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Abstract—We present an algorithm for extracting Level of
Detail 2 (LOD2) building models from video streams captured
by Unmaned Aerial Vehicles (UAVs). Typically, such imageryis
of limited radiometric quality but the surface is captured with
large redundancy. The first contribution of this paper is a novel
algorithm exploiting this redundancy for precise depth conpu-
tation. This is realized by fusing consistent depth estimabns
across single stereo models and generating a 2.5D elevatiorap
from the resulting point clouds. Disparity maps are derivedby a
coarse-to-fine Semi-Global-Matching (SGM) method perfornmg
well on noisy imagery. The second contribution concerns a
challenging step of the context-based urban terrain modetig:
Dominant planes extraction for building reconstruction. Because
of noisy data and complicated roof structures, both dominai
plane parameters and initial values for support sets of plars
are obtained by the J-Linkage algorithm. An improved point-
to-plane labeling is presented to encourage the assignmeiaf
proximate points to the same plane. This is accomplished by
non-local, Markov Random Field (MRF) - based optimization
and segmentation of color information. The potential and tke
limitations of the proposed methods are shown using an UAV
video sequence of limited radiometric quality.
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velocities allow for data collection providing high detal sur-
face observations at high redundancy. However, in comparis
to professional imaging devices imagery offers only lirdite
signal-to-noise ratios.

In the first part of this article, we focus on the generation of
2D elevation data from highly redundant image data, however
suboptimal in their radiometry. In Sec. Il, we describe arsea
to-fine modification of SGM [2] which dynamically reduces
search ranges for pixel correspondences. We show that by
this modification, ambiguities in the correspondence mobl
are reduced and completeness of the reconstruction can be
increased. To improve precision and eliminate gross errors
the high redundancy is exploited. Therefore, stereo magcisi
coupled with a correspondence linking strategy [7] whereta s
of stereo models is computed for each image. To refine results
redundant depth estimations are linked across the models,
checked for consistency and fused subsequently. Moreaver,
simple and efficient strategy for merging depth maps int®2.5
elevation models is presented. One major advantage of the
proposed method is its scalability regarding resolutioth e
number of images. The increased computational load engergin
from redundant processing can be tackled by parallel pro-

3D city models mainly consist of a digital elevation model gramming, reduction of search ranges including the efficien
and LOD2 building models showing detailed roof structuresformulation for the 3D structure computation, thus allogvin
and planar fagades [1]. In their capacity as pure geometg=-m an efficient computing time of under 2 sec. per stereo model
els, such 3D city models can be used as virtual environmengvaluation.

for tourism or navigation systems, as well as for visuaioret
and training simulations. Common representations foraserf

geometry are digital elevation models or triangle meshe
However, in many applications, extensive simplification of
this geometry is required to improve the interoperability.

Additional context information, for example, differerttan

between buildings and vegetation enables extraction of col

lision geometry for purposes of simulation.

S.

Within the second part of this paper, we focus on the ex-
traction of building polyhedrons from the previously geated
élevation maps. Thereby roof detail analysis, the vecation
of roof edges, ridges and smaller components as dormers is th
most challenging step [8], [9], [10]. Our goal is to reprdsen
roof structure by as few polygons as possible while preagrvi
a maximum amount of geometric information. Therefore, a
common approach is to identify a set of dominant planes in the

3D City modeling long time was primarily based on LIDAR building point clouds. Global approaches, such as multil@ho

data due to its superior density and precision. Advances IRANSAC [11] and J-linkage [12] operate on larger portions
sensor technology as well as algorithms for orientation-comof points, for example point clouds representing complete
putation and dense matching make image based reconstruauildings. These algorithms yield a set of plane hypotheses
tion an efficient alternative. The potential of reconstimts  each supported by a set of points. These support sets give
using imagery captured by high quality, large-frame ainfgor valuable clues about spatial extend and impact of a plane
cameras was demonstrated in [2], [3], [4]. State-of-the-arhypothesis. However, the mentioned algorithms may extract
algorithms reconstruct surface points for almost eachlpind  erroneous planes (ghost planes) caused by support of points
offer accurate results at depth discontinuities. For thppitey  not representing the same geometric entity. This hinders a
of moderate sized areas UAVs equipped with consumer gradaeaningful vectorization and can be overcome by forcing
cameras can be deployed [5], [6]. Low flying altitudes andhomogeneous labeling of neighbouring points [13], [9]. As



