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ABSTRACT

Since the launch of high-resolution sensors, the use of satellite images as a major source of spatial information has been
the subject of extensive research in a broad range of applications. In particular, the extraction of land cover information
from remotely sensed data and the use of this information as input into geographical information systems (GIS) has
received considerable attention over the last ten years. The successful use of GIS as a decision support tool can only be
achieved, if it becomes possible to attach a quality label to the output of each spatial analysis operation. Thus the accu-
racy of multispectral classification gained more attention. In a GIS, the data is usually stored in terms of objects instead
of individual pixels. To this end, the classification result has to be segmented. An important aspect of this research is the
propagation of the uncertainty of a pixel belonging to a class to the uncertainty of the pixel belonging to a region. Differ-
ent approaches for image segmentation will be presented, that take the thematic uncertainty of the pixels into account.
They will be applied and verified to a small test area.

1 INTRODUCTION

With the increasing popularity of GIS, geographic data in
GIS are often being used to support policy decisions.
Since no information about quality of the data is normally
available, it is assumed that the data are free of errors.
However, this assumption is often not warranted due to a
variety of reasons (Burrough, 1986, Goodchild and Gopal,
1989). Quality of geographic data has a profound impact
on the reliability of the resulting policy decision based on
spatial analysis because the quality of data affects the
quality of decisions and the evaluation of decision alterna-
tives.

Thus the issue of spatial data uncertainty is given high
priority on the GIS research agenda, and is one of the
most frequently covered topics in recent scientific litera-
ture on GIS. With the increasing use of remotely sensed
data as input into geographical information systems, the
accuracy of multispectral classification also gained more
attention. Accuracy assessment includes positional accu-
racy and thematic accuracy (Janssen and van der Wel,
1994).

The assessment of positional accuracy mostly yields one
single measure, the root-mean-square (RMS) error, and
refers to the accuracy of the geometrically rectified image.
Rectification includes georeferencing and geocoding.

Thematic accuracy refers to the correspondence between
the class label assigned to a pixel and the true class.
From this comparison the proportion of correctly classified
pixels and class-dependent measures are derived. How-
ever, these global measures do not give sufficient infor-
mation since a quality assessment for individual areas is

not possible. Alternatively one might consider the class
membership probabilities that are generated by classifica-
tion as indicators of the uncertainty of pixel assignment.
Therefore, in the following we will distinguish between the
terms accuracy and uncertainty.

Accuracy in GIS currently is a research topic of high inter-
est. The approaches mainly concentrate on vector GIS,
modelling geometric (positional) uncertainty with appro-
priate measures (e.g. error band (Caspary and Scheuring,
1992, Blakemore, 1984), fuzzy techniques (Glemser,
1994)). Shi et al. (1994) present an approach to visually
overlay thematic and geometric uncertainty. Integrating
the quality of raster objects in a hybrid GIS requires the
definition of special data structures and the design and
implementation of analysis procedures that work on the
data. Basically, either a single probability value (mean
value of the probabilities and the standard deviation) can
be assigned to the object, or individual per-pixel-
probabilities can be modelled (Glemser and Fritsch,
1998).

Since in a GIS the data is usually stored in terms of ob-
jects instead of individual pixels, the classification result
has to be segmented. An important aspect in this context
is the propagation of the uncertainty of a pixel belonging
to a class to the uncertainty of the pixel belonging to a
region.

2 DATA SETS

A test area with an extension of 2.2 km by 2.8 km was
defined to compare the proposed approaches. It is located
approximately 80 km east of Stuttgart.
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As input data for the classification DPA high resolution
remote sensing data were used. The Digital Photogram-
metric Assembly (DPA) is an optical airborne imaging
system for real time data collection (Fritsch, 1997). The
ground pixel size is dependent on the flying height and is
for example 0.60 m for multispectral data when flying
2300 m above ground. Beside the multispectral sensor,
the DPA camera system offers also three panchromatic
CCD line arrays for inflight stereo imaging. The data were
resampled to a pixel size of 4m because this resolution is
sufficient for the approaches of segmentation. In addition
to the multispectral channels of the DPA sensor textural
patterns which are computed from the multispectral data
are used. Figure 1 shows the DPA data of the test area in
which the land cover classes agricultural area, settlement
and forest shall be classified.

