurs. Therefore the higher this percentage, the better. For a standard LS
estimate one outlier is su�cient to alter arbitrarily the result, therefore it has a breakdown point of 1=n, where
n is the number of points in the set. An indication of the breakdown point is gained by conducting the tests
with varying proportions of outliers (Rousseeuw & Leroy 1987). Statistical e�ciency is the ratio between the
lowest achievable variance for the estimated parameters and the actual variance provided by the given method,
so that the best possible value is 1. It is the ability of the algorithm to correctly recover the characteristics of
the original data and is the traditional measure used to evaluate a �tting process. In the presence of a Gaussian
noise distribution, the LS estimation is known to be the most statistically e�cient estimator (Kim, Kim, Meer,
Mintz & Rosenfeld 1989). In fact, there is always a trade-o� between algorithms with high breakdown points
versus those with high e�ciency.

The reminder of this section is a general overview of the most common robust estimation methods used in
the �elds of statistics and vision. It is not our intention to perform a detail comparative study based on the
e�ciency and robustness of these methods, as it is beyond the concern of this research work. Thus, only a
general discussion of the concept and basic strategy of every method is given with some references to their
applications reported in the �eld of vision. However, two well-known techniques of M-Estimator and Random
Sampling are elaborated in more detail, as they are the fundamental parts of our proposed two-stage synthesis
robust estimation technique (section 3.4).

3.3.1 M-Estimator

The M-estimation techniques have been developed by Huber (1981), and follow the maximum-likelihood for-
mulations in order to derive the optimal weighting for the data under non-Gaussian conditions. In contrast to
least squares criteria, which minimize the sum of squares of an error function (equation 3.2), the M-estimator
techniques minimize the sum of a function �(di=s), where di is the error function for the data point i and s is
a scaling factor. In other words, the parameters that minimize equation (3.13) are sought.

nX
i=1

�(di=s) ! minimize (3.13)

The form of � is derived from the particular chosen density function in the manner similar to the case of Gaussian
error function and it should satisfy the following assumptions:

1. It is a continuous function and has a unique minimum, �(0) = 0,

2. It is a symmetric function, �(u) = �(�u),
3. It is a positive function, if 0 � u � v then �(u) � �(v) ,

4. It is a de�nite function, if a = sup �(u) then 0 < a <1 , and

5. It is an increasing function, if �(u) < a and 0 � u < v then �(u) < �(v).
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There are many di�erent minimum functions � proposed in the literature (Huber 1981, Hampel et al. 1986),
which have been applied in the number of vision problems (F�orstner 1986, Haralick & Joo 1988, Lee et al.
1989, Sester & F�orstner 1989, Kumar & Hanson 1990, Sinha & Schunck 1989, Schickler 1992, Wild, Krzystek
& Madani 1996, Torr & Zisserman 1997). Usually the density function is chosen so that � is some weighting
�(di=s) = widi, of the error that reduces the e�ect of the outliers on the estimated parameters. In fact, this
is motivated from the concept of in
uence function or in
uence curve proposed by (Hampel 1968, Hampel
et al. 1986). The in
uence function is an heuristic interpretation tool that describes the e�ect of an outlier at
a data point i on the estimate. It is de�ned as a function proportional to the �rst derivative of the minimum
function:

 (x) = @�(x)=@x: (3.14)

Let aj represent the set of unknown parameters to be estimated. Di�erentiating the cost function expressed in
equation (3.13) with respect to each parameter aj , we get the set of equations:

nX
i=1

 (di=s)
@di
@aj

= 0 (3.15)

where the in
uence function  is the derivative of the � with respect to errors di. The equation (3.15) can be
written in the standard weighted form as:

nX
i=1

widi
@di
@aj

= 0 (3.16)

where w(xi) is called weight function and is de�ned as:

w(di=s) =
 (di=s)

di=s
: (3.17)

The in
uence function of a Gaussian noise model with the minimum function �(x) = 1
2x

2 also con�rms the
non-robustness of the least squares estimation method. The  (x) = x indicates that the more deviant the points,
the greater its in
uence.

A typical minimum function scheme �(x), proposed by (Hampel 1968) corresponds to

�(x)a;b;c =

8>>><
>>>:

x2

2 0 � jxj � a
ajxj a � jxj � b
a(cjxj�x2

2 )

c�b b � jxj � c
ac2

2(c�b) c � jxj

(3.18)

and is called Hampel three-part minimum function, where 0 < a < b < c < 1. The corresponding in
uence
 (x) and weight w(x) functions are formulated in the equations (3.19) and (3.20) respectively.

 (x)a;b;c =

8>><
>>:

x 0 � jxj � a
a sign(x) a � jxj � b
a(c�jxj)
c�b sign(x) b � jxj � c

0 c � jxj
(3.19)

w(x)a;b;c =

8>><
>>:

1 0 � jxj � a
a
jxj a � jxj � b
a(c�jxj)
(c�b)jxj b � jxj � c

0 c � jxj
(3.20)
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Although, the Hampel minimum function is a non-convex function, which leads to a redescending in
uence
function  , it has some interesting properties, which have made its performance very successful. It should
be noted, although outliers are a serious problem and must be formulated in estimation process, Gaussian
noise is also present. Therefore, the minimum function must be able to handle outliers and Gaussian noise
simultaneously. In this case, it makes sense to design a function that resembles a least squares norm for small
and Guassian errors, but at the same time rejects the extreme outliers entirely, which implies that the weight
function vanishes outside some central regions. This concept of handling the combination of well-behaved noise
and outliers simultaneously is partly realized in the Hampel function. The �rst part of the function resembles a
Gaussian function to count for the normally distributed noise errors and yield a unique minimum. The second
part of the function is equivalent to a Laplacian (L1 � norm) minimization function in order to reduce the
e�ect of the errors with moderate size and in the same time keep the function convex. Therefore it guarantees
convergence for linear systems or in the presence of good approximation values for the non-linear systems.
The third part of the function still reduces the e�ect of the gross errors but is not convex. That means, no
convergence is guaranteed if the �rst initial guess starts at this region. The last part of the function designed
to eliminate the e�ects of the outliers is completed by putting an upper bound. The �gure (3.3) illustrate the
graphical representation of the Hampel- minimum (3.3-a), in
uence (3.3-b) and weight (3.3-c) functions .
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Figure 3.3: Hampel three-part M-estimator functions: a) Minimum function �(x), b) In
uence function  (x), c) weight

function w(x)

Note that the weights cannot be computed without an estimate of the residuals, which in turn requires knowledge
of the solution. In addition, an estimation of the scale s, of the non-corrupted data is required. That is equivalent
to robust estimation of the standard deviation �, of the residual errors. If a good estimate of the standard
deviation of the errors of non-outlier data can be made, then data points which lie beyond a certain number of
standard deviation from the center can be classi�ed as outliers. The standard deviation of the error �, is either
known a priori or can be found as a maximum likelihood estimate using MAD function which is formulated
in equation (3.23) and is discribed in next section. Huber (1981) suggests an iterative computation scheme to
minimize the error function. The minimization can be applied either by modifying the residuals or weights. In
the following we use the modi�ed weights method in the proposed estimation algorithm in which the weights
are held constant at values equal to those found at the last iteration, whilst the set of parameters is estimated.
This method follows the principles of the standard iterative least squares (LS) estimation process, where the
solution is obtained based on the equation (3.7), with the exception that the corresponding weight matrix P , is
determined by the equation (3.17), depending on the current residuals vi. Huber proves that if these iterations
are repeated a local (possibly global) minimum of the cost function (see equation 3.13), is reached. The algorithm
is presented in section (3.4), with some modi�cation with respect to its original procedure in the computation
of the error term where the redundancy numbers are used in order to take the geometry of the observations into
the account . However, in order to guarantee convergence and at the same time eliminating the e�ect of the
outliers, even the iterated least squares approach suggested by Huber is not suitable unless there is a good initial
value for the parameters or if there are a few gross outliers which are easily identi�ed. This is our motivation
to develop a two-stage estimation method discussed in section (3.4).
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3.3.2 Random Sampling

The random sampling principle is based on the assumption that a subset of randomly sampled data points from
a total set of points often provides a good estimate of the characteristics of the data set. Fischler and Bolles
(1981), with their random sample consensus (RANSAC) algorithm were amongst the earliest to draw the value
of such methods to the attention of computer vision researchers. It was a few years later that a similar robust
parameters estimator called least median squares (LMS) was developed in the �eld of statistics by (Rousseeuw
& Leroy 1987). The algorithms di�er slightly in �nding the global minimum for the associated cost function.
The idea of random sampling has been applied in di�erent forms and is reported in di�erent applications (Bolles
& Fischler 1981, Kumar & Hanson 1990, Roth & Levine 1990, Schunck 1990, Sinha & Schunck 1989, Torr &
Murray 1993, Torr & Zisserman 1997, G�ulch et al. 1998). Given that a large proportion of the data may be
useless, the approach is opposite to the conventional least squares techniques. Rather than using as much data
as is possible to obtain an initial solution and then attempting to identify outliers, a subset of data is used,
as small as possible, to estimate the unknown parameters. For example, three points for estimating the initial
parameters of a plane in 3D object space. In addition, in contrary to the standard LS estimation method, it
theoretically has the maximum breakdown points of more than 50%. The random sample algorithm handles
outliers by computing an estimate for model parameters from a consistent subset of inconsistent data points.
The algorithm randomly selects a subset s, of the minimum number of points required to �t a model from the
set of data points n. For each random sample of minimum size u, the initial model parameters are estimated
and the cost function evaluated for each model. This process is repeated enough times on di�erent subsets s,
to ensure that there is a e.g. 95% chance that one of the subset will contain only good data points. The best
solution is the one that minimizes the associated cost function. Minimizing the cost function in the RANSAC
method is equivalent to the solution that maximizes the number of inlier points or the points whose error
measure is below a threshold. While in the case of a LMS estimator it is equivalent to the solution that gives
the minimum of the median of the square errors. Once outliers are detected, the set of points identi�ed as inliers
may be combined to give a �nal solution.

Ideally every possible subset of the data points would be considered, but in practice this is computationally
infeasible. Fischler and Bolles (1981) and Rousseeuw and Leory (1987) proposed slightly di�erent means of
calculation for the required number of samples. But both give broadly similar numbers, we follow the latter
suggestion. The number m of samples is chosen su�ciently high to give a probability p in excess of 95% that a
good subset is selected. The expression for this probability p is:

m � log(1� p)

log(1� (1� ")u)
(3.21)

where " is the fraction of contaminated data, and u the number of minimum data points in each sample. Table
(3.1) gives some sample values of the number m of subsamples required to ensure p � 0:95% for given u and ". It
can been seen that far being computationally prohibitive, the algorithm may require less repeat than there are
outliers, as it is not directly linked to the number but only the proportion of outliers. It can also be seen that the
smaller the number of data points needed to estimate the model parameters, the fewer samples are required for
a given level of con�dence. If the fraction of data that is contaminated is unknown, as it is usual, an educated
worst case estimate of the level of contamination must be made in order to determine the number of samples
to be taken, this can be updated as larger consistent sets are found. In practice, however, it is recommended to
take more subsamples than are needed, as some of the subsets might lead to degenerate solutions. For example
when �tting a plane into the 3 collinear points in object space.

In order to detect and remove outliers from the data, some knowledge of the standard deviation � of the error
is required. In practice, outliers are discriminated from inliers based on the following equation:

i 2
�
inliers if di � t = c�
outliers otherwise

(3.22)

where t is a user de�ned disparity threshold, and d is the error measure, i.e., in the case of �nding the best planar
�t into the mesh of 3D points, di is the orthogonal distance between point i, and the estimated plane. Often the
value of � is unknown, in which case it must be estimated from the data. If there are no outliers in the data then
� can be estimated directly as the standard deviation of the residuals of a least square minimization process. If
there are outliers and they are in the minority, a �rst estimate of the � can be derived from the equation (3.23),
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u " = 5% " = 10% " = 20% " = 25% " = 30% " = 40% " = 50%

2 2 2 3 4 5 7 11
3 2 3 5 6 8 13 23
4 2 3 6 8 11 22 47
5 3 4 8 12 17 38 95
6 3 4 10 16 24 63 191
7 3 5 13 21 35 106 382
8 3 6 17 29 51 177 766

Table 3.1: The number m of subsets required to ensure p � 95% for given u and ", where p is the probability that all

the data points selected in one subset are non-outliers (courtesy of Torr and Murray 1993).

based on the median of the absolute value of the errors of the chosen parameter �t. This function is known as
median absolute deviation (MAD) function in the literature (Huber 1981, Rousseeuw & Leroy 1987).

� =
medjdij
��1(0:75)

(3.23)

It is known that equation (3.23) is an asymptotically consistent estimator of � when di follow a Gaussian
distribution N(0; �2), and where � is the cumulative distribution function for the Gaussian probability density
function. It was shown empirically (Rousseeuw & Leroy 1987), that when n � 2u the correction factor of
(1 + 5

n�u ) improves the estimate of the standard deviation. Noting that ��1(0:75) = 0:6745 the estimate of �
is then

� = (1 +
5

n� u
)
medjdij
0:6745

(3.24)

In our proposed synthesis robust estimator algorithm in section (3.4), we suggested to use the LMS algorithm
if there is no a priori knowledge about the �, in order to obtain the estimate of the median and compute the
�rst estimate of the standard deviation. Thus the outlier data points are classi�ed and consequently the initial
values of the unknown model parameters are estimated. The analysis of the test results obtained by �tting
the 3D plane polygons over the existing DSM showed that random sampling techniques can provide a good
initial guess of the plane parameters at a solution, but this solution can bear improvement as usually not all the
outliers will be detected. Earlier it was noted that iterative estimation of the M-estimators is only successful
if the starting estimate was good. By using the output of the random sampling rather than linear regression
as the starting estimate for M-estimation, here using an iterative Huber algorithm, a further improvement can
be made. This is our key conclusion to introduce a new two-stage robust parameters estimation which will be
elaborated in more details in section (3.4). The results are also indicated that RANSAC is superior with respect
to LMS, �rstly when the standard deviation � of the error term was known and secondly, when there are more
than 50% outliers in the original data.

3.3.3 Clustering

The concept of clustering is used in a variety of related methods for parameter estimation (Sester & F�orstner
1989, Roth & Levine 1990, Schickler 1992, G�ulch et al. 1998), and it follows the principle of maximum likelihood
estimation. In fact, a classical example is the Hough transform (HT) technique, which has long history of valuable
service to computer vision for detection of simple shapes such as straight lines, or circles in the image. It uses
a parametric description of simple geometric primitives in order to reduce the computational complexity of
their search in the data set. This is realized in an accumulator array by partitioning the parameter space into
cells where every dimension of this space is quantized into speci�ed intervals. The performance and accuracy
of the method depend of course on the quantization interval of the space parameters, and on the size of the
accumulator array. Each data point adds a vote to every cell of parameter space (corresponding element of
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the accumulator array incremented by 1), whose combination of parameters could have produced a version of
the interested geometric primitive. When all the data points have been processed, the cells in the parameter
space which are local maxima or which have a number of votes greater than a given threshold are marked as
representing possible solutions since they are well described by the primitive whose parameters is associated
with those cells. The clustering technique is recommended for application with few unknowns, high percentage
of outliers and a high redundancy in order to support the solution (G�ulch et al. 1998). However, it runs into
problems when the dimension of the parameter space is high, because its space requirements is exponential
in the dimensionality and the computational expense rises exponentially with the dimension of the parameter
space. Alternative solutions of a coarse quantization decrease the accuracy and reliability of the method.

3.3.4 Case Deletion Diagnostics

The principles of case deletion methods are based on in
uence measures (Chaterjee & Hadi 1988). The basic
concept is simple. Small perturbations are introduced into some aspects of the model formulation and an
assessment is made of how much these change the outcome of the analysis. The important issues are the
determination of the type of perturbation scheme, the particular aspect of the analysis to monitor and the
method of assessment. Several di�erent measures of in
uence have been proposed within statistical literature,
mainly based on the eigenvalues and eigenvectors of the covariance matrix of the estimated parameters. Critchley
(1985) suggested the use of eigen-perturbation to arrive at in
uence functions assessing the �rst or higher order
e�ect on the principal eigenvalues and eigenvectors. Shapiro and Bardy (1993) proposed an in
uence measure
that monitors the e�ects of the deletion on the minimum eigenvalue. Torr and Murray (1993) reported an
interesting method for the case of orthogonal regression based on eigenvector perturbation theory. They de�ne
a parameter, so-called leverage factor, which gives a measure of the in
uence of each point and is large for
outliers even when the residual is small. To remove outliers from the estimation model, a point with maximum
in
uence is deleted in each iteration and the regression process is recomputed. This procedure is repeated until
the termination criteria is met. The disadvantage of the case deletion schemes is that they require a fairly good
estimate of the standard deviation � of the error term in the data set. In addition, they rapidly breakdown after
35% outliers, and only provide inaccurate results below that.

3.3.5 Minimum Description Length

The method of minimum description length (MDL) o�ers a di�erent concept as a robust parameters estimator
for detection of outliers (Rissanen 1987). It has its root in information theory and is mainly a tool for describing
the data, thus obtaining information for comparing the hypothesis parametric models with varying complexity. If
several models are suggested, then the model giving the shortest description length should be chosen. This ability
of comparing di�erent parametric models can be used for di�erent applications depending on the formulation
of the problem (F�orstner 1989). Axelsson (1996) studied the application of MDL criteria in di�erent projects
related to image orientation procedures, photogrammetric measurement processes and correspondence problem
of multiple images, in order to localize and eliminate the erroneous observations in estimation processes. The
thresholding problem for removing the outliers is not present since a minimum of the description length is
found. However, if the data cannot be modeled in a suitable manner, the description lengths of the best model
parameters will be higher than the one of unmodeled data. It has, theoretically, a high breakdown point of more
than 50%, but there is no simple analytical solution. Instead a numerical search procedure is applied. That
means the solution is not optimal in minimizing the error term for the remaining inlier points, similar to most
robust estimators with high breakdown points. Therefore, a least squares type estimator is utilized at the �nal
process.

3.4 Synthesis Robust Estimators

Although the robust estimation techniques are far superior to non-robust methods when the original data are
contaminated by outliers, they are still of course imperfect. The M-estimator, which is more satisfying from a
statistical standpoint, is only successful if the starting estimate is good. It rapidly breaks down when the amount
of outliers exceeds 35% of the data set and only provides inaccurate results after this limit. On the contrary,
the random sampling techniques have high breakdown points and can provide a good �rst guess at a solution,
but this solution still needs improvement, as usually not all the outliers are detected. These observations have
allowed us to propose an empirically optimal two-stage robust parameter estimation process. By combining the
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high breakdown points of the random sampling methods and the high e�ciency of the M-estimator methods,
here the iterative Huber algorithm based on Hampel three-part redescending minimization function (see section
3.3.1), a further improvement can be made. The �rst stage 
ushes and detects the outliers and estimates the
best initial model parameters based on the remaining inliers data using a random sampling type estimator such
as RANSAC. The estimated parameter values along with the estimated error variance �̂ are introduced into the
iterative re-weighting M-estimator algorithm as initial values to compute the �nal model parameters. Figure
(3.4) illustrates the improvement a�orded using the proposed synthesis robust parameter estimation method in
a 3D regression problem.

a b

c d

Figure 3.4: Estimated 3D plane-roof polygon of a building roof overlaid on the 3D perspective view of the correponding

DSM: a) 2D plane-roof region overlaid on corresponding roof structure, b) corresponding 3D plane-roof polygon back

projected into the object space based on a standard LS estimation process, c) corresponding 3D plane-roof polygon back

projected into the object space based on the RANSAC process, d) corresponding 3D plane-roof polygon back projected

into the object space based on the synthesis robust estimation techniques

During the reconstruction process the extracted 2D plane-roof region in image space is back projected into the
3D object space (see chapter 5). This is performed by �tting the corresponding 3D plane-roof polygon over the
existing DSM, in order to determine the best parameters x(a; b; d) of the 3D plane, which is de�ned explicitly
by equation (3.25).

z = ax+ by + d (3.25)
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The best optimal solution is achieved, when the orthogonal geometric distances li between all the given inlier
points i and the estimated 3D plane are minimum.

li =
zi � (axi + byi + d)p

a2 + b2 + 1
(3.26)

This is equivalent to the standard least squares estimation criteria when the errors are normally distributed and
the extreme outliers are eliminated from the data set. Figure (3.4-a) illustrates one side of a plane-roof structure
of a residential building, which is detected and segmented based on a least squares planar �t region growing
algorithm (chapter 4). Assuming that the low contrast white area in the lower part of the building causes the
segmentation algorithm to grow over the bounding edge of the roof, and therefore incorrectly extract this area
as part of the 2D plane-roof region. The data points belonging to this part of the roof appear as outliers during
back projection of the extracted 2D plane-roof region into the 3D object space and should be detected and
eliminated from the 3D regression process. The �gures (3.4-b), (3.4-c), and (3.4-d) illustrate the 3D perspective
views of the estimated 3D planes obtained by an ordinary LS estimation, the RANSAC procedure, and our
proposed method repectively. Figure (3.4-b) indicates graphically the failure of the LS procedure in estimating
the parameters of the 3D plane, which is forced by the contaminated data points, while two other approaches
correctly recovered the parameters of the 3D plane.

The angle �, between the normal vector of the reference 3D plane measured in a stereo model and the normal
vectors of the estimated 3D planes based on the above approaches are computed and tabulated in table (3.2) for
the comparison. The numerical results also show the failure of the LS method in recovering the parameters of
the plane in the presence of the outliers. Instead of approximating the building roof, the estimated 3D plane has
cut o� the building (�gure 3.4-b). In addition, the small improvement of the result based on the synthesis robust
method with respect to RANSAC is monitored. Although the improvement appears small, it has a signi�cant
e�ect in an automated vision process, as it is discussed in chapter 5. Note that the estimated value of the �̂
in the RANSAC procedure indicates a better �t. This is expected because the standard deviation in RANSAC
method is only computed over the inlier data points.