will be explained in section IlI-B, one solution to this pfetn  consistency measures in general are less distinctive it
is a non-local, MRF - based optimization algorithm which approach the search range is limited for each pixel indiglu
results in a significant reduction of ghost planes. We willbased on disparities available from disparity maps already
show that in presence of gross errors in the point cloudsomputed on the next higher pyramid level. The choice of
these results can be further refined by segmentation of cola suitable range is crucial to assure small details posgpssi
information of an ortho photo. In Sec.IV, we evaluate thelarge depth changes to be reconstructed completely. In our
presented algorithms for a UAV video sequence of a smalblgorithm, ranges are derived by analysis of the local serfa
village. Sec.V summarizes our contributions and outlifess t structure and validity in a window around the respectivespix
ideas for future research. On the highest pyramid level, correspondences are searched
along the full range of epipolar lines.

II. EXTRACTION OF 2.5D HEIGHT RASTER DATA FROM
IMAGES AND VIDEOS d

The input of the presented algorithm is a set of images and
the corresponding interior and exterior orientations ofieeas.
These can be derived using structure from motion and bundle

adjustment techniques such as [14] or [15]. Each available X\/. X

imagely, is treated as a reference image and is stereo matched y

against a set of match imagég;. The selection of images Fig. 1: Visualization of cost structures of classic SGM tjlef
corresponding to a clustéty, Imi) is based on evaluation of and the dynamic solution (right). Red cubes represent costs
camera poses assuring base lines and viewing directions to oy the true correspondences. Gray cubes mark the costs of

in an appropriate range. To speed up the matching procesgetential correspondences.
images are rectified to epipolar geometry.

y

In order to reject mismatches and improve accuracy, depth
estimations inl, are linked to correspondent depths lig; The high redundancy in the image sequences is exploited
and checked for geometric consistency. This results in &y stereo matching each frame with multiple proximate frame
refined depth map or point cloud. We are aware of superioto retrieve consistent depth estimations for each pixetréhy,
technigques evaluating image consistency across multiplesy  multiple measurements acrosslisparity maps in one image
[16], [17], [18], however, to limit processing time we relymo cluster(lp, 1) are fused using the concept of correspondence
stereo processing and subsequently filter mismatches loased linking inspired by [7]. A base image pix&}, can be related to
geometric properties. In the final stage, all refined depthsna the pixel coordinatesy, in the rectified base imagéeg; by the
are fused using a gridding approach resulting in a 2.5D sarfa homographiesd; used within the rectification proces§; =

model. Hixp. For the rectified coordinates, disparity estimate& ;)
can be derived by lookup in the disparity maps available from
A. Depth Map Generation and Refinement matching. The relation between the dispadtyand the depth

D of the corresponding 3D point with thecoordinateZ in a
The implemented stereo algorithm is a coarse-to-fine modrelative coordinate system can be calculated using theularm
ification of the SGM method [2]. The problem of dense match-for the stereo normal case [20]:

ing can be stated as densely estimating the correspondegces B Ba
andxmi = Xmi(d) across a reference viely and a second frame  d = —— = ——, wherea= \/f2 + ()% + ()2 (3)
Im. In the first stage, a photo-consistency meadtyga(dy) Z(x;)  D(xo)

is computed [19] and stored for each potential correspatelen and f is the focal length and the baseline. The fact that
pair (xp,Xmi). The search range for correspondences is givegjistances between camera centers and object points remain
by the 1D horizontal epipolar line and a pre-defined, cornstanthe same in the original and the rectified coordinate systems
disparity search range. Secondly, costs of photo-comigte implies that depth®(x},;) computed for single stereo models
are accumulated along eight image paths in order to forc@qyal depths on the base image ray, thus],;) = Dp. We
piecewise smoothness of the underlying surface. The set Qfcylate the final depth from the seticfonsistent disparities
minimal accumulated costs yields a set of disparibesorre- by minimizing the 1D reprojection err(bx[n,i —%i_.|2 along the

sponding to a strong local minimum of an energy function: . . o o <
epipolar lines. This is the same as claimijidj — d;||2 = min.