Figure 1: DPA data

The training areas for the land cover classes agricultural
area, settlement and forest are generated from ATKIS
data. ATKIS is the German topographic cartographic
spatial database (ATKIS, 1988) and presently contains
more than 60 different feature types for the whole area of
Germany in the scale 1:25.000. Beside this scale there
are further levels of data aggregation in the scales
1:200.000 and 1:1.000.000.

3 TRADITIONAL APPROACH

3.1 Classification

Supervised classification is the procedure most often used
for quantitative analysis of remote sensing image data
(Richards, 1993). It rests upon using suitable algorithms
to label the pixels in an image as representing particular
ground cover types. There are a lot of different methods
among those maximum likelihood classification is the
most common supervised classification method. The
essential practical steps are as follows.

- The first step is to define the set of land cover types
into which the image is to be segmented. In this con-
text most classification methods assume that an im-
age scene can be decomposed into a small number
of spectrally separated classes, each of which can be
allocated uniquely to one of the defined types of land

cover. This corresponds to a model of the Earth’s
surface that consists of a collection of homogeneous
patches of land with precise boundaries. In reality,
however, changes in land cover are less abrupt and
the definition of different land cover classes is more
ambiguous.

- For each of the desired set of classes representative
pixels called training data have to be chosen.

- With these training data the statistical parameters of
the classifier algorithm can be estimated.

- In a last step every pixel in the image is classified into
one of the chosen land cover types using the decision
rule for the trained classifier. In the case of the maxi-
mum likelihood classifier the probabilities that a pixel
belongs to each of the defined set of possible classes
are estimated. The class to which the pixel is finally
assigned is that having the highest probability. Class
membership probabilities on which the assignment is
based are usually disregarded, so that after classifi-
cation no information on the probabilities is available.
So it is not possible to decide if a strong membership
(e.g. 0.90 for forest and 0.10 for agriculture) or a
weak membership (e.g. 0.51 for forest and 0.49 for
agriculture) exits.

The outcome of the classification is a pixel oriented repre-
sentation of different land cover classes and can be rep-
resented in form of a thematic map. Figure 2 shows the
result of the classification procedure for the chosen test
area. Errors in the definition of land cover type and errors
in the assignment of pixels to a particular class result in
the classification uncertainty, i. e. the thematic uncer-
tainty.

                                agricultural area

                                 settlement

                                 forest

Figure 2: Classification result

In a GIS the data is usually stored in terms of objects
instead of individual pixels. To this end, the classification
result has to be segmented.
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3.2 Indicators of Classification Uncertainty

Map accuracy is usually assessed by comparing the clas-
sified land cover to the actual land cover obtained from
ground surveys, aerial photographs or already existing
GIS data. The results of this comparison are then re-
corded in the confusion matrix. From the confusion matrix
global and class-dependent measures of accuracy are
derived (Congalton, 1991, Stehman, 1997). The most
fundamental disadvantage is that no information about the
spatial distribution of the uncertainty within the classes is
available.

Alternatively one might consider the class membership
probabilities that are produced by statistical classification
as indicators of the reliability of pixel assignment. The
advantage of working with these class membership prob-
abilities is, that they provide information at the level of
each individual pixel. However it should be pointed out
that they cannot be considered as pure indicators of clas-
sification accuracy because they do not take into account
all problems related to the definition of the class signa-
tures on which the classification is based.

Therefore it is obvious to denote the parameters that are
derived from the confusion matrix as direct measures of
classification accuracy or as external measures. In con-
trast, the class membership probabilities can be named as
indicators of classification uncertainty or as internal
measures. In the following, there will be a concentration
on the internal measures.

3.3 Segmentation of Classification Results

Image segmentation provides a logical transition from the
units of pixels to spatially cohesive units, or regions. A
reason for segmenting an image into regions is that sub-
sequent processing steps like spatial data analysis require
per-region, rather than per-pixel, input.