Methods � �̂

Least squares 41�270 1:0
RANSAC 18�100 0:19

Synthesis method 17�530 0:21

Table 3.2: Comparison of the 3D reference plane with the corresponding 3D plane-roof polygons computed based on

di�erent estimation process.

The relatively large values of �, even utilizing the robust parameter estimation techniques can be explained by
the fact that estimated 3D planes are computed based on the DSM, which is itself an approximation of the
original building. Therefore, in this case, the value of the angle � is a good indication of the quality of the
existing DSM.

The procedure of the proposed method is summarized as a pseudo-code for the 3D plane-roof polygon regression
and it can be extended and applied to di�erent estimation problems by utilizing the appropriate mathematical
functions.

� Stage I: Estimating the �rst guess of the model parameters based on the random sampling techniques.

1. Repeat for m sampling as determined in equation (3.21):

(a) Select a random sample of the minimum number of data points, i.e. 3 points, to compute an
estimate of the model parameters, i.e. x̂(a; b; d)

(b) Calculate the distance measure li for each data point given x̂, i.e. using equation (3.26)

(c) Apply RANSAC, if there is a priori knowledge upon the standard deviation � of the error term:
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i. Compute the normalized error measure ti for each data point based on the following equation
(Baarda 1968)

ti =
li

�
p
ri

(3.27)

where ri is called redundancy number and is the (i; i) element of the redundancy matrix R,
de�ned using the equation (3.28)

ri = Rii = (I�A(ATPA)�1ATP)ii: (3.28)

Recall that A and P are the jacobian and weight matrices of a Gauss-Markov estimation
model (see equation 3.5) respectively and I is the unit matrix. In this manner, the local
geometry of the data points in the design and therefore the e�ects of the gross errors onto
the distance measures are taken into account.

ii. Calculate the number of inliers consistent with estimated parameters x̂ based on the following
statistical test:

data point i 2
�
inliers if ti � t
outliers otherwise

(3.29)

where t is a user de�ned disparity threshold (e.g. t = 1:96).

(d) Else, apply LMS:

i. De�ne the median absolute error for the selected sample medjlij.
ii. Compute the normalized error measure ti for each data point based on the equation (3.27),

where the standard deviation of the error term � is estimated based on the MAD function
(3.23).

iii. Calculate the number of inliers consistent with estimated parameters x̂ based on the equation
(3.29).

2. Select the best solution:

(a) If RANSAC, we obtain the solution with the maximum number of inliers. In the case of ties
select that solution which has the lowest standard deviation of inliers residuals.

(b) If LMS, the solution which gives the minimum median error is obtained. In the case of ties select
that solution which has the lowest standard deviation of inliers residuals.

3. Re-estimate the model parameters x̂ and the standard deviation of the error �̂ using all the data
that has been identi�ed as consistent (inliers) and passes these parameters into the second stage of
the estimation process as the initial values of the model parameters.

� Stage II: Estimating the �nal model parameters using an iterative re-weighting M-estimator.

1. Repeat until the termination criteria met or when the maximum number of iteration is reached:

(a) Calculate the distance measure li for each data point using equation (3.26) based on the current
estimated values of the model parameters x̂.

(b) Compute the normalized error measure ti for each data point based on the equation (3.27), and
the current standard deviation of the error term �̂.

(c) Calculate corresponding weight wi of each data point based on the Hample three-part weight
function (3.20). Note that the required modi�cation to the computed weights wi and � as it is
proposed by (Huber 1981, pp. 183) should be taken into account.

(d) estimate corrections of the model parameters, i.e. �x, compute the new model parameters
xn+1 = xn +�x, and the standard deviation �̂ based on a weighted least squares solution.

2. Save the last estimated parameters x̂ as the �nal model parameters, i.e. the �nal parameters of the
3D plane-roof polygon.
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Chapter 4

From Pixels to Geometric Primitives

4.1 Introduction

Object recognition is one of the hardest problem in automated vision processes. Although the problem is
addressed by a large number of researchers and projects (Tou & Gonzalez 1974, Lowe 1985, Canny 1986, Fua &
Hanson 1987, Mohan & Nevatia 1989, Strat & Fischler 1991, Haala & Vosselman 1992, Haralick & Shapiro 1992,
Gonzalez & Woods 1993, Brunn et al. 1996, Sagerer, Kummert & Socher 1996, Fritsch & Ameri 1998, Salesh
& Sowmya 1998), there is not a unique baseline methodology or a general paradigm to solve this complex
task. Based on the fact that simple geometric primitives are an important part of the human visual perception,
this task is normally initialized with an image segmentation process, where the qualitative knowledge stored in
the raw image data is transferred into quantitative symbolic description and more abstract form of the basic
geometric elements. Image segmentation is frequently a data driven process. It can be based on homogeneities,
namely, homogeneous regions that are detected in the image, or alternatively, discontinuities that can be used
for the detection of edge primitives, which is assumed to correspond to the contours of the real objects. This
chapter deals with the recognition of 2D planar surfaces in the aerial image, in this study called 2D plane-roof
regions, which possess meaningful correspondence to object surfaces in 3D scene, here 3D plane-roof polygons
of the building roof structures. The recognition performs in three subsequent segmentation processes. First,
the image is partitioned into the regions of interest based on height discontinuities and their size. Those areas,
which have a high expectancy of being and representing the individual building are extracted. This process is
performed by a morphological top-hat transformation of the corresponding DSM (Weidner & F�orstner 1995).
Furthermore, a coarse segmentation of the image is carried out based on the geometric characteristics of surfaces
(Besl & Jain 1988). The mean and Gaussian curvatures are used to extract 
at pixel surfaces type within every
region of interest. Finally, the �ne segmentation of the image is performed. The extracted 4-connected 
at pixels
serve as the seed regions to a least squares planar �t region growing algorithm to partition the image surface
into meaningful primitive plane-roof regions (Fritsch & Ameri 1998). The intermediate extracted symbolic 2D
plane-roof regions are projected back into the object space, in order to reconstruct the corresponding plane-roof
polygons in 3D space, which is the subject of the next chapter. Each part of the recognition process is described
in detail in subsequent sections. The main emphasis is given to the geometric characteristics of digital surfaces
(section 4.3), extraction of regions of interest (section 4.4), and an iterative region-based segmentation algorithm
(section 4.5). All the proposed methods are implemented and the results are presented.

4.2 Why Region-based Segmentation

Recall from the introductory chapter, it is discussed that the whole framework of our method is based on a
data-driven reconstruction of a generic polyhedral-like building model. This is motivated from the fact that
building roofs are mostly an aggregation of planar surfaces. Reconstruction based on a generic object model
means that the number, as well as the geometric form, and the position of the signi�cant parts of the model
have to be de�ned. In addition, the geometric and topological relationships between these primitives are also
needed. Finding the logical relationships between these geometric primitives when a speci�c object model is not
present, is a complex problem, and its complexity is in a reciprocal-like relation with the geometrical level of
the incorporated geometric primitives. That means, hypothesis model generation of a generic object based on
point or line primitives is more complex than a polygonal-based approach.

The following simple example is deliberated to illustrate the concept. Assume an object, e.g. a roof structure
of a building consists of n polygons Pi; i = 1; � � � ; n, where each polygon Pi, is de�ned by m bounding edges
Ej ; j = 1; � � � ;m, or alternatively l vertices Vk; k = 1; � � � ; l. Let us consider the particular case of a convex
polygonm = l. In fact, the mutual relationships between these geometric elements in the absence of any external
or supporting knowledge can be explained by combinatorial mathematics, which de�ne the total numbers of
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Figure 4.1: Object structure represented by its geometric primitives

possible combinations of s elements (selections) from a set of q distinct elements and is determined by the
following equation:

C(q; s) =
q!

(q � s)! � s! (4.1)

where q is the number of individual elements of the set, and s indicates the number of elements contributed into
the combination. Let us further consider a particular case of mutual relationships, s = 2. The total number of
possible combinations between the geometric primitives of the object presented in �gure (4.1) for three di�erent
cases based on only (I) point primitives e.g., q = 13, (II) line primitives e.g., q = 13, and (III) polygonal
primitives e.g., q = 3, is tabulated in table (4.1).

I II III

S 2 2 2

C 78 78 3

Table 4.1: Maximum possible number of combination between s randomly selected elements from a set of q distinct

elements

The computed values indicate that the maximum numbers of possible combinations between the higher level
geometric primitives i.e. polygons, are signi�cantly smaller than those in lower level i.e. points or edges. Moreover,
since the objects, which we are interested in describing (roof structures of the building) are mainly made up of
plane surfaces, therefore, this is a natural choice to partition pixels in the image into the regions that possess
meaningful correspondence to object surfaces in a 3D scene. In addition, regional information provides helpful
clues in automated 3D image analysis, they do provide many descriptions such as area, surface normal, average
grey level, etc., which are not derivable from edges or line segments. They also provide topological information,
in case that the polygon adjacency relationships (PAR) is computed, that in turn give us the ability to make
queries such as which region is a contained-in region, and so on. In most related works for building reconstruction,
edges or lines are extracted from the image(s) as the basic image features for further analysis. Often, these lines
are the only sources of information for solving the task, thus disregarding the original images and their regional
information. These image features often have no relation to each other because correctly linked edges could not
be extracted from real images and that they are unreliable close to intersections. In edge-based approaches, it is
di�cult to measure the edge error directly against the original image data because an explicit edge description
is not present in the original data. Region-based algorithms may potentially have an advantage over edge-based
algorithms because it is possible to check �nal image interpretation against the original data at every image
pixel via simple image subtraction.

In the proposed method, a region-based segmentation algorithm based on the geometry of the surfaces initializes
the recognition process. In fact, in real-world images, the structures of the imaged object cannot be detected
solely on the basis of their registered photometry because of the presence of noise, occlusion and various photo-
metric anomalies. Therefore, segmentation methods based on purely local statistical criteria are tied to errors
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(Fua & Leclerc 1990). To supplement the weak and noisy local information of the images, geometric information
is also incorporated into the recognition process. In addition, it is recognized that discontinuities should be
represented by line segments, which can also be detected with sub-pixel accuracy and thus give a high quality
result. The region-based segmentation algorithms may miss the relevant boundary information, and are gener-
ally unable to trace �ne detail and linear elements. They usually tend to produce regions of which the shape
re
ects more the search strategy used than the true shape of the regions (Lemmens 1996). In consequence, an
automated 3D image analysis should incorporate the descriptions of point, line, and region segments to admit a
compact transfer of most of the information content in the image to higher level processes. This is the key issue
and the strength of our proposed method. It enters into the high-level quantitative domain of the recognition
process {extraction of regional information{ in order to reduce the complexity of the problem in the very early
stage of the whole chain of a generic model-based reconstruction process, and integrates the qualitative geo-
metric primitives {point and edge information{in the high-level model-oriented process during the hypothesis
veri�cation process, which is discussed in chapter 6. This is in contrary to the most of the reported methods,
which initialize their recognition process from the low-level geometric primitives, and struggling with complex
search strategies in the higher level processes.

4.3 Geometric Characteristics of Surfaces

Geometrical proximity plays an important role in image segmentation. Pixels lying in the same neighborhood
tend to have similar statistical properties and belong in the same image region. Thus an image segmentation
algorithm must incorporate, if possible, both proximity and homogeneity to produce connected image regions
(Pitas 1993). It has been shown by Besl (1988), that di�erential geometric concepts for visible-invariant de-
scriptions of continuous surfaces are applicable to digital surfaces even in the presence of quantization and
measurement noise. That is each point on a continuous or digital surface can be characterized by the spatial
properties of other points on the surface in small neighborhoods surrounding the given point. The key di�erence
is that the neighborhood of a point consists of an uncountable in�nite number of points in the continuous
surfaces whereas small �nite numbers of points form the neighborhood of a point in a digital surface. In other
words, the digital images are sampled graph surfaces.

In general, an explicit form of expressing a surface is the graph of a function of two variables f(x; y). In the
context of computer vision, grey level surfaces in intensity images, and depth surfaces in range images conform
to this common representation and can be analyzed in this way. If x and y denote spatial coordinates, then the
value of f is proportional to the brightness of the image or is the distance from the camera origin to the surface
at the point (x; y) respectively. The general surface S in explicit parametric form is de�ned as :

S = f(x; y; z) : x = d(u; v); y = e(u; v); z = f(u; v) j (u; v) 2 D � R2g: (4.2)

In this study, we consider only smooth surfaces, where all three parametric functions have continuous second
partial derivatives. In general, an intensity image or a range image may have several smooth surfaces separated
by points of discontinuity, e.g. step edges or orientation edges. In this particular case, we may rewrite equation
(4.2) in a less general form which is equivalent to the graph surface form as:

S = f(x; y; z) : x = u; y = v; z = f(u; v) j (u; v) 2 D � R2g: (4.3)

The geometry of such a surface depends on two classical quadratic di�erential forms called the �rst and second
fundamental forms. Complete knowledge of either of these forms at every surface point provides an analysis and
classi�cation of smooth surface shape. For a given surface or surface patch S(u; v), the �rst fundamental form
I(u; v; du; dv) is de�ned as:

I(u; v; du; dv) = dS � dS = Edu2 + 2Fdudv +Gdv2 (4.4)

= [du dv]

�
j11 j12
j21 j22

�
[du dv]

where the elements of the symmetric matrix J are
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jii = E = Su � Su ; j22 = G = Sv � Sv ; j12 = j21 = F = Su � Sv (4.5)

and the subscripts denote the �rst partial derivatives of the surface de�ned as:

Su(u; v) =
@S

@u
; Sv(u; v) =

@S

@v
: (4.6)

The Su(u; v) and Sv(u; v) de�ne the tangent vectors to the surface at the point (u; v). They form the basis of
the tangent plane which touches the surface at point (u; v). The matrix J is the �rst fundamental form matrix,
the metric or the metric tensor of the surface. The �rst fundamental form I(u; v; du; dv) is a measure of a small
amount of movement on the surface at a point (u; v) for a given small movement in the parameter plane (du; dv).
It is invariant to translations and rotations of the surface in 3D space, and thus is an intrinsic property of the
surface, that means it depends only on the surface itself, not on how the surface is embedded in 3D space. The
second fundamental form II(u; v; du; dv), de�ned as:

II(u; v; du; dv) = dS � ~dn = Ldu2 + 2Mdudv +Ndv2 (4.7)

= [du dv]

�
b11 b12
b21 b22

�
[du dv]

where the elements of the symmetric matrix B are

bii = L = Suu � ~n ; b22 = N = Svv � ~n ; b12 = b21 =M = Suv � ~n (4.8)

and ~n(u; v) is unit normal vector and de�ned as:

~n =
Su � Sv
jjSu � Sv jj : (4.9)

The double subscripts denote second partial derivatives of the surface and are de�ned as:

Suu(u; v) =
@2S

@u2
; Svv(u; v) =

@2S

@v2
; Suv(u; v) =

@2S

@u@v
(4.10)

II(u; v; du; dv) measures the correlation between the change in the normal vector ~dn, and the change of surface
position dS at a surface point (u; v) as a function of a small movement (du; dv) in the parameter plane. Therefore,
it depends on the position of the surface in 3D space and thus is an extrinsic property of the surface. The
di�erential normal vector ~dn always lies in the tangent plane. The ratio of II(u; v; du; dv)=I(u; v; du; dv) is the
normal curvature function Knormal, which varies as a function of direction of the di�erential vector (du; dv). If
~dn and dS are aligned for a particular direction of (du; dv) then that direction is a principal direction of the
surface at that surface point. The extrema of the normal curvature function occur at that point and are called
the principal curvatures, k1 the maximum, and k2 the minimum.

4.3.1 Mean and Gaussian Curvatures

It is established that a surface may be characterized by six functions E;F;G;L;M and N derived by equations
(4.5, 4.8). It has also shown that the information from these functions can be reduced into two curvature functions
k1 and k2. There are several other combinations of these functions that yield more easily interpretable surface
shape characteristics. Particularly, there are two curvature functions, mean H and Gaussian K curvatures that
combine the information in these six functions.

These two curvature functions do not, in general, contain all the 3D shape information contained in the six
E;F;G;L;M;N functions and some of the information has been lost, but they do contain a substantial amount
of information. They are direction independent quantities and can be computed by combining the two direction-
dependent principal curvatures k1 and k2 as follows:
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Figure 4.2: Eight fundamental surface types de�ned by mean and Gaussian curvatures signs (Courtesy of Besl 1988)

K = k1 � k2 (4.11)

H =
k1 + k2

2
: (4.12)

In fact, k1 and k2 are roots of the quadratic equation:

k2 � 2Hk +K = 0: (4.13)

Therefore, if K and H are known at each point, it is straight forward to analytically determine the two principal
curvatures:

k1;2 = H �
p
H2 �K: (4.14)

The mean and Gaussian curvatures are important quantities in computer vision because they provide a common
method of specifying eight basic types of surfaces surrounding any point on a smooth surface (�gure 4.2), which
is discussed in more detail in section (4.5.2). The method based on k1 and k2 is less common as they are
dependent on directions of maximal and minimal normal curvatures at each point, whereas mean and Gaussian
curvature values are direction-free quantities. The pair k1; k2 contain the same surface curvature information
as the pair H;K but in a di�erent form. There can be advantages and disadvantages working with either pair
depending on the application. For visible-invariant pixel labeling purposes, the sign of mean and Gaussian
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curvatures can be computed most easily yielding the coarse classi�cation of surface types in image data (Besl
& Jain 1988, Fritsch & Ameri 1998).

4.4 Regions of Interest

The overall aim of our approach in this section is to partition an image into regions, which have potential to be
the buildings. This primary segmentation has been done in order to, 1) reduce the dimensionality of search space
and consequently reducing the computational time required in subsequent processes, and 2) to be a step closer
to our ultimate aim. In the absence of GIS information or ground plan of the buildings, the corresponding DSM
is used as an initial source for building detection. However, the proposed method is general enough to integrate
the contribution of existing data in this step, if any. A DSM is a geometric description or reconstruction of the
physical sensed surface and can be considered as a noisy sample of the visible surface. It provides information
about the objects which have been characterized by their relative heights respect to their surrounding, e.g.
buildings, trees. It can be generated directly using a laser scanner sensor (Lohr & Eibert 1995), or using stereo
images (Ackermann & Krzystek 1991, Schenk & Toth 1991). The quality of the DSM is an important issue
in our reconstruction method. Indeed, the results of the mid-level processes in extraction and structuring 3D
primitives is highly dependent on the quality of the utilized DSM, which in the worst case leads to partially
or completely wrong descriptions of the buildings. This concept is elaborated in more details in the following
chapters. Figure (4.3) shows a 3D perspective view of an image wrapped over a corresponding DSM. The �gure
illustrates the presence of the standing objects such as buildings and trees {as it is expected{ in DSM.

Figure 4.3: 3D perspective view of an image wrapped over corresponding DSM

Several methods for detecting building candidates, regions of interest, from the DSM have been introduced so far;
1) The most simple and accurate one is subtraction of DSM from existing DTM (Digital Terrain Model) 1, but
in most cases a DTM with su�cient resolution and accuracy is not available. 2) Extraction of 3D blobs or hight
bins based on grouping the DSM heights into consecutive height ranges of a certain size (Baltsavias et al. 1995).
3) Applying morphological operators on the DSM to compute an approximation of terrain surface using grey
opening (Weidner & F�orstner 1995), or dual rank �lter (Eckstein & Munkelt 1995). In this study we have used
the grey opening approach proposed by Weidner and F�orstner (1995), which is based on a square structuring
element. Although the result is relatively satisfactory in the open areas, however, further investigations on

1A DTM is a geometric reconstruction of the terrain surface where buildings or other standing objects are considered outliers
and are excluded.
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the exploration of the potentials of the other approaches such as image classi�cation using height data as a
supporting channel (Walter 1999), or wavelet transformation (Fatemi Ghomi 1997, Wouwer 1998), specially in
built-up areas, as alternative methods have to be carried out. Even a minor improvement of the results in this
stage will signi�cantly increase the quality and outcome of the subsequent processes (Ameri & Fritsch 1999).

Grey opening of a digital surface has a simple geometric interpretation (Gonzalez & Woods 1993). Suppose that
we view a digital surface z = S(x; y), in a 3D perspective (see �gure 4.4-b), where x and y axes being the usual
spatial coordinates and the third axis z being height. In this representation, a DSM appears as a discrete surface
whose value at any point (x; y), is that of S at those coordinates, that is z. Let us now assume that we want to
open S by a spherical structuring element k, and view this element as a rolling ball. The mechanisms of opening
S by k may be interpreted geometrically as the process of pushing the ball against the underside of the surface,
while at the same time rolling it so that the entire underside of the surface is traversed. The opening S � k then
is the surface of the highest points reached by any part of the sphere as it slides over the entire undersurface of
S. That means, all the peaks that were narrow with respect to the diameter of the ball were reduced in size and
sharpness. In practical applications, opening operations usually are applied in intensity based images to remove
small {with respect to the size of the structuring element{ light details, e. g. peaks, while leaving the overall
grey levels and larger bright features relatively undisturbed. Figure (4.4-c) shows an approximation of a terrain
surface so-called DTM, resulted from a morphological opening of DSM using a square structuring element k,
of the size w � w. Indeed, this is a morphological grey scale erosion of the DSM by k followed by a dilation
operation with the same structuring element, which is de�ned as:.

S � k = (S 	 k)� k (4.15)

Figure (4.4-a) shows the corresponding DSM as a grey value based image where the grey levels indicate the
heights. The lighter areas present buildings and other standing objects like trees.

a b c

Figure 4.4: Morphological opening of DSM: a) grey value based DSM image, b) 3D perspective view of DSM, c) 3D

perspective view of computed DTM

As described above, if the size of structuring element k will be selected in such a way that it contains these
areas, then the initial grey scale erosion removes these areas, but it also darkens the image {extends the holes{.
The subsequent dilation again increases the brightness {compensating the e�ect of erosion in extending the size
of holes{ of the image without reintroducing the details, i.e. buildings or trees, removed by erosion (see �gure
4.4-c). The size of k will be chosen based on a priori knowledge about the minimum size of buildings in the
scene. In fact, the extraction of regions of interest is equivalent to the generation of normalized DSM, which
from an image processing point of view is simply a morphological top-hat transformation of the DSM and is
de�ned by h = S � (S � k), where S is the input DSM, and h is the height of the standing objects, followed by
a thresholding process (equation 4.16), based on a priori knowledge about the minimum height of the buildings
hmin.
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h(x; y) =

8<
:

h if h > hmin

(x; y) 2 DSM
0 if h < hmin

(4.16)

Within the initial extracted segments there are some other segments that do not present buildings, such as small
groups of trees or small hills. Therefore the primary segmented image undergoes another thresholding process
based on minimum size of buildings in the scene. The �nal segmentation, that is the extraction and labeling
of the regions of interest based on minimum size threshold will be done in an e�cient way during a standard
connected component analysis. Only those regions with an area bigger than a pre-speci�ed size threshold will
be selected and labeled.