E(D) = Edata(dx) + ) Esmoott{d dy), (1)  Substitution of equation 3 and derivation leads to
X XYEN 1
where represents the neighbourhood of a pixel, &3glooth D= Z BiZaiZ z Biad(x}) ) (4)
is usually the truncated linear penalty term | | ’

Esmoort{dy. dy) =min(Ax|ck —dy[,A2), O<Ar <Az (2) In order to discard spurious disparities for the multi-view
In contrast to the original approach, we evaluate potentiatriangulation, we assume that each dispadtyis estimated
correspondences only in a reduced search range as viglalize&ith a certain precisioro; and calculate, by means of con-
in Fig.1. The modification aims at reducing ambiguities ofsiderations on error propagation for 3, the uncertaintgriral
photo consistency measures. This is particular benefioial f D; +0;. If these ranges mutually overlap, respective disparities
matching imagery of low radiometric quality since photo are considered consistent and used within the subsequent



triangulation step. If the number of consistent measurésnengeometric distributions of inliers [25] or preferring nhig

is below a threshold;, the point is not triangulated. bouring points for hypotheses generation make the global
method of RANSAC more local and reduces the number
B. Depth Map Fusion for 2.5D Elevation Maps of erroneous hypothesis, so-called "ghost planes”. Therlat

strategy constitutes one significant idea of the J-linkddg [

For the application of simulation, we strive for a possibly algorithm which is used in this work. Another innovation of
complete (water-tight) representation of urban terraij @  j-linkage is not to discard a hypothesis after a better ore wa
particular, buildings. Because it is not realistic to coedlr  found, but keeping a user-specified number of hypotheses. Th
walls of all buildings during a UAV flight, we merely want extracted planes can be intersected to retrieve the desired
to reconstruct the roof structure of bUIIdIngS and add Wa”"nes_ Besides dominant p|anes’ the set of points Supg)rtin
polygons at roof edges at later stage. Within the presendach hypotheses plays an essential role. These support sets
approach we fuse 3D clouds available from the reconstmictiohold information regarding spatial extend and impact ofheac
process into a 2.5D elevation map. Automatic correctiorplane hypotheses. For the point-to-plane assignmentliiahe
of wall positions using the available facade points will be different strategies can be used. Two examples are asgignin
addressed in our future work. We assign all extracted pointghe |abel of the first plane that has the point as inlier (finder
to anxmgrid located parallel to the ground. The dimensiongr assigning the label of the plane possessing the minimum
of a single grid cell corresponds to the average pixel fantpr  distance (winner). However, no constraints regardingiaat
Let p be the average number of points assigned to one griflomogeneous labeling is applied and assignments supgortin

cell. In order to preserve clear edges, points represeBiing erroneous plane hypotheses can not fully be avoided.
structure are removed by only considering fhieighest points.

The final height value of each grid cell is then computed as
the median of all z-components of the assigned points. B. Point Labeling Using Non-Local Optimization and Segmen-

. . _ tation
Additional to the height data, a color value is computed for

each grid cell. The resulting RGB image will be referred to as  Given a set of planes, we want to impose a soft constraint
true ortho photo. The color value for each cell is computedsuch that neighbouring points of x possess the same label
as average color of all assigned points. Its dimension ant}. Therefore, we use discrete optimization and consider the
resolution are equal to that of the elevation map. It is usedame form of cost function as given in equation (1). Instead
to support dominant plane extraction and to texture the finabf optimizing the disparity of a pixedy as in Sec. II, the label

model. Ix is optimized Eqata(lx) is the truncated and rescaled distance
of x to the planep, labeled byl from andEsmoothiS @ special
[Il. EXTRACTION OF SEMANTIC MODELS FROM case of equation (2) fox; = A2 = A, which is the well-known
ELEVATION MAPS Potts term multiplied by a constant:
City models contain geometric entities of different object Edata(lx) = 2'*min(dist(x,pr)/5,1) )
types, such as buildings, trees, streets, etc. In this weelkare Esmoot{Ix;ly) = 0 if Ix =1y andA otherwise.