The result of the classification is normally segmented
using region growing algorithms (Haralick and Shapiro,
1992). Adjacent pixels are grouped together if they meet a
pre-specified similarity criterion. Here, the similarity crite-
rion requires that adjacent pixels have the same land use
label. With this segmentation technique land cover
classes are modelled as non-overlapping areas that are
used as input data into GIS usually without any accuracy
assessment.

In the following three alternative approaches of image
segmentation will be presented that take for each pixel the
class membership values or the probability vector, re-
spectively, into account.

4 SEGMENTATION BASED ON UNCERTAINTIES

The probability vector contains the probabilities with which
the pixel can be assigned to the defined land cover
classes. In the case of the test area, these are the classes
agricultural area, settlement and forest. The probability
vector contains as much elements as land cover classes
are defined, so in this case it is a vector with three ele-
ments. Therefore the value range of the first most likely
probability lies in the interval [0.33,1.00], that of the sec-
ond most likely probability in the interval [0.00,0.50], that

of the third most likely probability in the interval [0.00,0.33]
and all probabilities per pixel add up to 1.00.

In Figure 3 the probability of the first most likely class for
all three object classes is displayed. The dark regions
indicate high probability, while the bright regions have a
high degree of uncertainty. Uncertainty occurs along the
edges of the parcels and along roads. The outlines of the
individual parcels in the object class agricultural area can
be recognized clearly in the representation of the prob-
abilities. Additionally, there are regions with a relatively
high degree of uncertainty. In these regions the confusion
between different land cover types becomes apparent. A
segmentation based only on the highest probabilities will
yield the same results like in the conventional maximum
likelihood approach, since the same data is used. Conse-
quently, the whole probability vector has to be included in
the segmentation. Investigations with more classes have
revealed, that in general only at most three probabilities
have values greater than zero. So it is sufficient to con-
sider the first, the second and the third most likely prob-
abilities in the segmentation process. That means the
following: If the probabilities for a pixel have e.g. the val-
ues 0.60 for agricultural area and 0.40 for settlement, this
pixel will be included both in the segmentation of the class
agricultural area and in the segmentation of the class
settlement.

0.33                                     1.00

Figure 3: Probability of the first most likely class for all
three object classes

With this procedure the land cover classes are modelled
as overlapping areas. This is to be seen as an advantage
since as a result mixed pixels that occur along the
boundaries between different land cover classes can be
modelled, without having to define additional classes.
Having in mind the modelling of the geometrical uncer-
tainty of vector data e.g. minimum-maximum-method
(Blakemore, 1984), the error band describes the minimal
and maximal possible extension of the object or the varia-
tion of the boundary between two adjacent objects, re-
spectively. Consequently, the region within the error band
can be considered as a mixed region. This means that
overlapping objects are also allowed in the case of model-
ling the geometrical accuracy of vector data.
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a) agricultural area

b) settlement

c) forest

0.00                                     1.00

Figure 4: Representation of the probabilities

The basic data for the segmentation are the overlapping
object classes and the corresponding probabilities per
pixel. The task consists in finding closed regions within
the individual object classes. In the segmentation process
performed for the test area pixels with probabilities less
than 0.20 are not included.

Figure 4 shows the probabilities for the land cover classes
agricultural area, settlement and forest. The probabilities
for class membership are represented for every individual
land cover class since the object classes are overlapping.
The dark regions indicate high probability, while the bright
regions have a high degree of uncertainty. If no object
class is assigned, the pixels are represented in white, e.g.
in the visualisation of the probabilities of the object class
settlement in the upper right part of the image. The pixel
in this part are assigned with a probability of 1.00 to the
object class forest and with a probability of 0.00 to the
object class settlement.

The confusion between land cover types becomes appar-
ent by comparing the different representations. This is
shown in Figure 5 for a part of the image. Objects that
appear in only one object class e.g. the object A in the
land cover class forest can unambiguously be assigned to
that class. Objects that appear in two object classes e.g.
the object B in the land cover classes agricultural area
and forest indicate problematic regions.

  agricultural area         settlement                 forest

Figure 5: Detail of the representation of the probabilities

4.1 Segmentation of objects of heterogeneous
quality

A very simple procedure to the segmentation based on
the uncertainties consists in including neighbouring pixels
into a region independent of the order of magnitude of  the
probability. This procedure has to be carried out for every
given object class. As already mentioned above, pixels
with probabilities less than 0.20 are not included.