Figure (4.5-a) illustrates a perspective view of the extracted regions of interest in 3D object space. Some of
the regions (partly) still do not present buildings or building parts. These are due to presence of features
such as standing trees or cars next to a building, or group of trees whose size is bigger than a speci�ed size
threshold. These incorrectly classi�ed regions or region parts will be �ltered out in the follow up processes.
An alternative solution is the analysis of texture pattern (Haralick, Shanmugam & Dinstein 1973, Nagao &
Matsuyama 1980, Sali & Wolfson 1992, Lee & Schenk 1992, Lee & Schenk 1998, Wouwer 1998), within each
region of interest, in order to detect and exclude objects that are standing adjacent to the buildings but are not
a building or part of a building, such as trees. The intermediate result has shown that integration of this analysis
at this stage possibly could overcome this problem, but still more investigation is needed. The transformation
of the extracted regions of interest into the 2D image space is done based on collinearity equation (6.10). Figure
(4.5-b) shows the result of this transformation.

a b

Figure 4.5: Extracted regions of interest: a) the 3D perspective of the extracted region wrapped over coresponding DSM,

b) extracted region overlaid on the corresponding aerial image.

4.5 Iterative Region-based Segmentation

The objective of segmentation in this study is to partition an image into regions. In the previous section, we
approached this problem by �nding regions of interest based on height discontinuities and their size using math-
ematical morphology. In this section, we discuss a region-based segmentation technique based on an iterative
region growing approach to partition each region of interest into the primitive planar regions, which are parts
of building roofs in the real world. In order to implement region growing, we need a rule describing a growth
mechanism and a rule checking the homogeneity of the regions after each growth step. The growth mechanism
is simple, at each stage k and for each region Rk

i ; i = 1; � � � ; n we check if there is a pixel in the 8-neighborhood
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of each pixel of the region border. Before assigning such a pixel P to a region Rk
i , we check if the region

homogeneity:

H(Rk
i [ fPg) = TRUE (4.17)

is still valid. The performance of this algorithm depends heavily on the choice of the initial seeds. Ideally, one
seed per image region must be provided as it is described in section (4.5.4). Usually there is more than one seed
per image region, and a merging procedure must be devised in order to merge adjacent regions that have similar
properties. The homogeneity rule in this algorithm is based on �tting a planar surface to the original image data
in the seed region and subsequent growth regions. The region growing process is controlled directly by the planar-
�t error ei, obtained at each iteration, and a pre-determined allowable tolerance as computed using equation
(4.31). The iteration continues until the termination criteria are met at which point the computed planar region
description is rejected or accepted. Each part of the region-based segmentation algorithm is described in detail
in the following sections. The material is divided into main sections on image noise estimation, 
at pixel type
labeling, edge pixel extraction, seed region extraction and region growing. The algorithm works iteratively on
every region of interest one at a time. It should be mentioned that in the presence of a high quality, high
resolution DSM, such as one provided by a laser scanner (5 to 10 points per 1 m2), the segmentation process
can be performed on the DSM itself to directly extract the symbolic 3D planar-roof polygons.

4.5.1 Image Noise Estimation

In order to group pixels based on a planar surface �t in the region segmentation algorithm, it is necessary to
know a priori how well the planar primitives should �t the data. This type of information should be derived
from the image data in a data-driven mechanism, so that the algorithm can adapt to the noise conditions. This
section describes a simple method for estimating both, the average noise in the entire image, called global image
noise, and average noise within every region of interest called local image noise, with the assumption that the
additive noise process is relatively stationary across the image. This method is a modi�ed approach of Besl
(1988), using the root mean squares error (RMSE), of a local planar surface �t. Better methods of measuring
image noise are not doubt possible (Lemmens 1996, Waegli 1998), but good results were obtained with the
following simple method. Global and local image noise estimates were found useful for indications of image
noise variance and image quality.

Within every region of interest, perform a least squares planar �t z = ax + by + c, in a 3 � 3 neighborhood
of every pixel, to compute the slope of each plane at that pixel. If the slope of the plane at a pixel is greater
than a pre-speci�ed slope-threshold, disregard the pixel since it is probably at or near to a step discontinuity.
Similarly, if the slope of the plane is exactly zero, the neighborhood of the pixel is likely to be synthetic data,
or completely dark, and it should be discarded. If the pixel has not been discarded, compute the planar RMSE
�t for the pixel, �pixel, as de�ned by:

�2pixel =
1

9

X
(x;y)2win

(I(x; y)� (ax+ by + cz))2 (4.18)

where I(x; y), is the original digital image, and a; b; c, are the coe�cients of the estimated plane. Compute the
average mean of the �t error �pixel, for the pixel within the region of interest. This quality measure is called
local image noise estimate Locale of, the corresponding region of interest and is de�ned by:

Locale =
1

ni

niX
1

�pixel(i) (4.19)

where ni is the number of pixels, which are not rejected within the region of interest i. The weighted arithmetic
mean of local image noise Locale of all the regions of interest is called global image noise estimate Globale, and
is de�ned as:

Globale =

mX
1

ni � Locale(i)=
mX
1

ni (4.20)

where m, is the number of regions of interest. As it is described in the following sections, utilizing these two
parameters enabled us to tie algorithm thresholds involved in our approach to the amount of noise in the image
in an empirical manner.
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4.5.2 Flat Pixels Type Labeling

A common approach to region segmentation is to start from some pixels (seeds) representing distinct image
regions and to grow them, until they cover the entire image. The performance of this algorithm depends heavily
on the choice of the initial seeds. Ideally, one seed per image region must be provided. The user in a supervised
mode usually chooses the seeds. But, in order to implement a region growing segmentation algorithm that can
be executed in an automated and unsupervised environment, a rule describing and extracting seed regions based
on a data-driven mechanism is needed. To realize the concept, a strategy based on geometric characteristics of a
digital surface has been developed. This approach is originally proposed by Besl and Jain (1988), where the sign
of mean and Gaussian curvatures have been used to initially classify range images in industrial application into
eight di�erent surface types. These surfaces are graphically illustrated in �gure (4.2) and are tabulated based
on the sign of the surface curvatures H and K, in table (4.2). Moreover, an iterative region growing algorithm
based on variable-order surface �tting has been utilized to partition the range image into smooth and meaningful
surface regions. The essential di�erence of our approach compared to Besl is that based on the assumption that
building roofs are composed of generic planar surfaces, we only concentrate on 
at surface type pixels, which
serve as the seed regions for the region growing segmentation process. In addition, the segmentation process
is performed within the extracted regions of interest in aerial image based upon intensity grey values, not the
height data in range image.

K > 0 K = 0 K < 0

H < 0 peak ridge saddle-ridge
H = 0 (none) 
at minimal
H > 0 pit valley saddle-valley

Table 4.2: Eight basic surface types de�ned by mean and Gaussian curvature signs (courtesy of Besl 1988)

To compute surface curvatures from digital images, the �ve partial derivatives Su; Sv ; Suv; Suu; Svv, are all we
need to compute the six fundamental form coe�cients E;F;G;L;M;N (see equations 4.5, 4.8), and hence the
mean and Gaussian curvatures by:

H =
Suu + Svv + SuuS

2
v + SvvS

2
u � 2SuSvSuv

2(1 + S2u + S2v)
3=2

(4.21)

K =
SuuSvv � S2uv
(1 + S2u + S2v)

2
: (4.22)

The problem to be addressed here is computing these partial derivatives through the given digital image. In
fact, they have to be replaced by their approximations computed from the discrete surface. A possible solution
is based on a local least squares surface model using discrete orthogonal polynomials which has been discussed
extensively in (Bolle & Cooper 1984, Haralick 1984, Besl 1986). The least squares estimates of �rst and second
partial derivatives are determined based on the following separable binomial window operators:

Du = ~d0~d
T
1 ; Dv = ~d1 ~d

T
0 (4.23)

Duu = ~d0~d
T
2 ; Dvv = ~d2 ~d

T
0 ; Duv = ~d1 ~d

T
1

where the column vectors for a e.g., 5� 5 window operator are de�ned as:

~dT0 =
1

5
[ 1 1 1 1 1 ] (4.24)

~dT1 =
1

10
[ �2 �1 0 1 2 ]

~dT2 =
1

14
[ 2 �1 �2 �1 2 ]:
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Note, that estimated surface curvatures are extremely sensitive to noise because they require the approximation
of second derivatives, in which high frequency noise is ampli�ed. Thus, a smoothing operation is required. One
way to �lter out the local 
uctuations in digital images I(x; y), is to perform a morphological opening followed
by a closing operation with a constant-valued structuring element k, which is somehow a median �lter (equation
4.25). The net result of these two operations removes or attenuates both bright and dark artifacts or noise while
leaving the edges sharp (Haralick & Shapiro 1992).

�I = (I � k) � k (4.25)

Therefore, the partial derivatives are computed utilizing the intermediate smoothed image and the least squares
derivative window operators based on an image convolution as de�ned by:

Iu(u; v) = Du ? �I(u; v) ; Iv(u; v) = Dv ? �I(u; v) (4.26)

Iuu(u; v) = Duu ? �I(u; v) ; Ivv(u; v) = Dvv ? �I(u; v) ; Iuv(u; v) = Duv ? �I(u; v):

These estimated partial derivatives can then be plugged into the equations (4.21) and (4.22), to compute
mean and Gaussian curvatures for each pixel of a digital image. Furthermore, the signs of mean signH , and
Gaussian curvatures signK, are determined for each individual pixel based on two pre-speci�ed tolerances
tH = (minH ;maxH), tK = (minK ;maxK) and output of the thresholding functions (4.27, 4.28) respectively.
In practice, this thresholding process is needed due to the presence of noise in the image and approximation
errors caused by the computation of the required partial derivatives.

signH = 0 if minH < H < maxH (4.27)

signK = 0 if minK < K < maxK (4.28)

It is described earlier that we are only interested to planar surfaces, where values of both signH , and signK are
zero (table 4.2). In order to classify this type of regions in the image, within every region of interest, 
at-pixels
type are labeled and stored in an image called 
at-pixel type binary image. This binary image is in fact, a coarse
classi�cation of the image and is used as an input to the seed region extraction algorithm, which is discussed in
the following section.

4.5.3 Edge Pixels Extraction

Having the values of �rst partial derivatives of each pixel (Iu; Iv), an approximate measure of the edge magnitude
can be computed in an inexpensive manner using (4.29).

edgemag =
p
I2u + I2v (4.29)

A threshold on this edge magnitude provides a detector for edge pixels. In current implementations this feature
has been used to compute the edge magnitude image. This image can then be thresholded based on the estimated
noise variance in the image, to compute an edge pixels binary image (�gure 4.6). In addition, the edge magnitude
image is used as a weight function for the selected edge pixels during the hypothesis model veri�cation process
discussed in chapter 6.

The entire computation is based on a simple fact: if the value of a pixel in the edge magnitude image is more
than a pre-speci�ed threshold tedge, then this pixel is an edge pixel. The tedge is an edge threshold and is de�ned
for each region of interest by :

tedge = C �Regione (4.30)

where C is a constant value, and Regione is the output of the following function:
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Figure 4.6: Computed edge pixels binary image.

Regione =Min(Locale; Globale): (4.31)

The above function will accept the local image noise and global image noise values (section 4.5.1) as input and
assign the minimum value to the Regione for each region of interest.

The computed binary image is an input to the segmentation algorithm and serves as a constraint data structure
during region growing. This is elaborated in section (4.5.5.2).

4.5.4 Seed Region Extraction

Flat pixels type of one primitive roof region tend to connect to another neighboring, but distinct primitive roof.
To overcome this problem it is proposed that connected regions should be isolated and eroded until a small,
maximally interior, single seed region is isolated. This seed region is then grown based on a planar surface �tting
algorithm until it reaches its natural limits as de�ned by variations in the image data. Given the 
at pixels
type binary image, the following method has been utilized to extract a small interior and correctly labeled
group of connected pixels, called seed region. The algorithm begins to isolate the largest connected 
at pixels
region using a 4-connected component analysis. The isolated region is eroded repetitively using a region erosion
operator, after each erosion, there exist a largest 4-connected subregion of the original region. The largest
subregion with the minimum number of pixels greater than or equal to a pre-speci�ed minimum seed region size
threshold (minimum number of seed region's pixels) is assigned to be a seed region. The minimum seed region
size threshold must be equal or greater than the minimum number of points required for the planar surface �t.
If the threshold is equal to the minimum number of points i.e., 3 pixels, then the planar �t can respond strongly
to noise in the image. Therefore, the threshold should be greater than the minimum required number of pixels.
Since the primary purpose of this strategy is to �nd a small enough isolated interior seed region that is not
accidentally connected to any adjacent regions, and is far enough inside the boundaries of the actual surface
primitive having escaped the undesired side e�ects of di�erentiation at surface boundaries, there is an upper
limit on the number of necessary erosion. This limit is based on the window size of the derivative operators
used in the computation of surface curvatures. In a 2D image convolution by a window operator, e.g. L� L, a
given pixel is a�ected by the input data (L�1)=2 pixel away from it on any side. Therefore, a limit of (L+1)=2
erosion iteration reduce a L+1�L+1 binary block to nothing implying that there are no e�ects of the L�L
window operators after (L+ 1)=2 erosions.

The entire algorithm stops either the maximum number of erosions reached or when the minimum number of
pixel in the largest four-connected subregion is greater than or equal to the minimum seed region size threshold.
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Figure 4.7: Extracted seed region overlaid on corresponding region of interest

Figure (4.7) shows the extracted seed regions overlaid on a corresponding region of interest. This small region
serves as the seed region to the iterative region growing algorithm.

4.5.5 Region Growing

As its name implies, Region growing is a procedure that groups pixels or subregions into larger regions. The
approach starts with a seed region and from this seed the region is growing by appending to each seed those
neighboring pixels that have similar properties, e.g. grey level, etc. For each border pixel of a seed region, we
check if there is any pixel in its 3�3 neighborhood in the image that can be merged with the region to which the
border belongs. The candidate pixel P must not be an edge pixel and its value must be close to the computed
value of its correspondence in the grown region Î(x; y), that means:

jI(x; y)� Î(x; y)j � threshold: (4.32)

To illustrate the basic concepts of our approach let us start with the extracted seed region from the previous
section. First, it must be decided how well a planar surface should �t the original data. The image noise
estimation procedure discussed previously provides an indication of the maximum �t error threshold for the
iterative surface �tting algorithm. A plane is �tted to the small seed region based on a least squares process.
If the seed region belongs to parts of a roof that is not too highly curved, this plane will �t quite well to the
original data. If the plane �ts the seed region within the maximum allowable �t error threshold, then the seed
is allowed to grow, if not, the seed is rejected.

After a plane is �tted to a region, the plane description is used to grow the region into a larger region where
all pixels in the largest region are connected to the original region and are compatible in some sense with
the approximating planar surface function for the original region. On the n-th iteration for the seed region S0i
corresponding to the primitive region Ri, the region growing algorithm accepts the smoothed original image
�I(x; y), the plane description Pf(a; b; c); (x; y) 2 Rn

i g computed from least squares planar �tting algorithm, the
edge pixels binary image and the surface �t error eni computed from the �t to the primitive region Rn

i . The �rst
step is to compute the absolute value of the vector �Zn

i , given by:

�Zn
i = j�I(x; y)� Î(x; y)j: (4.33)

The function Î(x; y), is computed based on the planar function Pf(a; b; c); (x; y) 2 Rn
i g, for all the pixels of region

Rn
i , and its neighboring pixels which are called in this context candidate pixels. Vector �Zn

i has small values
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if the original image surface lies close to the approximating plane and have large values otherwise. Therefore,
this vector is thresholded to �nd the compatible pixel, which are de�ned as:

Pcompatible = f(x; y)j�Zn
i (x; y) � tpixelg (4.34)

where tpixel, is the error tolerance threshold that determines how close the candidate pixel must be to the
approximating plane, so that they are considered compatible. The next region Rn+1

i , is computed based on
these compatible pixels.

After the region growing iterations have terminated, one is left with the grown region Ri, along with the
approximating plane parameters, and the �t error ei. When a grown region is rejected, the seed region responsible
for the grown surface region is marked o� in a writable copy of the 
at pixels type binary image as having been
processed, which prohibits the use of the same seed region again. When a grown region is accepted, all pixels in
the accepted region are similarly marked o� in the 
at pixels type binary image so that they are not considered
for subsequent seed regions. In this respect, surface rejection and surface acceptance are similar. However, the
surface acceptance process is much more complex in that it updates several other data structures such as the
error image e(x; y), the best �t region label image Regionlabel(x; y), and the list of primitive plane-roof regions.
Purpose and description of these data structures will be discussed next.

4.5.5.1 Error Tolerance Thresholds

There are two error tolerance thresholds used for the region-based segmentation algorithm tpixel and Emax. The
maximum allowable error �t threshold called region threshold function, Emax, is used to allow a region to grow
or stops. Assuming a valid estimate of the noise variance in the image, i.e. Regione, as determined in (4.31), the
root mean square error of a planar �t ei should also be the same value. But since this quality measure of the
planar �t, itself is a random variable, there are variations in this quality measure from one planar �t to another.
Therefore, the maximum allowable �t error threshold must be greater than the estimated noise variance in the
image. So, if RMSE �t of a particular region on n-th iteration eni will be less than the region threshold, then
the error �t test is passed and the region is allowed to continue growing. Otherwise, the growing process stops
and a grown region Rn

i is accepted as primitive roof region if its size is bigger than the pre-speci�ed minimum
primitive region size, if not, it will be rejected. There is a small deviation in this strategy for the �rst iteration,
in this particular case if e1i � Emax, then the corresponding seed region S0i = R1

i is rejected outright, based on
the assumption that the extracted seed does not belong to part of a 
at roof. The region threshold function is
de�ned by:

Emax = C1 � Regione (4.35)

where C1 is a constant value, e.g. C1 = 2:8, to increase the estimated noise variance in the image. The second
quality measure, the error tolerance function tpixel, is also a function that increases the value of the root mean
square error �t ei in each iteration n during the process of thresholding candidate pixels and is de�ned by:

tpixel = C2 � eni (4.36)

where C2 is a constant value. Based on the assumption that the present noise is relatively stationary across
the image, a value of e.g. C2 = 2:8 o�ers a reasonable form for error tolerance function, because approximately
about 99:5% of all the candidate pixels of the approximated planar region lie within this error tolerance. In this
simple error tolerance function, the factor C2 controls the aggressiveness of each region growing iteration and
therefore, controls the speed and accuracy of the iterative planar �tting process.

4.5.5.2 Relaxation Labeling in Region Analysis

Most region segmentation methods are deterministic in the sense that they assign each image pixel to just one
region. Although such a segmentation is ultimately desirable, it is not always useful to employ such segmen-
tation during the growing process, because they treat ambiguous cases {pixels lying in transition regions{, in
a rather in
exible way (Gonzalez & Woods 1993). The fundamental problem with applying this strategy is
that outlier pixels picked up in one iteration can never be dropped in subsequent iterations. This implies that
there is something wrong with the simple pixel compatibility requirements for new pixel. We apply a relaxation
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methodology in our approach by introducing two new data structures, the error image e(x; y) and best �t region
label image Regionlabel(x; y). These two images produce a mechanism that if oulier pixels enter a region on
one iteration, they leave on a later iteration, depending on the results of the planar �tting. Hence, the e�ect of
few bad pixel is not cumulative in this case. When a region iteration terminates and the primitive plane-roof
region is accepted by successfully passing the test conditions discussed previously, the magnitude of the residual
error at each pixel of the grown region is stored in the error image to explicitly note the spatial distribution of
the approximation errors. For the region label i, each pixel of the accepted plane-roof region is stored in the
best �t region label image Regionlabel, to explicitly note the pixel that the approximating plane �ts to within
the speci�ed threshold. During the thresholding operation that forms the compatible pixel, each pixel must not
only have an error less than the error tolerance threshold tpixel (4.34), but it must also have an error less than
the current error stored in the error image. If both conditions are not satis�ed, then the pixel is not considered
compatible with the growing region despite the fact that the allowable error tolerance requirement is met. The
error image approach provides a relaxation capability for a pixel already associated with a given roof primitive
as opposed to strictly forbidding the reassignment of a pixel to another roof region once they have been assigned
to one roof primitive. That is, a previous plane-roof region may approximate the value at a pixel well enough for
that pixel to be associated with it, but if the current region approximates the pixel value better, then the pixel
can be relabeled with the current region's label if the pixel meets connectivity requirements with other pixels.
In this manner, the error image behaves as a region growing constraint. The other region growing constraint,
which has been used during the construction of the candidate pixel is that a region should not grow over step
discontinuities or orientation discontinuities. This constraint is simply applied by integrating the extracted edge
information with the region growing algorithm. A pixel is considered a candidate pixel in a 3� 3, neighborhood
of a border pixel, if it is an o�-pixel in the edge pixels binary image.