interested in the extraction of geometric primitives frooir
(sub-)clouds representing building roofs. Based on the ge
erated elevation data, the set of points representing ibgad
is identified as the set of points neither classified as groun
nor as vegetation. We derive ground points following [2Hr F
classification of vegetation points, the Normalized Difiece
Vegetation Index is applied using the green channel and the The simplest non-local method in order to find an approx-
maximum of red and blue channels. The remaining pointsmation for the solution of the Markov Random Field problem
form our building hypothesis. Spurious points or point pa&  (equation (1)) is to apply the dynamic programming as pro-
are filtered by means of minimal area, minimal eccentricityposed by [26]. This method only considers 1D neighborhoods
and local height differences [8]. Moreover the evaluatidn 0 and operates on every scanline. We do not go into the details
local height differences allows a further subdivision afgler  of this method, but we note that it is a special case of SGM
building complexes. Additional or alternative ways to reélu accumulating costs along one path only. The computation of
the set of points is to detect small roof segments (such age 1-D minimum of equation (1) is especially fast in case of
chimneys, see [22]) in advance and then subdivide buildinghe computational inexpensive smoothness function peavid
complexes along their diagonals (see [23]) once buildingyy equation (5). Since the data term in equation (2) is ajread
ground polygon has been obtained. The obtained sub-cloudgry distinctive, the performance for different scan-inis
represent roof structure of buildings and comprise the maiguite the same and the running time is below one second even
input for the subsequent vectorization. for buildings containing around 50000 pixels and 15 labels.

Therebyd is the inlier threshold multiplied by a scalar (1-2).

"rhe normal vector is rescaled by one. The scafeig needed

in order to perform computations with 16 bit integers. Far th
moothness parametgr a constant value of 1000 was used

in this work.

For datasets with many outliers, the labeling of the non-
local optimization method described above can be further

Assuming piecewise planarity of the roof structure, a setefined by segmentation of the ortho photo, by means of [27].
of planes can be fitted to a building point cloud. For thisWe discard those segments that are to small and too narrow. A
purpose, multi-model RANSAC is a well-known method thatfurther assumptions is that if almost all pixels of the segme
can be successfully applied at least for simple configunatio are part of the roof segment, the rest of its pixels will likel
[24]. Assessing the hypotheses of RANSAC according to thalso belong to the same roof segment. For a pixele have

A. Dominant Plane Computation



of RAM. However, our SGM program uses the same core
implementation as the dynamic solution and could possibly
be implemented in a more efficient way.

To demonstrate the surplus of the correspondence linking
method, we computed point clouds using different threshold
tc for the minimal number of spatially consistent depth esti-
mations. For the center of the test area, all points clouds we
merged in model space and the numbgmbvious blunders
above the church top and below the ground was recorded
and removed for visualization purposes. Fig. 3a depictatpoi
generated from pure stereo matching= 0). Here, the result
possesses a large number of blundgrs: 20141 and is rather
noisy. By claiming spacial consistency tef= 2 in Fig. 3b and
tc = 3 in Fig. 3c, the number of blunders becomes significantly
lower: ne = 18 andne = 0, respectively, and the noise level
is drastically reduced. As shown in Fig.3a, 3c, and 3c large
’ parts of the building walls are reconstructed. The poinudlo
@ () © @ representing the elevation map is depicted in Fig. 3d. There
Fig. 2: Disparity maps generated from input images (a)(y. O results from correspondence linking with= 2 were fused as

structures (roofs) and low textured areas (streets). at house walls is reliably removed, roof edges are extracted
precisely, the noise level is further reduced while smathile

as chimneys or dormers are preserved.