Figure 6 shows the segmented objects for agricultural
area. The chosen 4-connectivity results in 1344 objects.
The objects formed in such a way differ from those of
traditional segmentation in the additional quality informa-
tion, and of course in the overlapping regions with other
object classes. Since the aggregated objects consist of
regions of different thematic uncertainty, they can be
described as objects of heterogeneous quality. Conse-
quently, the modelling of quality of these objects in a GIS
requires that the probability per pixel is available. The
number of objects depends on how many neighbouring
pixels are considered to be contiguous i. e. whether adja-
cency is defined in terms of 4-connectivity or of 8-
connectivity.

A B
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Figure 6: Segmentation result for agricultural area

4.2 Segmentation of objects of homogeneous
quality

Assuming that thematic uncertainty in image classification
is field-based rather than pixel-based, the image is seg-
mented in fields according to similarities in the probability
vectors of adjacent pixels by use of a region growing
algorithm. In the algorithm the probability of the current
pixel is compared with the probability of a neighbouring
pixel. If the difference is less than some predefined
threshold, then the pixel is included into the region, other-
wise it is not. Again, adjacency can be defined in terms of
4-connectivity or in terms of 8-connectivity.

Figure 7: Segmentation result for agricultural area

Based on the chosen similarity criterion for the segmenta-
tion, regions of similar thematic uncertainty are created.
They can be denoted as objects of homogeneous quality.
As a quality information of the objects, we can choose the
mean value of the probabilities and the standard deviation
as an alternative to the probability per pixel. The number
of objects depends on the chosen threshold and on the
chosen neighbourhood type.

Figure 7 shows the segmented objects for agricultural
area. Using 4-connectivity and a threshold value of 0.15
results in 13395 objects.

4.3 Segmentation of objects with alternatives

In the case of the procedures described in sections 4.1
and 4.2 segmentation is carried out separately for the
individual object classes. Only the superposition of the
results reveals overlapping regions, but no statement can
still be made, which one of the object classes is the most
likely one. Therefore, in this section an approach which
provides the objects and their alternatives is presented.

In this third approach the segmentation is carried out
based on same class memberships of neighbouring pixels
but independent on the order of magnitude of the prob-
abilities. Two neighbouring pixels will be assigned to the
same object, if they both show either class membership to
the same object class or several class memberships to
the same object classes. Two examples shall explain this:
If the probabilities of two adjacent pixels have both the
value 1.00 for forest, they are both assigned to the same
object of the class forest. If the probabilities of a pixel
have the values 0.60 for agricultural area and 0.40 for
forest and the probabilities of an adjacent pixel have the
values 0.70 for forest and 0.30 for agricultural area, they
are assigned to the same object of the mixed class agri-
cultural area with forest. This requires the definition of all
available mixed object classes in addition to the object
classes defined already. In the case of the test area,
these are the three mixed classes “agricultural area with
settlement”, “agricultural area with forest” and “settlement
with forest”. A fourth mixed class can be characterized by
the existence of all object classes. Consequently, seven
object classes are defined in total. With regard to the
object classes, it is to be distinguished between pure
object classes and mixed object classes. The pure object
classes are characterized by the assignment of the land
use type with a probability of 1.00. For the description of
the quality of the mixed object classes, we can again
choose for every object the mean value of the probabili-
ties and the standard deviation as an alternative to the
probability per pixel.

                          agricultural area

                          agricultural area + settlement

                          agricultural area + forest

Figure 8: Segmentation of alternative object classes of
agricultural area
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The segmentation of the data shown in Figure 8 results in
746 objects for agricultural area, 2899 objects for agricul-
tural area with settlement and 2132 objects for agricultural
area with forest, again using 4-connectivity. In the figure
only the classes related to agricultural area are visualized.