Figure 4.8 illustrates the results of extracting 2D plane-roof regions for three di�erent roof structures. It shows
that main structures of the roofs are correctly extracted. However because of the presence of noise in the
image and due to the shadow caused by the microstructure on top of the roof (4.8-a), some of the larger
roof primitives are divided into the smaller primitives. In fact, these intermediate 2D regions are merged into
the larger one, if they satisfy the compatibility requirements during the reconstruction process, which is the
subject of the next chapter. In addition {in the presence of high quality, high resolution digital images{, the
proposed method is capable to detect and extract the microstructure on top of the buildings roof such as
dormer windows in �gures (4.8-a) and (4.8-c). This type of information improves signi�cantly the results of
the higher-level reconstruction processes, in particular when dealing with complex buildings. Moreover regional
information derived from the extracted regions provide many descriptions such as area, surface normal, etc.,
which are not derivable from an edge- or line-based segmentation algorithm. They also provide topological
information based on the computation of a Polygons Adjacency Relationships (PAR) (see section 5.3), which is
an essential requirement for combining the simple, image-oriented geometric primitves in a lower-level process
to more complex, model-oriented geometric primitives or structures in a higher-level process.
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a

b

c

Figure 4.8: Extracted 2D plane-roof regions overlaid on corresponding buildings roof: a) gable roof structure building,

b) hipped-gable roof structure building, .c) complex roof structure building.
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Chapter 5

Generic Polyhedral-Like Model Reconstruction

5.1 Introduction

An automated vision system must be able to determine the appropriate transition from the more image-oriented,
qualitative representation of the object in the lower levels to the more abstract model-oriented, quantitative
representation of the object at the higher levels. A major problem in precise de�nition of the nature of the
mapping is the modeling aspect. Creation of de�nitive models is di�cult due to enormous variations in the
geometric and functional descriptions of the objects of interest. In addition, the embedding of an object in a
scene and the imaging process itself may introduce many di�erent kinds of noise and distributions. Objects
may be partially occluded by other objects, the scene may have particularly high contrast, the sensor may be
particularly noisy, and so forth.

This chapter describes a new method for automatic 3D reconstruction of polyhedral-like objects, in this context
used as a generic building model. A boundary representation of a coarse building hypothesis is constructed in
a data-driven, bottom-up approach, from simple geometric primitives (2D plane-roof regions) in image domain
to more complex geometric model (3D-roof structure) in object domain.

The previous chapter introduced the main aspects of the recognition task. The purpose and strategy used in
subsequent low-level processes to detect and extract the 2D plane-roof regions which have meaningful corre-
spondence with the roof components of the building objects are discussed. Consequently, it is now time to move
to the more model oriented representation of the buildings, which is carried out in the reconstruction part of
this study and is the subject of this chapter. The reconstruction procedure consists of di�erent intermediate,
interrelated processes aiming to form a framework, in such a way that every process provides more abstract
and more object related information to its immediate higher level process. This chapter is organized in two
parts, the �rst part describes several mid-level vision processes, starting with estimating the preliminary pa-
rameters of the 3D polygonal primitives of roof structures, called 3D plane-roof polygons in this study, by back
projecting the corresponding extracted 2D plane-roof regions in image space into the 3D object space. This
process is performed based on a synthesis robust parameter estimator developed in chapter 3 and is discussed
in section (5.2). To topologically describe interrelations between these 3D geometric primitives, which is an
essential requirement for an automated reconstruction process, the Polygons Adjacency Relationship (PAR) is
computed (section 5.3). These adjacency relationships are de�ned based on Voronoi diagram (dual of Delaunay
triangulation) and describe the topological properties, in particular the neighborhood relationships between
the basic elements of a roof structure. Based on the computed PAR the compatible adjacent 3D polygons are
merged into the larger 3D plane-roof polygon. Its symmetry with respect to their adjacent polygons is also
de�ned and stored as attributes for further processes. This merging process is covered in section (5.4). The
primitive 3D elements along their adjacency relationships information and derived attributes are input to the
POLY-MODELER, where they are geometrically and/or topologically combined to generate the coarse building
model. The POLY-MODELER is a new generic polyhedral-like model generator, which is originally developed
in this study (Ameri & Fritsch 1999). It is based on a generic polyhedral-like solid model and generates the
boundary representation (b-rep) of a coarse hypothesis building model using the 3D intersection of adjacent
polygons. The second part of the current chapter (section 5.5) is dedicated to the mathematical concept, nota-
tions and a detailed discussion of POLY-MODELER. The proposed methods and the mid-level vision processes
discussed in this chapter are all implemented and the subsequent results of di�erent processes are presented.

5.2 Primary Roof Elements in 3D Object Space

An automated vision process, such as 3D object reconstruction, can be described as a complex mapping function
to transfer the mass of low-level image-domain measurable knowledge into the more abstract form of high-level
object-domain semantic knowledge of the world's object. An important issue in this complex procedure is
an early selection of relevant knowledge in lower domain, and entering the higher level process as early as
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possible, so that the deduction processes do not become combinatorial, thus reducing the search complexity and
computational expenses (see section 4.2). In fact, in this transition, an intermediate level is required, where the
initial extracted knowledge in the image space, which is represented in the more compact symbolic description of
image-driven primitives, e.g. 2D regions, can be integrated or transferred into the more symbolic representation of
the object-driven primitives, e.g. 3D planar polygons. As a result, initial hypotheses of the essential components
and elements of the object of interest are created. Therefore, immediately after detection of the primary 2D
plane-roof regions they should translate into the corresponding 3D plane-roof polygons, simply by inversion of
the imaging process. Having an initial description or approximation of the object surface in real world, i.e. in
this study the corresponding DSM, the transformation process is equivalent to a 3D regression problem and is
performed using standard collinearity equations (6.10). Theoretically, the best result is obtained based on the
traditional least squares �tting solution. However, in practice, as it has already been pointed out in chapter 3, due
to the presence of outliers in the original data, the solution is far more complex than the simple �tting process and
an appropriate robust �tting procedure is required. Outliers are pervasive phenomena in vision theory and are
emerging di�erently in every vision application depending on the practical situation (Schunck 1990). Particularly,
in this application outliers occured in both, DSM and extracted primary 2D regions. Outliers appearing in the
extracted 2D regions are caused by the failure of the segmentation procedure. As it is shown in �gure (3.4-a),
due to the presence of noise, shadow or low contrast scene in the image, as well as the nature of a region-growing
based segmentation algorithm, the segmentation process sometimes grows over the discontinuities or the physical
bounding edge of the region. This segmented region part(s) is appearing as outliers during the �tting process,
as its real height is signi�cantly lower than the height of the corresponding building roof, and therefore leading
to an arbitrary solution, if outliers are not detected and excluded from the estimation process, as it is illustrated
in �gure (3.4-b). Outliers occurring in the DSM are caused during its generation. In fact, commonly there are
two di�erent comparable methods for the generation of DSM. 1) Automatic photogrammetric techniques such
as least squares (area-based) matching (Ackermann 1984, F�orstner 1982), or feature-based matching algorithms
(F�orstner 1986). 2) Airborne laser scanning methods such as continuos wave, or pulse techniques (Wehr &
Lohr 1999). Both methods have advantages and disadvantages, a complete comparison of various aspects of
these techniques is given by (Baltsavias 1999). Despite the fact that the laser scanning technique provides
high accurate direct geometric descriptions of visible surfaces, practical result in the particular application of
automated building reconstruction has shown that the quality of the DSM in built-up areas generated by either
technique is still insu�cient. For example, issues like occlusion, shadow and anomalies of the surface height and
discontinuities in photogrammetric methods, and lack of explicit measurement of breaklines such as roof ridges in
laser scanning techniques, as well as subsequent smoothing operations, thus trim o� the roof corners or the roof
parts are caused that both methods failed to accurately recover the descriptions of the roof structures. In fact,
the latter method is capable of partially overcoming this problem by highly dense sampling measurements of
the terrain surface, which in this case ask for very expensive and costly operations. The e�ects of the presented
outliers are eliminated in two steps in this research. The extreme ouliers, which lead to an arbitrary plane
parameters for the 3D plane-roof polygons are detected and excluded during the regression procedure using
a synthesis robust parameter estimation developed in chapter 3 and is discussed shortly in this section. The
reminder of the outliers that cause a minor deviation between the estimated roof structure parameters and the
physical ones are eliminated during the veri�cation of hypothesis roof structure, which is discussed in the next
chapter.

Recall from section (3.4), the proposed robust parameters estimation method is a two-stage parameters estima-
tion algorithm. The �rst stage 
ushes and detects the outliers and estimates the best initial 3D plane param-
eters based on the inliers data using a random sampling type estimator such as Random Sampling Consensus
RANSAC (Fischler & Bolles 1981), or alternatively Least Median Squares, LMS (Rousseeuw & Leroy 1987).
The estimated parameter values along with the estimated error variance are then introduced into the iterative
re-weighting M-estimator algorithm (Huber 1981, Hampel et al. 1986), as initial values to compute the �nal 3D
plane parameters.

There are two important issues that have to be discussed. Firstly, before transferring the extracted 2D plane-
roof regions, which are stored in a raster-based data structure, into the 3D object space, they are converted
into the 2D plane-roof polygons and stored in a vector-based data structure. That is why the corresponding 3D
primitives in object space are called 3D plane-roof polygons. However, both representations along a direct one-
to-one correspondence are stored in the system as they are required in subsequent processes. For example, the
raster-based structure is used during the computation of the polygon adjacency relationships (PAR). Secondly,
during the �tting process, despite the fact that bounding vertices of the 2D polygons are su�cient to estimate
the 3D plane parameters. A pre-speci�ed number of the pixels e.g., 200 pixels, within the extracted 2D regions
are sampled in a regular interval and introduced into the regression process as observations, in order to increase
the redundancy of the observations and therefore the reliability of the solutions.
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Figure (5.1) illustrates the results of transferring the extracted 2D plane-roof regions into the corresponding
3D plane-roof-polygons in object space for a gable (5.1-b), a hipped-gable (5.1-d), and a complex (5.1-f) roof
structure of the residential buildings of Avenches data set. It illustrates that the algorithm correctly recovers
the parameters of the 3D plane, even in the presence of the disturbances such as shadow or small microstructure
on top of the buildings roof (�gures 5.1-b and 5.1-f).

a b

c d

e f

Figure 5.1: Estimated 3D plane-roof polygons in object space: a) extracted 2D plane roof regions of a gable roof structure,

b) estimated 3D plane-roof polygons overlaid on corresponding gable roof structure building in object space, c) extracted

2D plane roof regions, and d) estimated 3D plane-roof polygons overlaid on corresponding hipped-gable roof structure,

e) extracted 2D plane roof regions, and f) estimated 3D plane-roof polygons overlaid on corresponding complex roof

structure building.
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5.3 Polygons Adjacency Relationships

The basic idea in geometric modeling is to combine simple shapes to construct complex models. In our particular
modeling process of 3D building reconstruction, the adjacent 3D plane-roof polygons, shortly 3D-poly, are
combined to construct the roof structure. Modeling complex objects such as buildings requires considerable
attention to their topology. We must understand how simple elements are connected to form the complex model
and how its topology is preserved when subjected to a variety of transformations. Topological properties are
not metrical, but concern such things as connectivity and dimensional continuity (Mortenson 1997) 1. In the
previous section we discussed processes of construction of the primitive 3D plane-roof polygons, which are the
main components of the roof structure and form the foundation on which we build the generic building models. In
order to topologically describe the interrelation between these 3D primitives, a Polygon Adjacency Relationship
(PAR) is computed. The concept of spatial adjacency, which has been normally de�ned based on a point-
wise data set, is extended by introducing the adjacency relationships between polygonal primitives of di�erent
shapes and sizes, including connected, disconnected, or overlapped ones. During the reconstruction process, the
PAR provides the essential topological information such as adjacency, and 'contained-in' relationships between
incorporated primitives, which are the minimum types of object relationships that are required in an automated
vision process based on a generic object model. The PAR is de�ned based on a Voronoi diagram (dual of
Delaunay triangulation), where each primitive plane-roof polygons, in this context a data point, produce a
zone of in
uence representing all parts of the space closer to that polygon than to any other. Polygons are
considered adjacent only if their Voronoi regions touched. In fact, the main reason for using Voronoi regions
for solving the problem is that no model of spatial adjacency is available for disconnected objects, and hence
the de�nition of adjacency had to await for the connection of the points, line segments or polygons in the
form of a graph structure by techniques that are primarily coordinate-based line intersection detection methods
(Gold 1990). The Voronoi diagram and the Delaunay triangulation are closely related, and one can be extracted
from the other. There are several algorithms for the generation of Delaunay networks and Voronoi diagrams
(Midtb� 1993). In this section a description on the extended method of PAR computation developed in this
research study is presented, and a discussion which reveal the importance of the concepts, and the methods of
their computations that we have touched on only brie
y here.

a b

Figure 5.2: Correspondence between a Voronoi diagram and its dual, Delaunay triangulation network, a) Voronoi diagram,

b) corresponding Delaunay triangulation network

Figure (5.2-a) shows the Voronoi diagram computed for a set of randomly distributed points. The lines that
bisect the lines between a center point and its surrounding points de�ne a single Voronoi polygon. The bisecting
lines and the connection lines are perpendicular to each other. When we use this rule for every point in the
area, the area will be completely covered by adjacent polygons. Notice that the polygons on the boundary of the
area are open, because they have no neighboring points in that direction. The dual of the Voronoi diagram is
Delaunay triangulation. If the Voronoi diagram is used as a basis, the Delaunay triangulation can be constructed
by drawing the lines between the points in adjacent polygons. When the construction is �nished we have got a
triangular network that covers the whole area. The relationship between the Voronoi diagram and corresponding
Delaunay network is shown in �gure (5.2-b). The Delaunay triangulation network can also be computed directly,

1The properties of geometric shapes that are invariant under transformations that strech, bend, twist, or compress a �gure,
without tearing, puncturing, or inducing self-intersection, are topological properties
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based on the Delaunay criterion of empty circle property, a Delaunay triangulation network consists of non-
overlapping triangles where no points in the network are enclosed by the circumscribing circles of any triangle.
The circle centers are recognized as the vertices of the Voronoi diagram. This observation can be used to make
algorithms for the generation of Voronoi diagrams based on Delaunay triangulation.
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Figure 5.3: Delaunay triangulation network generated based on the central gravity points of corresponding 2D plane-roof

polygons

An important property of Delaunay triangulation network is the adjacency relationship. If a Delaunay arc
connects two points, then their associated Voronoi regions are adjacent to each other, and vice versa. The point
adjacency relationship is the basis on which adjacency relationships concerning other geometric data types
and features such as lines or polygons are de�ned. Principally, a Voronoi region can be constructed around
any objects or geometric primitives in 2D space, which in turn gives us the ability to construct the adjacency
relationships between more complex object types than the simple point-wise data set. In the application of
computing the adjacency relationships between plane-roof polygons, due to the presence of polygons with
di�erent sizes, closeness, and polygons which are partially or totally overlapping each other such as 'contained-
in' polygons, applying Delaunay triangulation method in vector domain causes undesired results. Figure (5.3)
shows the generated Delaunay triangulation network between the set of points which are the center of gravity
of their associated 2D plane-roof polygons. A close look at the �gure reveal that e.g., polygon 67 is incorrectly
adjacent to polygon 73, or polygon 74 is adjacent to polygons 69, and 71, which are not the valid adjacent
relationships. Although, theoretically this type of problem can be solved applying the constrained Delaunay
triangulation criterion 2 (Preparata & Shamos 1985, Midtb� 1993), where all the vertices of each polygon are
considered as the data points instead of the corresponding center of gravity point, and the bounding edges of
every polygon are introduced in the computation as pre-speci�ed triangle edge constraints. However, in practice
this type of constraint is also invalidated due to the presence of overlapping polygons, which are generated
based on the nature of relaxation strategy in our region-growing algorithm, or the existence of the contained-in
polygons i.e., polygons correspond to dormer windows on top of roof structure

In order to overcome this problem, the Voronoi diagram is generated based on distance transformation (Borgefors
1986), in a raster domain (Tang 1992). Pilouk et al. (1994), and Chen et al. (1994) have extended the concept into
the 3D space for generating Delaunay tetrahedral tessellation. A distance transformation converts a binary image
consisting of feature (kernel point), and non-feature pixel, into a gray-value image. The distance transformation
operation assigns a number to every non-feature pixel, which is the distance between the corresponding pixel
and the nearest kernel point. Computing these distances in digital images is based on an approximation of true
Euclidean distance.

2A constrained Delaunay triangulation network is an extension of the standard method by allowing the pre-speci�ed, non-
intersecting line segments {except at their end points{ to be forced in the computation as part of the triangulation network. The
triangles containing any of such pre-speci�ed edges may not be Delaunay triangles
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There are several methods and associated masks for approximating the true Euclidean distance. Borgefors
(1986) has discussed the performance results of applying di�erent approaches in term of speed and maximal
error between the true Euclidean distance and its approximation. She has pointed out that the problem of
choosing the best distance transformation is application oriented. For an application that highly accurate result
is not required, such as generation of Voronoi diagram for the purpose of obtaining the adjacency relationships
between inexact features, i.e. extracted 2D plane-roof polygons from a noisy aerial image, computing exact
distances from inexact features is not necessary, at least not when the exact distances are more computationally
costly than adequate approximations.
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Figure 5.4: Chamfer 3-4 mask proposed by Borgefors (1986), a) symmetric Chamfer 3-4 mask used for parallel process,

b) Chamfer 3-4 forward and , c) Chamfer 3-4 backward masks used for sequential process

Borgefors (1986) suggested the Chamfer 3-4 mask (see �gure 5.4-a) for generation of Voronoi regions. Computing
the distance values from all the data points using Chamfer mask, while at the same time keeping track of from
which kernel point the distance is computed. This is done by initializing two new images the same size as
the original image, the Voronoi, and the distance images. The new Voronoi image is used for tracking and is
initialized by assigning the zero values to all its pixels except the corresponding kernel point pixels, which are
marked by a unique number equivalent to the kernel point label. The distance image is initialized by assigning
the highest integer value to all its pixels except the corresponding kernel point pixels, which are assigned to
zero. The process may perform in a sequential procedure (Pilouk, Temp
i & Molenaar 1994). The symmetric
Chamfer 3-4 mask is split into two forward, and backward masks as illustrated in �gures (5.4-b), and (5.4c),
respectively. The masks are passed over the image once each. The forward mask starts from upper-left corner of
the image to the lower-right, and the backward mask scans the image from lower-right to the upper-left corner.
At each pixel position, the minimum value of the sum of the distance image pixel values and the corresponding
local distances of the mask is selected and assigned as a new value for the pixel in the distance image. At
the same time the pixel in the Voronoi image that corresponds to the pixel which gets the new value in the
distance image is marked with the label of the kernel point of which the distance is computed. The process is
continued until all the pixels are scanned. After these two passes are performed, the distance image represents
the distance transformation image of the kernel points, and all the pixels in Voronoi image that have the same
label represent the Voronoi region corresponds to the kernel point. Figures (5.5-a), (5.5-b), and (5.5-c) shows the
initial kernel points, the corresponding distance image, and the generated Voronoi diagram. In fact, two kernel
points or features are adjacent if the associated regions are touched. As it was discussed previously, connecting
the adjacent kernel points generates the Delaunay triangulation network.

The analysis of the result obtained by applying di�erent geometric primitives and features as kernel points
draw the important fact that the shape and size of the utilized features in
uence the result of the adjacency
relationships signi�cantly.

The �gures (5.5-a) and (5.5-d) represent the same geometric features shown in �gure (5.5-g) with di�erent shapes
and sizes. The Voronoi diagram computed based on the these data sets as initial kernel points are illustrated
in �gures (5.5-c), (5.5-f), and (5.5-l) respectively. As it is discussed above the result shows di�erent adjacency
relationships. In order to overcome this problem, the proposed method has extended in such a way that shape
and boundary of the polygons are also taken into account. In fact, the principal of computation is the same only
the initialization of Voronoi and distance images is di�erent. Following is a stepwise summary of the extended
method, which is applied for each region of interest or candidate building once a time, therefore reducing the
required computational time.
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Figure 5.5: Computation of Voronoi diagram based on distance transformation, a) the central point of each polygon prim-

itive is considered as kernel point, b), and c) show the corresponding distance image and Voronoi diagram respectively,

d) the polygonal primitives (medium size) are considered as initial kernel points, e), and f) illustrate the correspond-

ing distance image and Voronoi diagram, the adjacency relationships between primitives are changed, g) the complete

polygonal primitives are considered as initial kernel points, g), and h) illustrate the corresponding distance image and

Voronoi diagram, the adjacency relationships between primitives are signi�cantly changed.

� Create two new images as Voronoi and distance images large enough to contain the corresponding region
of interest.

� Make an ordered list of 2D plane-roof polygons based on their size, starting with the largest polygon.

� Initializes the images as discussed above. Note that instead of only initializing the central point of each
polygon and inserting the bounding edges as external constraints (Tang 1992, Pilouk et al. 1994), all the
corresponding pixels of the 2D plane-roof polygons are initialized in the images. The larger polygons are
initialized �rst. In this manner, the smaller or 'contained-in' polygon pixels are not relabeled with the
larger one.

� Perform the distance transformation and generate the Voronoi diagram as discussed above.