a new label’:
- i — For the evaluation of J-linkage coupled with the improved
[(x) = { :(x) oIIh|eSr(vz/(i)sr;( NI>yis point labeling, we concentrate on a rather challengingding
in the test area, depicted in Fig. 4. Input points are colored
whereSis the segment label angk 0.8 is a scalar. After ex- black. Fig. 4a visualizes the point labeling for RANSAC gsin
traction of dominant planes for one building and polygamizi the winner strategy. Fig. 4b depicts results of J-Linkagagis
the label masks, the neighbouring polygons are intersented the same strategy. RANSAC yields one ghost plane (specified
space between each other and building outlines, thus encousy cyan colour, arrow 1) while one big plane is lost (arrow 2).
aging a consistent representations of building roofs. This plane is detected by J-linkage (dark-green). Due fierinl
thresholds, both procedures are not able to detect dormers
(arrow 3) and other smaller planes; efforts will be made in
the future to identify these segments either before or @fier
We demonstrate the performance of the presented approag@minant planes computation process. By using J-linkage an
on a urban UAV video sequence captured over the villagéhe finder strategy (Fig. 4c) the number of ghost planes is
Bonnland in Southern Germany. The flight instability of UAVs reduced. However, for all approaches narrow segments nemai
result in considerable variations in camera orientatiomus[ ~ Which degrade the process of polygonizaition of roof dstail
captured imagery is rather unstructured and often blurredVostly, these points are inliers of more than one plane but
To guarantee sufficient base lengths for the respective@macfre assigned to a plane with majority of inliers in another
pairs, every 20th frame was extracted from the sequenceart of the building. By applying J-linkage and the subseque
resulting in 647 images. Strucure from motion and bundlediscrete optimization algorithm proposed in IlI-B (Fig. )4d
block adjustment were carried out using a state-of-théeait  ghost planes can be further reduced. The small remaining
[15]. Self calibration was performed to estimate distortimd ~ mislabelings — for example for points representing the powe
internal camera parameters. transmission lines (arrow 4) — can be removed by segmentatio

) ] ] _of an orthophoto as explained in IlI-B.
Figure 2 shows five examples of stereo pairs and respective

disparity maps generated by the proposed method and the The complete reconstruction based on the point cloud
classical SGM. Thereby all parameter settings were idahtic derived by all 647 UAV-video frames is shown in Fig. 5. Beside
It becomes clear that higher point density can be achievethe video stream for reconstruction of geometry and temeuri
using the dynamic approach both in weakly textured imagéoofs, several oblique videos were registered into the mode
areas (streets, shadows) and in areas with repetitivereextucoordinate system and used for texturing building wallg. Fi
(roofs, vegetation). This is because ambiguities are redlby 6 shows three examples of building models.

narrowing down the search ranges. However, reconstruction
of areas close to height jumps is more accurate for the
classical SGM method. The depth maps by the coarse-to-fine
solution were generated in the range from 1.9 to 2.4 seconds We presented an image-based reconstruction method han-
including 1/O operations using a |7 quad-core processoe Thdling images sets with challenging radiometric and geoimetr
maximum memory consumption was in the range of 0.1GBproperties of a video stream captured by an UAV. It is based
to 0.3GB. Disparity maps using SGM were constructed inon a coarse-to fine modification of the SGM algorithm with
3.3 to 9.4 seconds using a maximum of 0.4GB to 1.6GBdynamically adapted disparity search ranges. The method

IV. RESULTS

V. CONCLUSIONS AND OUTLOOK



(d)
Fig. 3: Point clouds for test area depending on different Inemof minimal geometric consistent disparittesSee text for more

comments.

(b) (c) (d)

Fig. 4. Performance of RANSAC and J-Linkage algorithm foroanplicated building. See text for more comments.

with a correspondence linking approach efficiently filtgrin
blunders and increasing precision. We presented an digorit
for fusing these results by the generation of 2.5D elevation
models. Although the elevation models are of impressive
precision, real 3D structure cannot be adequately reptegen
This issue will be addressed in our future work aiming for the
) o . . reconstruction of facades including entities such as vl
Fig. 6: Three exemplary building models of higher complexit 5344 doors for LOD3 modeling purposes. The reconstruction
pipeline is free for academic use and is publicly availatile a
allows to reduce both computation time and memory load foihttp://www.ifp.uni-stuttgart.de/publications/softea
stereo-pair disparity computation. Moreover, higher i@t
of reconstructions for image parts of repetitive texturd kw
signal-to-noise ratios were achieved, however, with ahslig
reduction of accuracy in regions with jumps of elevation.
In order to exploit redundancy, stereo matching is couple

The standard building reconstruction procedure has its
main innovation in the dominant plane extraction step. It is
carried out by J-Linkage followed by a non-local optimipati
or point labeling which reliably reduces the influence of

host planes and at the same time preserves small detalils.



Thereby elevation data can be compressed to several hundrga?]
of polygons. For our future work towards real 3D geometry,
we strive for improving positions of building walls by means

of depth maps, foreground extraction, cleaning texturésoimnt [13]
of the building walls, and annotation of the foreground otge

The optimization module will be replaced by graph-based
methods (Alpha-Expansion and Alpha-Beta swap) which are
excellent tools for minimization of cost functions on araiy [14
graphs.
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