4.4 Comparison

The presented approaches shall be compared using a
part of the image (Figure 9). The object under investiga-
tion is in the lower, middle part of the image (Figure 2). It
is an object of the class agricultural area with a relatively
inhomogeneous stripe in it. Figure 9a) visualizes the high
probabilities for the main object (dark grey values) and the
low probabilities (bright grey values) for the stripe.

The approach ‘Segmentation of objects of heterogeneous
quality’ (Section 4.1) is well suitable to describe form and
spatial extension of the objects. Since the individual ob-
jects are formed independent from the order of magnitude
of the probabilities, they form a homogeneous region
(Figure 9b) – observe that also the strip with low prob-
abilities still is assigned to the region. However, the region
does not have a uniform accuracy. Therefore, for further
processing in a GIS, the per-pixel-probabilities given in
Figure 9a) have to be transferred to the GIS.

In the approach ‘Segmentation of objects of homogene-
ous quality’ (Section 4.2) the object of Figure 9c) is parti-
tioned into one larger object and approximately 200
smaller objects. All pixels within these individual objects
have a similar thematic uncertainty. The representations
of the probabilities (cf. Figures 3 and 4) show the follow-
ing: Regions in which all pixels have the same probability
are shown in one homogeneous grey value, e.g. the black
regions have probability values of almost 1.00. Regions in
which the pixels have different probabilities are shown in
different grey values. That means that individual large
objects indicate regions with high probability, and many
smaller contiguous objects indicate inhomogeneous re-
gions in respect of the uncertainty.

The approach ‘Segmentation of objects with alternatives’
(Section 4.3) offers the possibility to indicate an alterna-
tive class for those regions that are assigned only with a
low probability to an object class. In such a way, Figure
9d) shows that most of the pixels of the uncertain stripe
are alternatively assigned to the object class forest. The
boundary of the object are alternatively assigned to the
object class settlement. This can e.g. point at a path along
the parcel.

The different segmentation results (Figure 9b, 9c, 9d)
should now be compared with the classification result
(Figure 2) and the satellite image (Figure 1) describing the
reality. The comparison is carried out for the stripe men-
tioned repeatedly. This stripe is assigned both to the ob-
ject class forest and to the object class agricultural area.
Since the probabilities for the membership to the class
forest are larger, most parts of the stripe are assigned to
the object class forest in the classification. However, by
visual inspection of the satellite image an agricultural area
is identified.

a) representation of the probabilities

0.00                                     1.00

b) object of heterogeneous quality

c) objects of homogeneous quality

d) alternatives objects

                          agricultural area

                          agricultural area + settlement

                          agricultural area + forest

Figure 9: Detail of the segmentation results for agricultural
area
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The occurrence of mixed object classes indicates prob-
lematic regions. They can form lines or areas, as Figure
9d) shows. The problematic regions forming lines de-
scribe the thematic uncertainty on the boundary between
two objects. The problematic regions forming areas indi-
cate problems in the classification. Most of the mixed
objects “agricultural area with forest” are wrongly as-
signed to forest in the classification. For this test area this
is an indication that another object class has to be defined
to improve the classification result. Obviously, the wrongly
classified areas are agricultural areas whose coverage
have similar spectral properties like forest.

5 SUMMARY

The successful use of GIS as a decision support tool can
only be achieved if it becomes possible to attach a quality
label to the output of each spatial analysis operation. With
the increasing use of remotely sensed data as input into
GIS, the accuracy of multispectral classification also
gained more attention.

The quality of the classification can globally be described
by accuracy measures that are derived from the confusion
matrix. Alternatively the class membership probabilities
can be used to describe the classification uncertainty of
each pixel. Since in a GIS the data is usually stored in
terms of objects instead of individual pixels, the classifica-
tions result has to be segmented. In this procedure the
uncertainty of a pixel belonging to a class has to be
propagated to the uncertainty of the pixel belonging to an
object.

Three approaches of image segmentation are presented
that take the class membership probability for each pixel
into account. The approaches mainly differ in quality lev-
els. An important property of the approaches is the possi-
bility to detect problematic regions and to improve the
classification.
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