� Compute the polygon adjacency relationships (PAR), and store the result for subsequent processes.
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The result of the proposed method for PAR of the extracted 2D plane-roof polygons within a region of interest
is illustrated in �gure (5.6). The generated Voronoi diagram (5.6-c) represents the adjacency between polygon
primitives, in particular, adjacency relationships of the 'contained-in' polygons are correctly de�ned. The PAR is
stored as complementary properties of each polygon primitives and updated in proceeding processes as required.
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Figure 5.6: Computation of polygon adjacency relationships (PAR), a) initial kernel polygons, b) distance image, the

gray area in the middle indicates the zero distance, c) generated Voronoi diagram, d) computed adjacency graph

5.4 Merging Compatible Adjacent 3D Polygons

It was discussed in the previous chapter that due to the presence of the noise, shadow or occlusion caused by
the microstructures on top of the building roof some of the larger roof primitives are divided into the smaller
primitives. Therefore, a merging procedure must be devised in order to merge adjacent intermediate polygons
into the larger polygon primitives, if they satisfy the compatibility requirements. In fact the merging process can
be done in image domain, during or immediately after segmentation process, where the similarity criteria are
based on local statistical properties derived mostly from image intensity. It has been said here, and elsewhere
(Fua & Leclerc 1990), that in a data-driven reconstruction process, object structures cannot be detected solely
on the basis of the photometry information and methods based on purely local statistical criteria are bound to
errors, thus geometric information obtained from the problem description, i.e., 3D planar surfaces, should be
incorporated into the solution. In other words, if we have had enough relevant knowledge during segmentation
process in image domain, we would not have the fragmented polygon primitives at that level. This was a sign to
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approach this problem at the higher-level object domain where relevant object-related knowledge is available,
that is 3D planar polygon primitives. The compatibility rules are thus, de�ned based on the descriptions of the
planar polygons in 3D space, 1) their positions, i.e., adjacency, and 2) orientations, i.e., surface normal. The
merging is allowed, if and only if two 3D plane-roof polygons are I) adjacent, and II) have approximately the
same orientations in space (coplanar). The �rst criterion is derived from the PAR computed above and it is
checked �rst. The second criterion can be mathematically introduced as the equation (5.1). It physically states
that the angle between the surface normal vectors ~n1(a1; b1; c1), and ~n2(a2; b2; c2), of the two respective adjacent
polygons p1, and p2 must be less than a pre-speci�ed threshold. If merging is permitted, then two polygons are
merged into a new polygon, and the two old polygons are discarded.

cos�1(
~n1 � ~n2

j ~n1j � j ~n2j ) < tangle (5.1)

As rule of thumb, the threshold parameter tangle, can be related to the geometric quality of the existing DSM,
and estimated �tting error obtained during the back projection of the 2D polygon primitives into the 3D object
space. Assuming that the additive noise (error) process is relatively stationary within every region of interest
in DSM, the same strategy developed in section (4.5.1) for estimating the noise variance in the image can be
utilized in order to tie the above algorithmic threshold into the amount of error in DSM.

Since the geometry and topology of the polygons might change after each merging process, the algorithm works in
an iterative procedure and stops when no further merging is possible. For every region of interest, the algorithm
selects the largest 3D polygon p1, which is probably the most signi�cant geometric primitive of the associated
roof structure, and checks the compatibility requirement (equation 5.1) with respect to its adjacent polygons.
It starts with the smallest adjacent polygon p2, excluding the 'contained-in' polygons. If merging is permitted,
the weighted-union of the two polygons is computed and replaces the larger polygon. The smaller polygon p2,
is eliminated from the list and the PAR of the new polygon p1, is updated accordingly. The weighted-union
means, that the surface normal vector ~n1, of the new polygon is computed based on the weighted mean of the
two old normal vectors ~n1, and ~n2, and is formulated as:

~n1
new =

s1 ~n1 + s2 ~n2
s1 + s2

(5.2)

where s1, and s2 are the sizes of polygons p1, and p2 respectively. In this manner, the larger polygon has more
contribution into the computation of the new polygon. This process is repeated between the new polygon p1,
and all its adjacent polygons based on the updated PAR, until no further merging is possible. The second largest
polygon in the list is selected next, and the above procedure is repeated. The whole merging algorithm stops
when all the current polygons within the region of interest are evaluated for the compatibility criteria. Note
that the 'contained-in' polygons are dealt with di�erently -in fact, when all the adjacent polygons are processed,
and the PAR updated. The merging process is performed for every 'contained-in' polygon with respect to the
polygon, which contains it. In these cases one more compatibility requirement must be met as well. A 'contained-
in' polygon is permitted to merge, if its deviation, with respect to its altitude, from its 'contains' polygon is less
than some threshold. That means if the two polygons have the same orientation, but the 'contained-in' polygon
is higher e.g., 0:5m, then it is part of a microstructure in top of the roof and is not allowed to merge.

Theoretically, the whole merging process can be performed in a single sweep using only one strictly angle
threshold tangle. But in practice, in order to avoid early errors of incorrectly merging adjacent but distinct
planar polygons, it is realized that the better results are achieved, if the merging process is performed more
than once, e.g., 3 sweeps, starting with the small value of the angle threshold and increasing its value in each
subsequent sweep. In addition, as it is discussed earlier very small regions may result during segmentation.
Some of these regions are not parts of the physical roof structures, thus they neither satisfy the compatibility
requirements to be merged nor are large enough to stand individually as the signi�cant parts of a building roof
and should be eliminated from the list of roof primitives. Therefore, a threshold is set on the size of polygon
primitives, after the merging operation. For very small polygons a priori knowledge is available that they are
too small to exist on their own. This a priori knowledge results from the problem description.

The results of the merging algorithm described in this section are shown in �gure (5.7). The primary fragmented
plane-roof polygons of a gable (5.7-a), and a complex roof structure building (5.7-c), are employed. The result
of the proposed merging algorithm in �gure (5.7-b), shows that the compatible adjacent polygons are correctly
merged into the larger polygonal primitives, which have the meaningful correspondence to the major parts
of the roof structures. Figure (5.7-d) indicates that the irrelevant noisy small polygons are also �ltered out
during the merging process. In addition, the algorithm is capable of preserving the small 'contained-in' polygons
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corresponding to the dormer window structure on top of the roof building. Although the shape, and somehow the
geometry of these micro elements are not accurately de�ned or some of them are totally eliminated or merged into
the larger polygons, their presence, however, at the time being signi�cantly improves the results of the subsequent
reconstruction processes. Moreover, it reveals that the reconstruction of these types of microstructures is feasible
with the improvement of the available imaging sensor and utilizing the high accurate DSM.

a b

c d

Figure 5.7: Merging adjacent 3D plane-roof polygons, a) and c) the 3D perspective view of the primary 3D plane-roof

polygons of a gable and a complex roof structure building respectively, b) and d ) the corresponding 3D plane-roof

polygons after merging operation

5.5 POLY-MODELER: Generic Polyhedral-Like Model Generator

This section introduces a novel method for the geometric reconstruction of a plane-face solid object, commonly
called polyhedral. Polyhedral is an arrangement of polygons such that two and only two polygons meet at an
edge. Simple polyhedral refers to all polyhedra that can be continuously deformed into a sphere and are convex.
The term convex applies to every polyhedral that lies entirely on one side of each of its polygonal faces. This is
our sign to investigate non-simple polyhedra. They are topologically equivalent to any complex solid that may
have holes in it and/or is concave and are, therefore, of direct use to us in geometric reconstruction of complex
plane-roof buildings. There are several approaches to represent complex solid models. The two common methods
are constructive solid geometry (CSG), and boundary representation (b-rep). The CSG scheme de�nes complex
solids as Boolean combination of simpler solids. The complete representation is sometimes referred to as a CSG
tree, because it uses a binary tree whose terminal nodes are simple solids and whose non-terminal nodes are
so-called regularized Boolean combining operations. The b-rep describes the faces, edges, and vertices of the
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boundary of the solid. This description itself has two forms; a topological representation of the connectivity of
the boundary elements, and numerical data describing the shape geometry and position of these elements. If
object perception is primarily dependent on surface perception, it is a natural choice for an automated vision
system to use a boundary-based technique to represent the object of interest. This is why we have selected a
b-rep method for modeling and representing the generic building models and their primitive elements. In this
study b-rep scheme describes a generic building model as the union of very general faces embedded in unbounded
plane-surfaces, where the building edges are de�ned by the intersections of these surfaces. Such generic models
can be constructed directly by assembling and intersecting appropriate surfaces. An algorithm called POLY-
MODELER performs the reconstruction. The algorithm determines where component faces are extended or
truncated and new edges and vertices are created or deleted. When boundary elements overlap or coincide, the
algorithm merges them into a single element and thus maintains a consistent, non-redundant data structure
representing building model boundary. New edges are created where adjacent faces (polygons), intersect. The
POLY-MODELER �nds these intersections and then determines by point membership classi�cation, which
segments of the intersection are actual edges of the model. It should be noticed that the proposed method is
designed to reconstruct any polyhedral-like object model but the main intention is the 3D reconstruction of
generic plane-roof buildings. In this application we only concentrate on the description of the shape and form of
the roof, once the complete building roof is modeled, the �ctitious vertical walls are incorporated to the model
to generate a complete solid building model.

Modeling complex objects such as buildings requires considerable attention to their topology. We must under-
stand how simple elements are connected to form the complex model and how its topology is preserved when
subjected to a variety of transformations. Topological properties are not metrical, but concern such things as
connectivity and dimensional continuity. In the previous sections we brie
y discussed processes of construction
of the primitive 3D plane-roof polygons (faces) and how to compute their adjacency relationships (PAR). All
of these form the foundation on which we build the generic building model, which is the main contribution of
this chapter.

5.5.1 Basic Notation

To proceed, �rst certain concepts and notation schemes that are used to describe and express some of the
processes and components involved in POLY-MODELER are discussed. The basic idea in the roof modeling
process is to combine adjacent 3D plane-roof polygons, shortly 3D-poly, to construct the roof structure. A
stitching operation would be a logical way to glue the adjacent 3D-polys along their common edges. The 3D
intersections play a prominent and manifest role in this operation. Typically when two 3D-polys must share a
common edge, each of them is arbitrarily considered as an unbounded 3D plane in space. They intersect and
geometrically the line of intersection is then determined.

Figure (5.9-a) shows a perspective view of two adjacent 3D plane-roof polygons p1 and p2 along their computed
line of intersection l1. The top view of the corresponding polygons is illustrated in �gure (5.9-b). To complete
the stitching operation, depending on the shape and geometry of the 3D-polys, the unwanted part of the 3D-
polys are trimmed along the intersection and/or the boundary of 3D-polys are extended until they reach their
physical limit, which is the line of intersection. Figures (5.10-a), depicts a perspective view of the �nal result
of the stitching operation. The grey part of two polygons indicates the extension of 3D-poly p1 and p2. The
part of 3D-poly p2 (see �gure 5.10-b), which is bounded with the dotted line indicates the trimmed part of this
polygon.

Before moving to the mathematical aspect of this operation and in general the proposed 3D reconstruction
method, the following simple de�nitions that are essential concepts and tools for solving the task are introduced.

De�nition:

� Coordinate system; the right-handed Cartesian coordinate system is assumed unless noted otherwise.

� Polygon parameterization; the 3D plane-roof polygons are stored as a single-sided face in POLY-
MODELER. A single-sided face means that points on one side are considered to be inside, in this context
this side is called the sense of the 3D-poly, and points on the other side are considered to be on the outside.
Therefore a consistent ordering of the polygon vertices is important, because it represents the sense of the
3D-poly. The vertices sequentially are numbered in clockwise direction. In this way the surface normal at
any point always points toward the interior of the reconstructed building model as it is shown in �gure
(5.8). The resulting 3D-poly is called a parameterized polygon.
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Figure 5.8: Polygon parameterization.

� Symmetric polygons; let ~n1(a1; b1; c1) and ~n2(a2; b2; c2) indicate the surface normal vectors of the two
adjacent 3D-polys p1 and p2 respectively. In this context, p1 and p2 are symmetric, if they satisfy all the
following conditions:

a1 = �a2 + �a;

b1 = �b2 + �b;

c1 = c2 + �c; (5.3)

The parameters �a, �b, and �c represent the sum of small deviations of the surface normal vectors ~n1, and
~n2, with respect to their original values. The values of these tolerances are directly related to the quality
of the derived DSM, which is used to recover the orientation of the 3D-polys in object space.
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Figure 5.9: 3D intersection of adjacent polygons.

� Line of intersection; geometrically the 3D intersection of two non-coplanar unbounded adjacent 3D plane-
faces (polygons) p1, and p2, in E

3 determines an unbounded straight line l1, (�gure 5.9-a). The computed
line corresponds to an orientation-edge in the roof structure, such as ridge or saddle edge of the roof. The
intersection line has also an interesting property; just as a point separates a line into two parts, so does a
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line separate an unbounded plane into two half-planes in E2. In addition if an arbitrarily unbounded 3D-
plane, e.g., a vertical plane, passes through the line, it divides the space into two half-spaces in E3. This is
the milestone of our approach, the 3D reconstruction of plane-face solid models is based on simultaneous
intersection of half-planes.

� Point of intersection; the 3D intersection of three non-coplanar unbounded adjacent 3D plane-faces p1,
p2, and p3, in E3 determines an intersection point pint, as it is shown in �gure (5.11). These points
are the most signi�cant and accurate geometric primitives of the reconstructed model. Besides of their
structural characteristic, they also provide signi�cant semantic information concerning extendibility of
the incorporated 3D-polys with respect to each other. The concept will be elaborated mathematically in
the follow-up section. These points enter to the reconstruction process as new vertices. The membership
property of the intersection point pint, as it is a new vertex of three adjacent polygons is stored as a
connectivity relationship in POLY-MODELER.

� Minimum and maximum points; they, e.g. min1, max1, indicate the bounding extension of 3D-poly p1, on
the line of intersection l1, with respect to its adjacent 3D-poly, here p2 (see �gure 5.9-b). In fact, physically,
they are the intersection points between bounding edges of the polygon with the line of intersection. Ac-
cordingly in a multiple case, that is when a 3D-poly has more than one adjacent polygons, the intersection
operation determines multiple pairs of such points which are considered as model point candidates during
point membership classi�cation in POLY-MODELER (see the small triangles in �gure 5.10-b). The terms
minimum and maximum express the order of the points in the direction of the intersection line. It should
be noticed that when minimum and/or maximum points of a 3D-poly such as max2 of p2 lie between
the minimum and maximum points of its adjacent polygon, then we also consider these points as new
candidate vertices for its adjacent polygon. Moreover, if the minimum point of a 3D-poly is located at a
close neighborhood of the maximum point of its adjacent polygons, then both extreme points are replaced
by their average mean point pmean. The membership property of pmean which is the member of both
3D-polys also stores as a connectivity relationship in POLY-MODELER.

p1
p2

l1

n1 n2

� � � �

� � � �

	 �

� 
 �

� � � �

� � � �

	 �

� � �

� �

a b

Figure 5.10: Stitching operation of adjacent polygons

� Polygon status and extendibility; in POLY-MODELER we use the term extendibility either a polygon
will be extended or trimmed during stitching operation. Based on this de�nition, after computation of
intersection line, the POLY-MODELER labels the status of every 3D-poly as positive (forward), or negative
(reverse), or zero. The positive status means that the polygon extension must be carried out in a clockwise
direction starting from the minimum point towards the maximum point i.e., polygon p2 in �gure (5.10-b).
In the contrary, the negative status means that the polygon extension must be carried out in a clockwise
direction but starting from maximum point toward minimum i.e., polygon p1 in �gure (5.10-b). The 
ag
zero means that the 3D-poly is not extendible with respect to its adjacent polygon, such as a 3D-poly
which will not extend with respect to its 'contained-in' polygon. The polygon status is a tool to determine
which part of the 3D-poly (half-plane) is inside the building model. This is why polygon extendibility is
a mutual relationship. That means if one of the polygon is labeled as positive, the respective adjacent
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3D-poly must be a negative polygon. This is a sign for classi�cation of polygon points as active or inactive
points, which will be discussed next. It should be noticed that in a multiple case, a 3D-poly might have
as many status labels as it has adjacent polygons which are not necessarily the same.

� Redundant vertices; in a compact and reliable geometric modeling process, it is desired to exclude the
redundant geometric primitives such as vertices, or edge segments. In POLY-MODELER we classify
polygon points into two classes. The �rst class called active vertices, black circles in �gure (5.10-b),
are those vertices which are considered as candidate points in the reconstruction procedure, whereas
inactive vertices, empty circles are points that must be shifted on the intersection line during stitching
operation and are located between two extreme points. Geometrically these points are collinear, so that
they are considered as redundant points and are excluded from the proceeding process. As we have
already mentioned the status of each polygon initializes the task. Consider walking around 3D-poly p2, in
a clockwise direction, based on its status, here positive, we 
ag all the vertices as inactive when moving
from min2, toward max2, point. In the contrary when we walk around p1, again in a consistent clockwise
direction, we consider all the points which are located between max1, and min1, points as inactive or
redundant points when walking from max1, toward min1.

We have de�ned certain notations and conventions that are used in the POLY-MODELER algorithm. We have
also discussed some of the operations and classi�cation aspect that are involved in 3D intersection process.
Thus, we have most of the ingredients for the next section, which introduces the mathematical aspects of how
POLY-MODELER works.

5.5.2 Mathematical Concept and Methodology

The objective of a b-rep modeler such as POLY-MODELER is to build a complete representation of a solid as
an organized collection of surfaces. In general a b-rep model stores the numerical data of the surface geometry
on which the face lies, the curve geometry on which the edge lies and which bounds the face, and the point
geometry of the vertices. In fact, the POLY-MODELER is obviously a special case of boundary representation
when curved surfaces and edges are approximated by planes and straight lines respectively. It should be no-
ticed that there is a minor deviation in how POLY-MODELER works in special application of generic building
reconstruction from its original design strategy. Since the vertical walls of the buildings are perpendicular to
the ground and are simply reconstructed based on the outline of the building roof, the POLY-MODELER only
concentrates on reconstruction of roof structure. However, in the �nal step the �ctitious vertical walls are added
to complete the reconstruction of a plane-face solid building model. We stated in the earlier section that the
objective of our work is to reconstruct non-simple generic polyhedral models. In other words, the method is
designed to handle any type of polygonal faces, such as concave polygons. In this context, we distinguish two
classes of concave 3D-polys. The �rst class is when the concave part of the 3D-poly lies on the outline of the
roof, similar to bounding edges of the 3D plane-roof polygons in �gure (5.7-b), which are incorrectly de�ned
during segmentation process, due to the presence of noise, shadow, and microstructure on top of the building
roof. Reconstruction of this type of 3D-poly is a trivial process. Its concave parts are recovered in a model-based
approach based on a �tting algorithm during consistency veri�cation of coarse building hypotheses against 2D
image primitives, and is discussed in chapter 6. The second class refers to those polygons for which their concave
parts are geometrically constructed by intersection of three adjacent 3D-polys (see 3D-poly p1 in �gure 5.11-b).
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Figure 5.11: Analysis of the point of intersection between three adjacent 3D-polys gives an indication of polygon convexity,

a) 3D-poly p1, is a convex 3D-polygons, b) 3D-poly p1, is a concave 3D-polygons
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In fact, this is the most ambiguous part of a generic data-driven reconstruction procedure. A failure in detecting
the concave polygons during intersection operation may cause to cut o� accidentally the active parts of a roof
structure. In order to correctly 
ag the status of such a polygon, we developed a new approach for the detection
of concave 3D-poly and its extendibility status, based on the presence of an intersection point pint.

Let ~n1, ~n2, and ~n3 indicate the unit surface normal vectors of the 3D-polys p1, p2, and p3 in any right-handed
Cartesian coordinate system respectively. Furthermore assume that p2 and p3 are symmetric and both are asym-
metric respect to p1 (�gure 5.11). According to building construction rules, we may now assert the following
axiom:

Extendibilty axiom: The 3D-poly p1 is extendible with respect to its adjacent polygons p2,
and p3, if and only if it has a sense-to-sense relationship with p2 and p3. In other words,
when the normal vectors of all three polygons are convergent inside the model.

To realize the concept, at presence of every intersection point, pint, an extendibility analysis is performed based
upon computation of a scalar triple product of the three unit surface normal vectors in the following order:

v = ~n1 � (~n2 � ~n3): (5.4)

The absolute value of the scalar triple product v, has a simple geometric interpretation. It is equal to the volume
of a parallelepiped with ~n1, ~n2, and ~n3 as adjacent edges. We should keep in mind that in this analysis, the
order of the product is signi�cant. It is always the scalar product of the asymmetric normal vector n1, by the
result of the cross product of symmetric normal vectors in a consistent clockwise direction (~n2 � ~n3). Since the
surface normal vectors are unit vectors, the maximum value of the scalar triple product is v = �1. The minus
sign indicates a transition from a right-handed to a left-handed system (or conversely) which is a signal for
further analysis. In general, various geometric con�gurations of adjacent polygons produce di�erent results as
follows:

1. v = �1; indicates that p1, p2, and p3 are perpendicular. In this case at least one of the 3D-polys, p1,
is a vertical wall. In practice, this case will not happen, as we do not consider vertical walls during the
reconstruction stage. However, in general, we will extend p1 with respect to p2 and p3 based on a simple
3D intersection operation.

2. v = 0; shows that at least two of the 3D-polys are coplanar. This is not also a practical case, because the
coplanar 3D-polys are already merged in preceding processes. We assign polygon status of p1 respect to
p2 and p3 to zero.

3. 0 < v < 1; indicates that all three polygons are sense-to-sense, as it is shown in �gure (5.11-a). The
3D-poly p1 will extend in a simple manner based on normal 3D intersection operation.

4. �1 < v < 0; indicates that the scalar triple product, produces a left-handed Cartesian coordinated
system. Geometrically, it means that surface normal ~n1 is not pointing towards the other two vectors.
It also indicates that 3D-poly p1 is a concave polygon which is constructed because of the presence of
intersection point pint (see 3D-poly p1, in �gure 5.11-b). Thus p1 is not extendible with respect to p2 and
p3. However, to recover the geometric shape of the p1, we do further analysis as follows:

Figure (5.12) shows four possible geometric con�gurations between an asymmetric 3D-poly p1 and two symmetric
3D-polys p2, and p3, along their intersection point pint, when the result of the scalar triple product is a negative
value (�1 < v < 0).

The signs '+', and '-' indicate di�erent status of p1, and its respective polygons. The small triangles show the
new minimum and maximum points of p1, on the line of intersections. For example, point max1�2 of 'case I'
represents the maximum point of p1, which is constructed by the 3D intersection of p1 and p2. We discussed
previously that based on any 3D intersection between two adjacent polygons we insert two new polygon vertices,
minimum and maximum as candidate points, into the stitching operation of that polygon. Therefore in an
ordinary intersection process such as �gure (5.11-a), we consider 5 candidate points ( = min1�2, max1�2,
min1�3, max1�3, and pint ) as new vertices during reconstruction of p1. While in the special case of a concave
polygon, only one point from each extreme point groups is considered as a new polygon vertex. In other words
for 3D-poly p1, in the 'case I', we only consider three ordered points such as (max1�2 ! pint ! min1�3) as
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new vertices during the reconstruction process. This selection is explained as follows. The status of 3D-poly p1,
with respect to 3D-poly p2 is negative, therefore parameterization start from max1�2 in a clockwise direction
towards intersection point pint, disregarding the min1�2 point, as it is an inactive point. Contribution of this
point into the roof reconstruction process causes that the valid part of the 3D-poly p1, is trimmed o�. In a similar
manner, continuing the parameterization with respect to 3D-poly p3, the status is negative, thus starting from
max1�3 point, which is replaced by intersection point pint, moving in a clockwise direction, towards min1�3.
Accordingly, other cases are handled as it is shown. In addition, we change status of p1 to zero. This preserves
its extension in a subsequent process respect to p2, and p3. Now that all essential analyses are applied, we are
ready to perform the �nal reconstruction operation.
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Figure 5.12: Analysis of concave polygons

Let R2;3 indicate a two dimensional region, e.g., a plane-surface, which is located in space E3. We will write

R2;3 = [R2;3
i ; R1;3

b ] (5.5)

where R2;3
i is a set of 2D regions in the interior of the region R2;3, and R1;3

b , indicates a set of 1D regions,
e.g., straight-edge, on the boundary of the R2;3. Furthermore any point in space has one and only one of the
following three properties with respect to any region Rm;n (Mortenson 1997).

1. It is inside the region; that is, it is a member of the set Rm;n
i .

2. It is on the boundary of the region; that is, it is a member of the set Rm�1;n
b .

3. It is outside, not a member of the set Rm;n.

Thus, for a homogeneous surface in E3, the explicit de�nition of the R1;3
b of the surface is necessary and su�cient

for the de�nition of the surface (R2;3). R1;3
b is the outline or boundary of the surface, where points on the inside

(R2;3
i ) are implied by R1;3

b . We will now take a more general approach for reconstruction of polyhedral-like
object models, such as complex building models. Taking a collection of planar pieces and gluing them together
along their edges, creating piecewise 
at-surfaces forms a building roof structure. Any surface formed in this
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way will obviously be 
at everywhere except possibly along the edges where the pieces are glued together. The
crucial step is in deciding how to reconstruct the plane-faces based on their respective bounding edges. We
compute the edges of these faces based on the 3D intersection approach. The intersection line de�nes the valid
half-plane in E2, (for simplicity of the proceeding computations, we consider an orthogonal projection of all
3D primitives such as plane-polygons, intersection lines and intersection points in a two dimensional space E2).
Thus, disregarding the part of the faces that are not embedded in the speci�ed half-plane. This is done based
on a point membership classi�cation method that excludes candidate model points, which are not inside or on
the boundary of the object model. The ultimate objective is the computation of the common intersection of
n half-planes, where n is the number of non-zero polygon status. This is realized by a simultaneous solution
of n linear inequalities in the forms of (5.6), and (5.7), which is in fact a linear programming problem, where
the objective function to be maximized is the area of the respective 3D-poly, while at the same time a set of
conditions such as the following inequalities should be satis�ed (Fryer 1978, Best & Ritter 1985, Fritsch 1985), .

fi(x; y) � 0; 8 i = 1; 2; :::; k (5.6)

fj(x; y) � 0; 8 j = 1; 2; :::; l (5.7)

n = k + l

where f(x; y) is the equation of the intersection line in E2. The inequality (5.6) stands when the polygon
status with respect to its adjacent polygon is positive, while the inequality (5.7) is given for negative status. In
practice the desired solution, feasible region, is achieved by simply testing all the candidate points pc, including
the active polygon vertices and new vertices such as intersection points, against the set of inequalities de�ning
the half-planes. As we proceed through an ordered list of these inequalities, we update a 
ag on pc. As long as
pc, satis�es each successive inequality constraint, it is 
agged as active points. If the pc, fails any test, the loop
terminates, and we 
ag the pc as inactive point, that means it is outside the roof structure. The �nal shape and
description of 3D plane-faces are constructed by parameterized concatenations of the remaining active points in
3D space. It should be noticed that during construction of concave polygons, new intersection points and their
associated extreme points will not be tested against inequality constraints. Instead they will contribute in the
reconstruction process without any conditions.
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Figure 5.13: An example of the roof modeling based on the 3D intersection of the adjacent plane-faces

Figure (5.13), illustrates an example of roof modeling based on the proposed method. Let 3D-polys p1, p2, p3,
and p4 indicate the plane-surfaces of a building roof structure. Furthermore assume that 3D straight lines l1,
l2, and l3 are computed based on the intersection of 3D-poly p1, with its adjacent polygons p4, p2, and p3,
respectively. The associated extreme points min1�2, max1�2, min1�3, max1�3, min1�4, max1�4, and the 3D
intersection point p1int, and p

2
int, are also de�ned accordingly and are introduced into the POLY-MODELER
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as the new candidate vertices of the 3D-poly p1. For the simplicity, only the associated geometric primitives of
the polygon p1 are shown in the �gure. To proceed, �rst all the 3D primitives are transferred into the 2D space
based on an orthogonal projection. Figure (5.14) shows a top view of the corresponding elements in 2D space.
Next, the inequalities conditions are de�ned based on the equations of the intersection lines and the status
labels of polygon p1 with respect to its adjacent polygons. The intersection lines l1, and l3 de�ne two inequality
conditions of the form (5.6). In contrary, the intersection line l2 introduces an inequality condition of the form
(5.7), as the status of polygon p1 with respect to polygon p2, is negative. As it was discussed previously, every
line divides the space E2 into two half-planes and the polygon status consequently de�ne the valid half-plane.
The simultaneous intersection of these half-planes determines the valid or feasible region of the 3D-poly p1,
which is indicated as gray area in the �gure (5.14).

The POLY-MODELER de�nes the extension of the feasible region, simply by 
aging all the polygon vertices
vi, and the new candidates as either active, if they satisfy all the inequality conditions, or inactive, if they fail.
For example, the extreme point max1�3 is failed to satisfy the conditions introduced by line l1, it is located
in the invalid (hachured area in �gure 5.14) half-plane, thus it is 
agged as an inactive point. The vertices v4,
and v2 are also 
agged as inactive points. In fact, these vertices labeled as inactive points in previous processes
before assessing upon the inequality conditions, because they lie on the bounding edges of the polygon p1, thus
geometrically are redundant points, and should be eliminated in order to have a consistent and compact b-rep
model of the roof structure.

(-)

0byax:1 ≤+l

v1

v3

v4

max1-3

max1-2

(-)
(+)

(+)

(+) (-)

p1

0byax:l2 ≥+
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p²intp1
int

min1-4

feasible region

Figure 5.14: Determination of the feasible region (extension of the plane-surfaces of the roof model) by simultaneous

solution of a set of n linear inequality conditions.

The �nal shape and extension of the 3D-poly p1 is determined by parameterized concatenations of the remaining
active points in 3D space, that is (v1 ! min1�3 ! p1int ! p2int ! min1�2 ! v5). Similarly, the extensions and
the geometric descriptions of other 3D-polys of the roof are determined, including the membership properties
and connectivity of the common points and edges between adjacent polygons. These elements are stored as
geometric primitives of the roof structure and represented as b-rep model of the building roof.

5.6 Experiments and Results

Figure (5.15), illustrates result of the proposed method and the performance of the POLY-MODELER algo-
rithm. Three buildings with di�erent roof structures are selected. The �gures in �rst column, (5.15-a), (5.15-d),
and (5.15-g), depict the 3D plane-roof polygons of a gable, hipped-gable, and a complex roof structure before
extension. The second column illustrates the 3D perspective view of the corresponding roof models after recon-
struction in object space (5.15-b), (5.15-e), and (5.15-h). Third column shows a top view of the reconstructed
roof models overlaid on corresponding building roof. For each building candidate or region of interest, the
geometric descriptions of all the associated polygonal primitives of the roof and their adjacency relationships
computed previously by PAR are introduced into the POLY-MODELER as initial parameters. The POLY-
MODELER, then generates a very dense internal pointing data structure to keep track of the changes of all the
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primitives during reconstruction process. The POLY-MODELER models the roof structure in a generic manner
purely based on the 3D intersection of adjacent polygons, without any a priori information concerning the roof
type or imposing any external constraints. That means the same procedure is applied to any type of roof with
any number of polygonal primitives and any complexity. In this example, the selected complex building has
interesting properties, it simply invalids many of the constraints applied in speci�c model-based approaches. For
example, constraints on orthogonality of the building outline cause that reported methods fail to reconstruct a
correct and accurate model of this type of generic building.

As discussed earlier, the result of the reconstruction process is highly related to the estimated parameters of
the 3D plane-roof polygons. A failure in correctly recovering the surface normal of the 3D-poly will cause an
unexpected result leading to a partially or completely wrong building description. This is why the quality of
utilized DSM is of high importance in our approach. The results indicate that the recognition of microstructure
on top of the building roof such as a dormer window is also possible. Nevertheless, in order to be able to
estimate the correct pose of these microstructures on top of the roof and geometrically describes their shapes,
a very dense and high accurate DSM is required. Furthermore, owing to the geometrical reconstruction of roof
structure, positional accuracy of roof elements such as orientation edges and intersection points are very high.
However, due to a misinterpretation of surface normal of polygonal primitives, we may have some discrepancies
in the form of displacement or rotation from the real positions of these elements, see the intersection point of
the three planar faces of the complex roof structure in �gure (5.15-h).

In addition, due to the nature of the region-growing type segmentation, the quality of roof outline of the building
model is still poor (see �gure 5.15-b). The region growing type segmentation methods are unable to accurately
localize the bounding edges, and the shape of the region boundaries normally re
ects the search strategy than
the true shape of the region. This is the reason why the generated hypothesis model is called coarse building
model. To improve the quality of the generated model, the geometric and topological information provided by the
coarse model is incorporated into the hypothesis model veri�cation process. A �ne building model is obtained
in an iterative top-down estimation process called Feature Based Model Veri�cation (FBMV). This is done by
simultaneously �tting the 3D model primitives into the corresponding 2D image features where the geometrical
and topological model information is integrated into the process as external and/or internal constraints. The
detailed discussion of this process is the topic of the next chapter.
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Figure 5.15: 3D building roof modeling, a), d), and g) extracted 3D plane-roof polygons of a gable, hipped-gable and a

complex roof structure before roof modeling respectively, b), e), and h) 3D perspective view of the corresponding recon-

structed 3D coarse building roof models, c), f), and l) reconstructed coarse building roof models overlaid on corresponding

building roof structures in 2D image space.
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Chapter 6

Feature Based Model Veri�cation

6.1 Introduction

This chapter introduces an automated method called Feature Based Model Veri�cation (FBMV), for modi�cation
and veri�cation of the reconstructed generic polyhedral-like building model by back projecting the 3D model
into the corresponding 2D images taken from di�erent viewpoints. Treating the hypothesis model as evidence
leads to a set of con�dence intervals in image space that can be used as a search space to �nd the corresponding
2D image primitives and performing a consistency veri�cation of the reconstructed coarse model. Theoretically,
in stereo image analysis systems it is possible to solve the unknown parameters of a 3D model by matching
the corresponding 2D images. However, in practice, the reliability and accuracy of the parameter determination
can be substantially improved by simultaneously �tting the model into the images taken from more than two
viewpoints. The methods presented here can be used in either situation.

The other important aspect of the FBMV method is the ability to solve the model parameters by simultaneously
�tting all the geometric primitives of the 3D model into all the homologous 2D image features. Taking into
account the external and internal geometric and topologic properties of the model structures and imaging process
as constraints during parameter estimation. This is important because it allows the earlier initial matches or the
partial matches between the 3D model primitives and 2D image features force the location of other structural
elements of the model. Thereby new matches are generated that can be used to verify or reject the initial
estimated model parameters.

The other important aspect of the FBMV method is the ability to solve the model parameters by simultaneously
�tting all the geometric primitives of the 3Dmodel into all the homologous 2D image features, taking into account
the external and internal geometric and topologic properties of the model structure and imaging process as
constraints during parameter estimation. This is important because it allows the earlier initial matches or the
partial matches between the 3D model primitives and 2D image features force the location of other structural
elements of the model, thereby new matches are generated that can be used to verify or reject the initial
estimated model parameters.

The problem considered in this chapter is to determine the precise geometric descriptions of a polyhedral-
like building model given matches between the model primitives and the image features. However, the proposed
framework allows di�erent non-polyhedral object models to be used. A consequent of disregarding this restriction
is that the projected model edges are not necessarily straight edges and the model faces are not inevitably planar
surfaces, thus the geometric routines should be adopted with di�erent geometry.

A brief discussion of the general framework of FBMV method and its internal work
ow is given �rst. The
subsequent sections look inside the method and give detail discussions on the fundamental concept of FBMV,
its formulation and its robustness. The evaluation of the proposed method, its performance and statistical
analysis of the result obtained by some experimental test concludes this chapter.

6.2 Motivation

In the previous chapter we have presented a new method for reliable generation of a coarse polyhedral-like
building model. The positional accuracy of the reconstructed roof elements such as ridgelines of the roof structure
is highly related to the quality of the extracted 3D plane-roof polygons. Failure in correctly estimating the
orientation of the 3D plane-roof polygons in object space causes displacement and rotation of the ridgelines
with respect to their exact positions during the reconstruction process. In addition, due to the nature of region
growing type segmentation discussed in chapter 4, the quality of the roof outline is poor. In fact, in real-
world images, object boundaries cannot be detected solely on the basis of their photometry because of the
presence of noise, occlusion and various photometric anomalies. Therefore, methods for �nding boundaries
based on purely local statistical criteria are tied to error, �nding either too many or too few edges based on
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arbitrary thresholds (Fua & Leclerc 1990). To supplement the weak and noisy local information of the images
and probable misinterpretation of the orientation of the 3D plane-roof polygon, the geometric and topological
information that the coarse object model can provide is incorporated into the chain of the reconstruction
process. This information is introduced into the process of the object model veri�cation based on a weighted
least squares minimization process. A �ne building model is obtained in an iterative, top-down, model-driven
estimation process by simultaneously �tting the 3D model into the corresponding images where the geometrical
and topological model information are integrated into the process as external and/or internal constraints during
the estimation. The ability to apply such constraints is essential for the accurate modeling of complex objects.
In particular, when dealing with a generic object model, it is crucial that the model elements are both accurate
and consistent with each other. For example, individual components of a building can be modeled independently,
but to ensure realism, one must guarantee that they touch each other in an architectural way. The estimation
procedure yields a description of the building that simultaneously satis�es all the constraints within all the
images. As a result, it allows us to perform a consistency check and re�nement of the model across all the
images. Moreover, the ability of the estimation method to fuse the information and impose the geometrical and
topological constraints over all the images increases the accuracy and reliability of the reconstruction.

In the same line of major image matching techniques, i.e. feature-based (F�orstner 1986), and area-based least
squares matching (F�orstner 1982, Ackermann 1984), the proposed veri�cation process is called Feature Based
Model Veri�cation (FBMV). Similar to feature-based image matching techniques where a set of image-driven
geometric features such as points, or edges are utilized in one image to be matched to the homologous features in
corresponding images in order to, e.g. describe the surface geometry of the viewed scene. The FBMV uses model-
driven geometric primitives to be matched to the respective homologous features in corresponding images taken
from di�erent viewpoints in order to verify the geometric description of the object model. In recent years, there
has been a considerable increase in the number of publications on parameters solving for model-based vision,
when most of the work aimed at parameters solving for rigid objects (Lowe 1991, Haala 1995, Fua 1996, Fischer
et al. 1998, Brenner & Haala 1998a). An interesting similar work is reported by (Gruen & Li 1997). Their method
is a semi-automatic approach for 3D extraction of linear features. In fact, this is an extension of a point-wise
least squares template matching method (Gruen & Stallmann 1991, Baltsavias 1991), where a deformable
contour model is used as a template instead of a square or rectangle which is generally used in conventional
least squares matching techniques. However, in our study, their work is categorized as an area-based object
extraction or alternatively Area Based Model Veri�cation (ABMV).

6.3 Feature Based Model Veri�cation

The FBMV is an iterative, multi-photo, multiple-dimensions, feature-based estimation process. It is designed to
determine a reliable and accurate geometric description of the 3D structure elements of a reconstructed coarse
solid model. It is a multi-photo approach because its formulation is independent of the sensor model. Thus,
it is possible to introduce as many corresponding images taken from di�erent viewpoints into the process. In
this manner, the object model can be checked for consistency across all the images, thereby increasing the
reliability of the reconstruction. It is considered multiple-dimensions, because a simple, but mathematically
founded collinearity equation is used to precisely establish a relationship between 3D object and 2D image
spaces. Accordingly, utilizing this formulation, and taking the occlusions into account, the information can be
fused over all the images, therefore, increasing the accuracy of the veri�cation process. It is iterative, because
the location of 2D image features in the image is a nonlinear function of the position of their respective 3D
model features and the viewpoint. Therefore, the solution is based on an iterative re-weighting least squares
minimization. One can argue about this error criterion, as its use can be justi�ed only when certain assumptions
on the noise distribution of the measurements hold. However, in the case that this noise distribution is unknown
using a least squares error criterion is a reasonable choice. Integrating a set of geometric and topologic constraints
that force the estimation process to obtain a globally optimized solution re�nes the process. These constraints
provide a large support for including only the relevant image information into the process. In addition, they
allow FBMV to �nd photometrically weak or occluded image features that otherwise could not be fund without
also �nding many irrelevant features. It is a feature-based method because 3D positions of the model features
are directly used as an initial guess to guide the search for �nding homologous 2D image features during the
estimation process in all corresponding images.

Each of the building hypotheses is evaluated using the estimation algorithm. The result of estimation can be
used as a decision criterion in the veri�cation phase. For example, by setting a threshold on the residuals, one
can make a decision about the correctness of the model primitives. The correction is driven by the di�erence
between the reconstructed coarse model and measured features within images. An essential point in such an
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Figure 6.1: Perspective projection of a building into corresponding images

estimation algorithm is the comparison level used. It is only possible to calculate such a di�erence when the
hypothesis model and measurement are at the same level of comparison. The choice of the comparison level is
dependent on many factors (Schutte & Hilhorst 1993). The key issues that must be taken into account are the
possible loss of information in data reduction, and the introduction of modeling errors in the hypothesis model.
An obvious choice is the level of the original measurement. For computer vision applications this is the pixel
level. Although the possible loss of information in pixel level is minimized a few disadvantages exist for using
the raw pixel level.

� The intensity of a pixel depends not only on the geometry of the scene, but also on the radiance of the
surfaces, and non-geometric camera and light source parameters. This means that a radiance part needs
to be added to the estimation model, which is not strictly necessary, as we are interested in the geometry
only.

� The data set size of the measurement is quite large in the application considered. The digitized aerial
photographs used typically have a size of several mega pixels. A prediction on the same level will also
involve the same data set size. In addition, a few iterations will be needed until convergence is reached.
This results in quite expensive computational cost.



80 Chapter 6 - Feature Based Model Veri�cation

In FBMV method, the explicit geometry of the straight-line in object model is used as a comparison level against
an implicit description of the lines in image space. In addition the topological and geometrical properties of
the planar surfaces are used as supporting constraints. An example of such a topological information is the
adjacency relationships that provide implicit information about connectivity of the adjacent edges. The levels
of comparison in object space are reached by a bottom-up segmentation of the images, as described in chapter
4, while the corresponding level in image space are derived by a pre-analysis of the magnitude and orientation
of the pixels gray value gradient which is discussed in next section.

Figure 6.1 illustrate schematically the basic concepts of FBMV method. The process starts with a hypothesis
object model, to be speci�c, the b-rep of the 3D reconstructed polyhedral-like building model. All the 3D model
edges are back projected into the corresponding images taken from di�erent viewpoints to de�ne the homologous
2D model edges in images. The projected 2D model edges serve as initial guess to guide the estimation process. A
bu�er of uncertainty as a search space is generated around each 2D edge. Within the generated bu�er, probable
edge-pixels are selected based on the analysis of the direction and magnitude of the pixel gray value gradient.

The estimation process is an orthogonal linear least squares regression problem with the objective to simulta-
neously minimize the perpendicular sum of the Euclidean distances between the selected pixels to the projected
2D model edges in all the images. Therefore, the treatment for the robust parameters estimation for outliers de-
tection and self diagnosis, discussed in chapter 3 are also applicable here. To support the minimization process,
a set of constraint is also integrated into the estimation model. The purpose, description and a mathematical
formulation of all the observations used in FBMV is discussed in the following sections.

6.4 Mathematical Foundation

The objective of this section is to formulate the veri�cation of the hypothesis building model. This is carried
out by back projecting the 3D coarse model into the corresponding 2D images. Although this transformation
is a non-linear operation it is a smooth and well-behaved transformation, and it is a promising candidate
for the application of the well known Gauss-Markov estimation model based upon an iterative least squares
minimization error criterion. This method requires the appropriate initial guess for the unknown parameters.
These values are provided by the geometric and topological information derived from the reconstructed coarse
model itself. Since the model primitives are projected, manipulated and the new values estimated in the inner
loop of the matching process, it is important that possible and e�cient sources of information particular to
the estimation problem will be exploited. In practice, this is done by dividing the whole spectrum of the
observations derived from the building model's description into three major categories as image based, object
based and image-object based observation equations which are discussed in the next subsections. At the starting
point of the estimation process a dense internal data structure is built from the model description. The structure
is used to de�ne identical 3D points, edges, and planar surfaces, as well as their topological relationships. In
this manner, the model primitives may move independently while being attached to their adjacent primitives.
In this way, an edge element connecting two model points can stretch under the in
uence of shifting one of its
endpoint from its initial location and rotate under the in
uence of the movement of the another endpoint. In
order to preserve consistency, the following notations are de�ned identically through the formalization of the
method.

� X;Y; Z; the coordinates of the model points in 3D object space,

� x; y; the coordinates of the projected model points in 2D image space,

� i � 3; stands as the model points ID or representing the index of selected edge pixels in 2D images,

� j � 3; represents the model edges ID,

� k � 1; indicates the model face(s) ID,

� r � 2; represents di�erent aerial images,

In addition, the following assumption should be taken into account:

� Known parameters; The precise exterior and interior orientation parameters of all the images are
given. Therefore, extraction of 3D terrain coordinates is simply feasible through classical photogrammetric
methods.
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� Approximate values; The initial pose, number, and topological relationships such as connectivity and
adjacency of the geometric primitives of the roof structure, i.e., 3D roof edges or 3D plane-roof polygons
and their mathematical descriptions, such as surface normal, edge direction, etc., are known or can be
computationally obtained from the reconstructed coarse building model. These initial values are updated
in each iteration.

� Unknown parameters; The ultimate goal of the estimation model is to de�ne the precise position
of the 3D roof points which subsequently are used to de�ne the geometrical description of the related
geometric primitives of the �ne polyhedral-like building model. However, during the estimation process
the parameters of the 2D image edges are also considered as unknowns.

6.4.1 Image Based Observations

The observations concerned in this class are introduced into the estimation process for solving the unknown
parameters of 2D primitives such as the parameters of the 2D image edges or the coordinates of the homologous
2D model points in image space. Two types of observations 1) linearity which serves as functional model of the
estimation process, and 2) connectivity which is applied as topological constraint are integrated into the system
as image based observations and are discussed next.

6.4.1.1 Linearity: A Local Internal Geometric Constraint

As we have mentioned, the functional model of the estimation process is a linear regression problem with the
objective to minimize the orthogonal distances between the selected edge pixels and projected 2D model edges
in image space, which is supported by additional constraints. In fact, it would be su�cient to simply solve a
resection equation for modifying the coarse building model if we are able to �nd the corresponding matches
between the model points and their homologous points in the respective images. To overcome the problem of
feature correspondence, the match is actually established between the projected model edge and partial edges
or alternatively edge-pixels in the image. In other words, since the precise position of the endpoints of image
edge is unknown or is missing due to the occlusion, it is necessary to minimize only the perpendicular distance
from representative points on an image edge to the projected model edge.

An edge model Ej of a coarse polyhedral-like building model in 3D object space is approximated by a straight
line and represented in a parametric form as:

Ej : Pi = P
(o)
j + sjti ; ti 2 [tstart; tend] (6.1)

where P
(o)
j represent a reference point on the line, Pi is an arbitrary point on the edge Ej , sj represents

direction of the line, ti is a bounded real number corresponding to the point Pi, and tstart; tend are minimum
and maximum value of ti de�ned by the start and end point of the edge Ej respectively. However, in order to
measure the perpendicular distance from a representative edge-pixel (xi; yi) to the projected 2D model edge ej ,
it is useful to express the projected edge in image space in the following form:

ej : xi sin � � yi cos � � d = 0 (6.2)

where d is the distance of the origin from the line, � expresses the angle between the edge and x axis (or the angle
between the edge normal and y axis). In practice, the initial parameters of the 2D edge (�j ; dj) are obtained by
back projecting the two endpoints of the 3D model edge into the corresponding images using the collinearity
equation (6.10). The computed 2D points are then plugged into the equations (6.3), (6.4), in order to derive
the initial 2D edge parameters.

�j = arctan
yend � ystart
xend � xstart

(6.3)

dj = xstart sin �j � ystart cos �j (6.4)
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The projected 2D edge e(r;j) in image Ir serves as initial guess for �nding the exact position of the edge model
within the corresponding images. An uncertainty bu�er with a user speci�ed width is generated around each
edge model in image space based on the initial position of the edge and is used as the search space to �nd
the representative edge-pixels. Figure 6.2 shows the generated bu�er around the homologous model edges of a
reconstructed coarse building model in four images taken from di�erent view points.

Figure 6.2: Uncertainty bu�er of homologous model edges in corresponding images

Each pixel within the speci�ed bu�er is selected as a representative edge-pixel if it satis�es the following two
conditions:

� its gradient direction will approximately be perpendicular to the edge model direction, and

� the magnitude of its gray value gradient will be more than a data-driven adaptive threshold. This threshold
is computed based on a cumulative histogram of the gradient magnitude of all the candidate pixels within
the bu�er, which satisfy the �rst criteria. The gradient magnitude associated with each selected pixel is
used as its weight in the estimation model.

Applying these two conditions for the selection of representative edge-pixels which should satisfy equation
(6.2) has the advantages that �rstly pixels which are laid on the edge image have stronger e�ect during the
�tting procedure because they have more weight in the estimation process. Secondly, the gradients caused
by background objects will not interfere with the parameter estimations, as they are not in the approximate
direction of the edge model. Figure (6.3) indicates the selected edge-pixels of the homologous 2D model edges
in corresponding images within the generated uncertainty bu�er in the �rst iteration of the estimation process.

Figure 6.3: Selected edge-pixels during the �rst iteration of the estimation process

At this point, after selecting the edge-pixels representative, we are ready to introduce the linearity constraints
into the estimation model. Let us once more represent the equation of the projected 2D edge in image Ir, passing
through the selected edge-pixel (ximg

i ; yimg
i ) in the following form:

f(r;j)(�; d) = ximg
i sin �(r;j) � yimg

i cos �(r;j) � d(r;j) = ei(x
img
i ; yimg

i ) (6.5)

where d(r;j) is the distance of the origin from the edge, and �(r;j) expresses the edge angle respect to x axis. In
this formulation, the orthogonal distance ei represents an added error parameter, which acts as a cost function
and should be minimized during the estimation (see �gure 6.4).

Linearization of the equation (6.5) with respect to its parameters (d(r;j); �(r;j)) results in the following formula-
tion:
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Figure 6.4: Regression of a 2D image edge to the representative edge-pixels

@f(r;j)

@�j�=�0
(r;j)

��(r;j) +
@f(r;j)

@djd=d0
(r;j)

�d(r;j) � li = ei(x
img
i ; yimg

i ) (6.6)

where

li = d0(r;j) � x
img(0)
i sin �0(r;j) + y

img(0)
i cos �0(r;j):

For every selected edge-pixel (ximg
i ; yimg

i ) of each 2D edge model e(r;j), within every image Ir, an equation of
type (6.6) is inserted into the system of equations. The total system of equations can be written in matrix form
as:

Alinear � x� llinear = e ; �20P
�1
linear : (6.7)

The llinear , is the observation vector containing the orthogonal distance between the candidate pixels and their
respective 2D model edge in image space. x is the vector of unknowns consisting of the correction of the edge
parameters (��(r;j);�d(r;j)), Alinear is the associated design matrix including derivatives of the observation
equations with respect to the unknowns. The matrix Plinear , is the corresponding weight matrix which is
introduced as a diagonal matrix and is determined based on the normalized gradient magnitude of each candidate
pixel, and e is a error vector with the statistical assumption:

E(e) = 0:

The system of (6.7) is the well known Gauss-Markov estimation model. The least squares estimation in this
model gives a unique and most probable set of estimates for all the parameters of the 2D model edges.

To make the selection process robust and impose a self-diagnosis mechanism, the generated bu�er is updated
in a regular interval during the iteration process. As the process is iterated, the initial parameters of the
2D edges are updated based on the minimization of the orthogonal distance error between the selected edge-
pixels and their respective 2D edges. Consequently the updated parameters de�ne a new orientation for the
generated bu�er. In addition by introducing a smaller width, the size of the bu�er is reduced. As a consequence,
as outliers are excluded from the estimation process, this procedure reduces the computational burden and
increases the accuracy and speed up the convergence process. Figure (6.5) indicates the selected edge-pixels of
the corresponding 2D edges in the �gure (6.3) for the last iteration of the estimation process.
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Figure 6.5: Selected edge-pixels during the last iteration of the estimation process

6.4.1.2 Connectivity: A Global Internal Topological Constraint

The connectivity constraints are integrated into the estimation model as a topological constraint based on the
intersection point between adjacent model edges. Figure (6.6) depicts a corner of the building model when two
edges edge1 and edge2 are connected through the intersection point pint.
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Figure 6.6: Intersection of two adjacent edges

In general, it is possible to introduce the connectivity constraints into the estimation process both in object
space or image space, because it is invariant under the geometric transformation and it is independent of
the embedded space. In this model, it is categorized as an image-based observation, in order to overcome the
problem of correspondence between the model points within the images. In other words, by setting up the
following formulation, the location of the corresponding 2D model points in di�erent images is introduced
implicitly based on the topological information, not the geometrical one. That means we do not compute the
location of the intersection point explicitly based on the intersection of the two adjacent edges. Therefore, the
problem of �nding homologous points in respective images is not encountered, as it is required in the feature-
based matching techniques. In fact, if we had the correspondence relationships between the homologous model
points in di�erent images, then the veri�cation of the coarse model would be done simply by obtaining the exact
location of the 3D model points based on the simple resection technique such as MPGC (Baltsavias 1991, Gruen
& Stallmann 1991).

To formulate the connectivity constraints between adjacent edges for every associated edge member of a model
point the following observation is introduced into the total system of equations. Once again, let us consider
the equation (6.5), to represent a 2D edge e(r;j), in image Ir. Linearization of this equation with respect to its

parameters, in this case 2D edge parameters (d(r;j); �(r;j)) and 2D coordinates (ximg
int , y

img
int ) of the intersection

point in image space results in the following formulation:

@f(r;j)

@�j�=�0
(r;j)

��(r;j) +
@f(r;j)

@djd=d0
(r;j)

�d(r;j) +
@f(r;j)

@x
jx=x

img(0)

int

�ximg
int +

@f(r;j)

@y
jy=y

img(0)

int

�yimg
int � lint = ei(x

img
int ; y

img
int )

(6.8)
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where

lint = d0r;j � x
img(0)
int sin �0(r;j) + y

img(0)
int cos �0(r;j):

The arrangement of the above equation in the form of a Gauss-Markov model for all the connected edges in
corresponding images is expressed as follow:

Aconnect � x� lconnect = e ; Pconnect (6.9)

where lconnect is the observation vector, x is the vector of unknowns consisting of the corrections of the 2D edge
parameters (d(r;j); �(r;j)) and corrections of the coordinates of the intersection point (4ximg

int ;4yimg
int ), Aconnect

is the associated design matrix consisting of the partial derivatives of the edge equation with respect to its
unknown parameters, Pconnect is the corresponding weight matrix, and e is the added error vector.

6.4.2 Image-Object Based Observations

These types of observations are the essential parts of the estimation model. They are integrated into the
estimation process in order to establish the required link between the image and object space. They are acting
as a bridge to tie the estimated corrections of the unknown parameters obtained in image space to their respective
model parameters in object space during the iteration.

6.4.2.1 Collinearity: A Global External Geometric Constraint

The mapping relation between a point in 3D object space Pi(X;Y; Z) and its perspective projection in 2D image
space pimg

i (x; y) can be represented by the classical collinearity equations as follows:

xcami + F x
i (X;Y; Z) = 0

ycami + F y
i (X;Y; Z) = 0

where

F x
i (X;Y; Z) = f

a11(Xi �Xo) + a12(Yi � Yo) + a13(Zi � Zo)

a31(Xi �Xo) + a32(Yi � Yo) + a33(Zi � Zo)

F y
i (X;Y; Z) = f

a21(Xi �Xo) + a22(Yi � Yo) + a23(Zi � Zo)

a31(Xi �Xo) + a32(Yi � Yo) + a33(Zi � Zo)
(6.10)

the a11; a12; :::; a33 are the elements of the rotation matrix, Xo; Yo, and Zo are the location of the perspective
center in object space, f is the principal distance of the sensor, and (xcami ; ycami ) are the coordinates of the point
in camera coordinate system. Additionally, a mapping relation is needed to relate a point in camera system
pcami (xi; yi) to its corresponding point in image coordinates system pimg

i (xi; yi). The transformation parameters
are expressed in the terms of an a�ne transformation:

xcami = c11 � ximg
i + c12 � yimg

i + c10

ycami = c21 � ximg
i + c22 � yimg

i + c20

(6.11)

where c11; c12; c21; c22 and c10; c20 are the rotation and translation parameters of the a�ne transformation re-
spectively. Assuming the interior and exterior orientation parameters of each image are given, then the unknowns
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to be determined are the image coordinates (ximg
i ; yimg

i ) of the model point and its corresponding coordinates
(Xi; Yi; Zi) in the 3D object space. Therefore, if the coordinates of a point is given in object space, the corre-
sponding image coordinates of the point is simply derived from the equations (6.10) and (6.11), or alternatively,
if an object is imaged from more than one viewpoint and the interior and exterior orientation parameters of
the images are given, then 3D coordinates of the point in object space can be reconstructed by simultaneous
intersection of the above collinearity conditions (resection in space). The collinearity equations imply that the
location of 2D image features is a nonlinear function of the position of their respective 3D model features and
viewpoint. The linearization of this equation with respect to its unknown parameters result in a equation that
is a linear combination of the partial derivatives of the location of a point in camera space and its corresponding
position in 3D object space, and is de�ned by:

�xcami +
@F x

i

@XjX=X0
i

�Xi +
@F x

i

@YjY=Y 0
i

�Yi +
@F x

i

@ZjZ=Z0
i

�Zi + x
cam(0)
i + F x

i (X
0; Y 0; Z0) = 0

�ycami +
@F y

i

@XjX=X0
i

�Xi +
@F y

i

@YjY=Y 0
i

�Yi +
@F y

i

@ZjZ=Z0
i

�Zi + y
cam(0)
i + F y

i (X
0; Y 0; Z0) = 0 (6.12)

the partial derivatives of equation (6.11) result in:

�xcami = c11�x
img
i + c12�y

img
i

�ycami = c21�x
img
i + c22�y

img
i : (6.13)

Hence, the linearized equations concerning a 2D point in image coordinates pimg
i (x; y) with respect to its 3D

position Pi(X;Y; Z) can be formulated by plugging the equations (6.13) into the equation (6.12) as:

c11�x
img
i + c12�y

img
i +

@F x
i

@XjX=X0
i

�Xi +
@F x

i

@YjY=Y 0
i

�Yi +
@F x

i

@ZjZ=Z0
i

�Zi � lxi = exi

c21�x
img
i + c22�y

img
i +

@F y
i

@XjX=X0
i

�Xi +
@F y

i

@YjY=Y 0
i

�Yi +
@F y

i

@ZjZ=Z0
i

�Zi � lyi = eyi (6.14)

where

lxi = �(xcam(0)
i + F x

i (X
0; Y 0; Z0))

lyi = �(ycam(0)
i + F y

i (X
0; Y 0; Z0)):

The equation (6.14) for all the model points can be arranged into the matrix form in a Gauss-Markov model
as:

Acollinear � x� lcollinear = e ; Pcollinear (6.15)

where lcollinear , is the observation vector containing the di�erence between the coordinates of the initial 2D model
points computed by the collinearity equations and the one which is implicitly introduced to the total estimation
model by connectivity equations. x is the vector of unknowns consisting the correction of the model points
in object space (�Xi;�Yi;�Zi), and image space (�ximg

i ;�yimg
i ), Acollinear is the associated design matrix

including derivatives of the observation equations with respect to the unknowns, Pcollinear is the corresponding
weight matrix, and e is an added error vector.
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6.4.3 Object Based Observations

As it has been discussed so far, the main objective of the FBMV method is to integrate the model-driven
information into the estimation model as supporting constraints. The observation equations that are classi�ed
in this category are directly obtained based upon the description of the reconstructed coarse building model,
before or during the estimation process. These constraints are introduced between the model primitives in object
space as global or local geometric constraints and are linearized and applied as weighted observation equations. In
this manner, the integration of the model primitives as unknowns into the total system of equations is completely

exible. Introducing the relationship between the model primitives as a strict condition by increasing its weight
or alternatively reducing its in
uence into the system by decreasing its weight.

6.4.3.1 Coplanarity: A Global External Geometric Constraint

Due to the pragmatic assumption that building roof structures are geometrically described by the aggregation
of k � 1 planar surface(s), all the bounding points Pi(X;Y; Z) of the 3D plane-roof polygon Fk, should satisfy
the coplanarity condition de�ned as follows:

f(i;k)(~n;D) = AkXi +BkYi + CkZi +Dk = ei (6.16)

where (Ak ; Bk; Ck), are the components of the surface normal ~nk, Dk is the distance from origin to the plane-
roof polygon Fk, and ei is an added error parameter. The partial derivatives of this equation with respect to
the unknown parameters, that is the 3D coordinates of the model points, is obtained by:

@f(i;k)

@XjX=X0
i

�Xi +
@f(i;k)

@YjY=Y 0
i

�Yi +
@f(i;k)

@ZjZ=Z0
i

�Zi � li = ei (6.17)

where

li = �(A0
kX

0
i +B0

kY
0
i + C0

kZ
0
i +D0

k):

In fact, the corrections (�Xi;�Yi;�Zi) in each iteration represent changes to the initial location of the model
points, while the best planar �t to the updated model points is obtained. Introducing an equation of the type
(6.17) for every point of the plane-roof polygons Fk in the estimation model and arranging all the equations in
the matrix form result a Gauss-Markov model as:

Acoplanar � x� lcoplanar = e ; Pcoplanar (6.18)

where lcoplanar is the observation vector, x is the vector of unknowns consisting the corrections of the coordinates
of the model points (�Xi;�Yi;�Zi), Acoplanar is the associated design matrix determined by the initial values
of the surface normal ~n0k, and Pcoplanar is the corresponding weight matrix.

It should be mentioned that after each iteration the equation (6.16) is solved with the improved model points
coordinates in order to obtain a new estimate for the surface normal ~nk, and the scalar value Dk. The estimated
parameters are used in the next iteration as the new initial values.

6.4.3.2 Conditional Constraints

The FBMV is an iterative procedure based on Newton-Raphson method, thus it converges to the minimum and
becomes closer to the correct solution in every iteration, unless the system is degenerated, the initial values are
so far away from the true solution, or the estimation model is incorrectly established. This property enables
us to integrate additional constraints between the model primitives during the iteration process, if certain con-
ditions are satis�ed. As we have mentioned previously the strength of our method is that it works based on
a data-driven generic data model. That means instead of imposing certain regularities or conditions into the
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model in the earlier stages of the reconstruction process, these regularities and constraints are introduced into
the model in the higher level process of reconstruction. Such constraints are the orthogonality, or parallelity
between the adjacent model edges, symmetricalness or semi-symmetricalness between the adjacent faces, and
so on. The decision to impose these constraints into the estimation model is made during model veri�cation
process when the required criteria are met. The triggered constraints are integrated into the model, simply by
adding a new row to the total system of equations. For the sake of completeness the orthogonality constraints
are elaborated in details next, the other constraints can be dealt with in the same manner.

Orthogonality: A Local External Geometric Constraint
Figure (6.7) represent the angle �, between two 3D model edges E1, and E2. The conditional geometric con-
straint of the orthogonality is applied for every model point Pi, when � satis�es the following condition during
each iteration:

90� t � � � 90 + t (6.19)

where t is a threshold (e.g., 5�) indicating the small deviation of � from its expected value i.e. 90�. In fact,
when two adjacent edges are considered orthogonal then the following constraints should be met:

fi(X;Y; Z) = a1a2 + b1b2 + c1c2 = 0 = ei (6.20)

where ~E1(a1; b1; c1), and ~E2(a2; b2; c2), are the directions of the E1 and E2 respectively and ei is an added noise
parameter.
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Figure 6.7: Two orthogonal adjacent edges

Linearization of the equation (6.20) with respect to the position of the model points Pi(X;Y; Z) result in the
form:

@fi
@XjX=X0

i

�Xi +
@fi

@YjY=Y 0
i

�Yi +
@fi

@ZjZ=Z0
i

�Zi � li = ei (6.21)

where

li = �f0i (X;Y; Z) = �(a01a02 + b01b
0
2 + c01c

0
2):

Therefore, introducing an equation of the type (6.21) as a weighted observation equation for every model point
and once again formulating them in a matrix form will result in the well known formulation of a Gauss-Markov
model such as :

Aortho � x� lortho = e ; Portho (6.22)

where lortho is the observation vector consisting of the magnitude of the scalar product of the adjacent edges, x
is the vector of unknowns consisting of the corrections to the coordinates of the model points (�Xi;�Yi;�Zi),



Chapter 6 - Feature Based Model Veri�cation 89

Aortho is the associated design matrix determined by the partial derivatives of the equation (6.20) with respect
to its unknown parameters, Portho is the corresponding weight matrix and e is the added error vector.

The other conditional constraints can be implemented in the same manner as discussed for the orthogonality
constraint and integrated into the estimation model.

It should be mentioned that in practice, the parallelity constraint between the adjacent model edges is imple-
mented in slightly di�erent approach as we have discussed so far. Owing to the fact that in a b-rep of the
object model (see chapter 5), we are concern to store and represent the model structure with essential geometric
primitives and in a compact form, thus instead of forcing strictly two adjacent edges to become parallel, when
they satisfy the parallelity constraint (� � 180�), and both are only associated with one model face, the FBMV
will merge them into one model edge primitive. In a similar way, during iteration process, a redundant edge
model is removed if it coincides with one of its adjacent edges (� � 0�). This is due to the fact that the speci�ed
edge is not representing an essential or real part of the object model and it has been considered part of the
reconstructed coarse model because of the ine�ciency of the segmentation process to detect only the relevant
edge primitives.

6.4.4 Combined Least Squares Adjustment

Based on the assumption that all the parameters involved in the estimation model are considered observations,
and consequently equations arising with the constraints or conditions are introduced into the total system of
equations as weighted observation equations, then we are able to join the di�erent estimation models which are
formed by the (6.6), (6.8), (6.14), (6.17), (6.21), or any other equations into a uni�ed combined Gauss-Markov
model such as:

X
Acx�

X
lc =

X
ec ;

X
Pc (6.23)

where x represents the total vector of unknowns. The combined least squares solution of the equation (6.23)
gives the vector of estimates for correction to the initial parameters of the model as follows:

x̂ = (
X

AT
cPcAc)

�1(
X

AT
cPclc): (6.24)

Consequently, the vector of total residuals ê, and a posteriori estimation of the variance factor �̂20 can be
computed by:

ê = (
X

AT
c)x̂� (

X
lc) (6.25)

�̂20 =
êT(

P
Pc)ê

n� u
: (6.26)

Furthermore, the estimated reference variance �̂20 , may be compared to a priori value �20 using a chi-square �2

test, in order to assess the performance of the estimation (Mikhail 1976).

6.5 Experiments and Result

To evaluate the performance of the proposed method and to visualize the outcome of the FBMV algorithm,
the three representative buildings of the Avenches data set are selected. It should be noted once more, that
the whole process of model veri�cation is only applied on the roof structure and the vertical walls are added
to the building model at the �nal stage. This is performed based on the analysis of the bounding edges and
points of the veri�ed �ne roof structures. The �rst building shown in �gure (6.8) is a simple gable roof structure.
The reconstructed coarse model (�gure 6.8-c) indicates that the reconstruction process performed by POLY-
MODELER (see chap.5) recovered the fundamental structure of the building. However, due to the presence of a
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dormer window on top of the roof and also the low contrast of the roof outline, the bounding edges of the building
are broken into the small pieces and are very rugged. However, the FBMV approach successfully veri�ed the
model and removed the redundant edge segments. Furthermore, imposing the orthogonality constraints during
the veri�cation process enables FBMV to accurately recover the building corners (see �gure 6.8-d), which were
trimmed o� during the segmentation process. Figures (6.8-a and 6.8-b) show the initial and modi�ed building
model overlaid on the corresponding aerial image, respectively.

a b

c d

Figure 6.8: Reconstructed gable roof structure building: a) reconstructed coarse building model overlaid on aerial image,

b) reconstructed �ne building model overlaid on aerial image, c) perspective view of the reconstructed 3D coarse building

model, d) perspective view of the 3D �ne building model.
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The second example deals with reconstruction of a hipped-gable roof structure (see �gure 6.9). As it is shown
in �gures (6.9-a and 6.9-c), although the major structures of the building, the bounding edges and even small
protruding structure of the roof is reconstructed correctly. Due to the low contrast of the edge segments of the
hip tile of the roof, the reconstructed edge is completely shifted away from its correct position. In addition, the
position of the corner points is not precisely de�ned. The modi�cation of the model based on a multi-photo
estimation process and imposing the global constraints as discussed previously, enables FBMV to recover this
occluded part of the roof and forces the displaced model edge to located in its true position. Furthermore it
also de�ne the positions of the model points more accurately (see �gures 6.8-b and 6.8-d).

a b

c d

Figure 6.9: Reconstructed hipped-gable roof structure building: a) reconstructed coarse building model overlaid on aerial

image, b) reconstructed �ne building model overlaid on aerial image, c) perspective view of the reconstructed 3D coarse

building model, d) perspective view of the 3D �ne building model.



92 Chapter 6 - Feature Based Model Veri�cation

The last example shown in �gure (6.10) represents a more complex roof structure. Although the hypothesis coarse
building model generated by POLY-MODELER describes the building completely. Still there are displacements
in some of the model primitives, specially the intersection point between three adjacent plane-roof polygons is
shifted signi�cantly from its real position (see �gure 6.10-a). This is due to the failure in de�ning the correct
orientation (slope) of the respective 3D plane-roof polygons in space, which is caused by the low quality of the
utilized DSM. By applying the FBMV process, the normal vectors ~nk of every plane-roof polygons are recovered
precisely and consequently the intersection point is moved to its real position. In addition, the real bounding
edges of the model are also precisely located and the redundant one is eliminated from the �nal model (�gure
6.10-d).

a b

c d

Figure 6.10: Reconstructed complex roof structure building: a) reconstructed coarse building model overlaid on aerial

image, b) reconstructed �ne building model overlaid on aerial image, c) perspective view of the reconstructed 3D coarse

building model, d) perspective view of the 3D �ne building model.

The above experimental results show the strength and generality of the proposed FBMV, in recovering the
reliable and accurately de�ned geometric primitives of di�erent sorts of the building structures, which is an
essential part of any automated vision system. It shows that the proposed method is capable of working with
any complex polyhedral-like object model, if an appropriate initial hypothesis model is available. To complete
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the performance evaluation of the FBMV, the following section is dedicated to numerical analysis and assessment
of the quality of the �nal model obtained from the estimation model.

6.6 Quality Assessment

One of the key issues of the FBMV method is its ability to provide the essential tools for evaluation of the
quality of the reconstructed model and its geometric primitives. As discussed previously, the least squares
solution provides an estimate for the variance factor �̂20 which can be used for the performance evaluation of the
estimation process. In other words, it is used to judge whether or not the estimation model is consistent with
the earlier assumption that the noise distribution follows a normal distribution function with a given standard
deviation, which was the motivation to apply a least squares minimization of the error criterion. In addition,
considering su�cient agreement between the estimation model and our early assumption, the standard and
statistically well known covariance matrix D̂(x̂) of the estimated parameters can be obtained as follows:

D̂(x̂) = �̂20(
X

AT
cPcAc)

�1 (6.27)

The estimated variances of the unknown parameters, speci�cally in our case the coordinates of the model points
in 3D space (�̂2X ; �̂

2
Y ; �̂

2
Z) are the qualitative measures which indicate the accuracy of the model primitives

and act as the decision criteria in order to reject or accept the estimated model elements based on the simple
thresholding process. The evaluation process can be integrated into the whole chain of reconstruction process as
an edition process (tra�c light concept (F�orstner 1996)). In a simple manner, these measures give a hint to the
end user to perform a visual check on the end product and perform the required modi�cations on the signalized
model primitives if necessary. In the following are the numerical results and the statistical analysis of a single
building shown in �gure (6.11).
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Figure 6.11: Top view of a single complex building

The test was carried out for the veri�cation of the model based on utilizing two and four corresponding images
taken from di�erent views. In addition, the reconstructed building in every test is compared with a reference
model digitized manually by an operator, in order to show a realistic quality measure of the process as well.
The results are tabulated in tables (6.1), and (6.2) respectively.

A comparison of the estimated variances of the model points coordinates with respect to the absolute values
of the di�erences between the estimated coordinates and the reference coordinates deduce consistency and
agreement in both tests. Moving from the estimation model based on two images toward the one utilizing four
images indicates a tendency in increasing the accuracy of the estimated model points, as it was expected. In
addition, imposing more images into the estimation process increase the reliability of the model.
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Point-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 RMSE

0.26 0.20 0.09 0.17 0.20 0.10 0.17 0.41 0.16 0.16 0.23 0.12 0.38 0.18 0.22

-0.02 -0.11 -0.04 -0.16 -0.02 -0.09 -0.28 0.14 -0.15 -0.08 0.01 0.07 -0.21 0.30 0.15

0.03 0.03 0.12 -0.17 0.05 0.10 -0.18 0.22 0.03 0.28 -0.03 -0.26 -0.35 -0.17 0.18

0.44 0.44 0.65 0.65 0.30 0.21 0.61 0.07 0.58 0.23 0.37 0.37 0.37 0.37

0.71 0.70 0.23 0.23 0.35 0.35 0.37 0.54 0.54 0.64 0.42 0.43 0.45 0.11

0.69 0.68 0.16 0.16 0.26 0.12 0.33 0.20 0.62 0.15 0.30 0.31 0.24 0.08

∆X

∆Y

∆Z

σx
2

σy
2

σz
2

Table 6.1: Veri�ed coarse building model based on two corresponding aerial images

Point-ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 RMSE

0.19 0.20 0.19 0.17 0.20 0.17 0.11 0.28 0.03 0.10 0.23 0.12 0.38 0.06 0.19

-0.09 -0.16 -0.12 -0.20 -0.10 -0.17 -0.27 -0.17 -0.18 -0.19 -0.02 -0.01 -0.18 -0.29 0.17

-0.15 -0.15 -0.06 -0.23 -0.10 0.08 -0.13 0.09 -0.14 0.04 -0.27 -0.23 -0.19 -0.13 0.16

0.34 0.34 0.49 0.49 0.20 0.23 0.64 0.08 0.56 0.23 0.22 0.22 0.30 0.26

0.30 0.30 0.23 0.23 0.23 0.32 0.36 0.30 0.32 0.46 0.32 0.32 0.39 0.11

0.34 0.34 0.21 0.21 0.26 0.16 0.46 0.17 0.64 0.20 0.25 0.25 0.26 0.09

∆X

∆Y

∆Z

σx
2

σy
2

σz
2

Table 6.2: Veri�ed coarse building model based on four corresponding aerial images

It is discussed in the previous sections that the estimation process can improve signi�cantly, if the robust M-
estimator proposed in chapter 3, is integrated into the process of FBMV. In this manner the remaining outliers,
undetected during selection of candidate pixels based on uncertainty bu�er can be further �ltered out from the
process.

It should be stressed that most of the imposed constraints and their internal relationships can be altered and
introduced with di�erent formulations. In addition, more sophisticated robust techniques for outlier detection
can be integrated into the estimation model. In fact, the main objective of this chapter is to introduce the new
concept of the FBMV and give some hints of how the information derived from the model itself can support
the veri�cation process. However, there are still open places to improve the process and sharpen its strength.
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Chapter 7

Disscusion and Future Directions

7.1 Conclusion

Geometric modeling and description of 3D world objects collected through an imaging system {optical and/or
electronical sensors{ has become a topic of increasing importance, as they are essential for a variety of appli-
cations such as telecommunication, 3D city models, virtual tourist information system, etc. Inevitably, a fully
human-based image interpretation system would be a costly and labour intensive operation. Therefore, there is
an increasing demand towards fully automated machine-based image interpretation systems. This is a collection
of processes that, to a varying degree, models the functionality of the human visual and cognitive system. This
thesis addressed the problem of automatic recognition and 3D reconstruction of buildings from aerial images.
It is mainly concerned with introducing the new concepts and development of robust methods in a hierarchical
framework, for a data-driven reconstruction of generic plane-face building objects through the integration of
computer vision and digital photogrammetric techniques. The term data-driven is used to indicate that the
process of recognition and reconstruction is performed without a priori knowledge about building type or its
structure, and the term generic is used to emphasize the fact that this type of reconstruction is not based on
speci�c, user-de�ned building models, but rather on a generic one. Reconstruction based on a generic object
model means that the number, as well as the geometric form, and the position of the signi�cant parts of the
model have to be de�ned. In addition, the geometric and topological relationships between these primitives are
also needed. Finding the logical relationships between these geometric primitives when a speci�c object model
is not present, is a complex problem, and its complexity is in a reciprocal-like relation with the geometrical level
of the incorporated geometric primitives. That means, hypothesis model generation of a generic object based
on point or line primitives is more complex than a polygonal-based approach. In addition, it is recognized that
discontinuities should be represented by straight lines, and line segments can also be detected with sub-pixel
accuracy and thus give a high quality result. The region-based segmentation algorithms may miss the relevant
boundary information, and are generally unable to trace �ne details and linear elements. They usually tend to
produce regions of which the shape re
ects more the search strategy used than the true shape of the regions.
In consequence, an automated 3D image analysis should incorporate the descriptions of point, line, and region
segments to admit a compact transfer of most of the information content in the image to higher level processes.
This is the key issue and the strength of our proposed method. It enters into the high-level quantitative domain
of the recognition process {extraction of regional information{ in order to reduce the complexity of the problem
in the very early stage of the whole chain of a generic-based reconstruction process, and integrates the low-level
image-oriented qualitative geometric primitives {points and edges information{in the high-level model-oriented
process during the hypothesis veri�cation process. This is in contrary to most of the reported methods, which
initialize their recognition process from the low-level geometric primitives, and are struggling with complex
search strategies in the higher level processes.

An automated vision process such as 3D object reconstruction requires not only describing the geometry of the
object of interest but also the ability to deal with incorrect data which will inevitably arise in a real system. They
must be able to interpret the data while simultaneously reject the outliers. It has been shown when outliers
contaminate the observations, the solution of the LS estimator becomes unreliable and it fails to correctly
recover the model parameters. There are classes of computation in the �eld of robust statistics that have been
designed to handle outliers. In this study we have surveyed the most common categories of robust parameter
estimators. They were evaluated on relative e�ciency and breakdown points. Robust methods based on random
sampling techniques such as RANSAC, and LMS, are able to identify large fractions of outliers and perform well
in presence of outliers but they are not optimal in suppressing Gaussian noise. Although outliers are a serious
problem in vision and must be addressed in the formulation of vision algorithms, Gaussian noise is also present.
M-estimators, which are more satisfying from a statistical standpoint, fail either the �rst initial estimate is too
far away from the true solution, or the fraction of outliers goes beyond 35% of the data. The two-stage synthesis
robust estimator proposed in this study is able to handle outliers and Gaussian error simultaneously and typically
overcomes the problems. The combination of a random sampling type estimator to detect outliers, and estimate
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the initial values of the parameters followed by an M-estimator, which is statistically more satisfying as it is
a closer approximation to the maximum likelihood estimator is shown to be well suited for several parameter
estimation problems which one may encounter in an automated vision process.

A new method for recognition of the 2D plane-roof regions, which possess meaningful correspondence to the
3D plane-roof polygons of the real world building roofs structure, is presented. The recognition is performed
based on the pragmatic assumptions that roof structures are mostly planar surfaces, therefore introducing this
information as two geometrically oriented constraints, 1) regional, and 2) planar geometric primitives, during
segmentation process. The segmentation process incorporates the planarity knowledge based on the invariant
geometric characteristics of surfaces, mean and Gaussian curvatures These two quantities provide a common
method for specifying eight basic types of surfaces, e.g. 
at, which are surronding any point on a smooth surface,
thus yielding the coarse classi�cation of surface types in image data. The regional constraint is integrated into
the process using an iterative least squares planar �t region-growing procedure. Moreover, the required tuning
parameters and thresholds for extraction of the primary roof structures are tied to the estimated noise variance
of the corresponding image. The performance of the recognition procedure shows that the satisfactory results
can be obtained using the proposed method. The intermediate results also indicate that the recognition of
the microstructures of the building roof in the presence of high resolution image data is feasible. This type of
information improves signi�cantly the results of the subsequent reconstruction processes. In fact, the extracted
2D plane-roof regions are the basic elements to describe the geometry of the building during 3D reconstruction.

Modeling complex objects such as buildings requires considerable attention to their topology. We must un-
derstand how simple elements are connected to form the complex model, and how its topology is preserved
when subjected to a variety of transformation. In the proposed framework of building reconstruction, the essen-
tial topological information such as 'adjacency' and 'contained-in' relationships between object primitives are
provided by PAR (Polygons Adjacency Relationships). These are the minimum types of relationships between
object primitives required in an automated vision process based on a generic object model. The PAR is de�ned
based on Voronoi diagram in a raster domain, in such a way that shape and boundary of the polygons are also
taken into account. In this manner the concept of spatial adjacency which has been normally de�ned based on
a point-wise data set, is extended by introducing the adjacency relationships between polygonal primitives of
di�erent shapes and sizes, including connected, disconnected, or overlapped ones.

POLY-MODELER, a new mathematically founded model generator tool, is developed in this research study. It
is a reliable and e�cient tool for coarse polyhedral-like object model generation. The reconstruction is based
on the 3D intersection of adjacent plane-roof polygons, and analysis of the intersection points. POLYMOD-
ELER determines where component faces are extended or truncated and new edges and vertices are created or
deleted. When boundary elements overlap or coincide it merges them into a single element and thus maintains a
consistent, non-redundant data structure representing model boundary. New edges are created where adjacent
polygons intersect. The POLY-MODELER �nds these intersections and then determines by point membership
classi�cation, which segments of the intersection are actual edges of the model. Assuming correctly oriented 3D
plane-roof polygons along their adjacency relationships, the proposed method is able to recover the geometry
of any generic plane-face building models. The performance of the method and accuracy of the reconstructed
roof structure is highly related to the estimated parameters of the of the 3D plane-roof polygons. A failure
in correctly recovering the surface normal of the 3D polygons causes an unexpected result leading to partially
or completely wrong building description. This is why the quality of utilized DSM is of high importance in
our approach. The results indicate that the recognition of microstructure on top of the building roof such as
a dormer window is also possible. Nevertheless, in order to be able to estimate the correct pose of these mi-
crostructures on top of the roof and geometrically describe their shapes, a very dense and highly accurate DSM
is required. Furthermore, owing to the geometrical reconstruction of roof structure, positional accuracy of roof
elements such as orientation edges and intersection points are very high. However, due to a misinterpretation
of the surface normal of polygonal primitives, we may have some discrepancies in the form of displacement or
rotation from the real positions of these elements. To improve the quality of the generated model, the geometric
and topological information provided by the coarse model is incorporated into a hypothesis model veri�cation
process. Since the model-driven geometric primitives (model edges) are used as the features of interest during
matching process, the proposed method is classi�ed as feature based model veri�cation method (FBMV). The
method is able to impose the geometric and topologic constraints derived from the initial descriptions of the
object model into the estimation model, therefore increasing the reliability and accuracy of the estimation pro-
cess. Furthermore, the ability to integrate all the available information to constrain the estimation of the model
parameters signi�cantly improves the model reconstruction. This capability is an essential component of an
automated vision system. This is specially needed for automating the reconstruction of complex objects from
real imagery. Practical experiments have proven that the intensity-based low-level vision processes solely could
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not �nd both su�cient and relevant image features unless they incorporate the geometrically-based information
into the process.

The FBMV is a general model veri�cation method, and can be applied for �tting any solid object model with
arbitrarily curved surfaces and with any number of model primitives to the homologous image features. In
other words, its framework allows di�erent, non-polyhedral object models to be used as well. A consequence of
disregarding the above restriction on the geometry of the model primitives will necessitate that the geometric
routine and functional model are adopted accordingly.

7.2 Directions for Further Research

As described in the previous section, this research has covered a number of issues in computer vision and
photogrammetry, particularly recognition and 3D reconstruction of buildings. All the proposed methods have
been implemented and tested, and it can be concluded that the research objectives set out in this thesis have
been achieved. However, in a broader concept of creation of a true 3D geo-spatial information system, there
are still issues that need to be investigated and studied such as those which are discussed in the introductory
chapter. In addition, some of the aspects treated in this research also need further study and development which
are summerized as follows:

� Identifying and developing new methods for extraction of regions of interest (ROI), with the particular
emphasis in densely built-up areas. Possible lines of investigations are 1) integration of texture analysis
and wavelet transformation, 2) image classi�cation utilizing hight data as additional source of information
and possibly analysing the shadow information (see section 4.4 for references).

� In this research the process of coarse reconstruction of hypothesis building model is performed using
only one single image, therefore the results can improve signi�cantly if the hypothesis model generation is
performed in all the available correponding images in a parallel process, thus providing multiple hypothesis
coarse models for every building object. The coarse building hypotheses can merge or fuse together in 3D
object space in order to generate a unique and more reliable coarse building hypothesis to undergo the �nal
veri�cation process. In this manner, it is feasible to recover a part(s) of the building roof structure which
is missing or has not been reconstructed in one or more of the generated coarse models because of e.g.,
occlusion, shadow or noise during segmentation process. It should be noted, although the FBMV method
is capable of recovering most parts of the coarse model as it is also working based upon multiple images,
however if the initial position of the geometric primitive(s) of the coarse building structure is far away from
its real position, the FBMV will fail to modify that part(s) of the building structure. Applying the ICP
(Iterative Closest Point) algorithm for the registration of the 3D shapes reported by (Besl & McKay 1992)
and extened by (G�uhring 1999) to merge coresponding 3D object models would be a starting point to
tackle this kind of problem.

� Further testing and improving the FBMV algorithm by applying robust parameter estimation techniques
such as M-estimator discussed in chapter 3 for detection of outliers, identyfying and integrating the remain-
ing model driven constraints into the estimation process, and proposing the new �elds of applications for
the Feature Based Model Veri�cation concept such as interactive or semi-autmatic object reconstruction,
or its application in the industrial domain.

I hope that the proposed method in this study in the long run forms the fundamental basis for automating the
process of modeling the real world complex objects while ensuring the consistency, accuracy and reliability of
the reconstructed model.
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Appendix A

Experimental Results

This appendix portrays the results of the proposed methods for the coarse polyhedral-like model generation,
and the �nal veri�cation process, applied to the residential test images of the international Avenches data set
(Mason et al. 1994). The types and the speci�cations of the data which has been used in this study are as
follows:

� Digital stereo aerial images of scale 1 : 5:000 with 15�m resolution. The images captured with 60 % forward
and sidewards overlap.

� Accurate orientation parameters.

� A dense DSM computed by commercial photogrammetric software with 0:25m ground resolution.

Figure (A.1), depicts the result of the reconstructed coarse buildings obtained by POLY-MODELER, overlaid on
the correponding aerial image. Figure (A.2-b), shows a perspective view of the reconstructed coarse buildings in
3D object space. All the buildings are coarsely reconstructed, even building no. 4, which was under construction
during aerial photography, is somehow reconstructed, which shows the robustness of the reconstruction process.
In fact, the generated model is not accurate enough to be veri�ed automatically applying FBMV, however
the modi�cation process is capable of sending a warning signal to the operator in order to check the �nal
result and, if necessary, edit the model manually. This warning message is triggered based on the analysis
of the estimated variances of the model points discussed in section 6.6. Figure (A.3), represents the veri�ed
�ne reconstructed buildings obtained by FBMV technique, overlaid on the correponding aerial image. Figure
(A.4), shows a perspective view of the �nal buildings in 3D object space. The results reveal that the FBMV is
precisely modi�ed and recovered the details of all the buildings except buildings no. 1, and 4. The problem with
building no. 4 is already discussed above. The roof part of the building no. 1 has not been detected during the
segmentation process. This is due to the occlusion of this part of the roof by the adjacent tree. As discussed
in chapter 7, the problem of occlusion can be signi�cantly eliminated by generating multiple coarse hypothesis
models using multiple overlapping aerial images. The �gure (A.5), and (A.6), show the perspective views of 3D
reconstructed coarse and �ne buildings ovelaid on the existing DSM respectively.
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Figure A.1: Reconstructed coarse buildings overlaid on the corresponding aerial image

Figure A.2: Perspective view of 3D reconstructed coarse buildings
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Figure A.3: �nal reconstructed buildings overlaid on the corresponding aerial image

Figure A.4: Perspective view of the �nal 3D reconstructed buildings
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Figure A.5: Perspective view of 3D reconstructed coarse buildings overlaid on the DSM

Figure A.6: Perspective view of the �nal 3D reconstructed buildings overlaid on the DSM
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