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Abstract—We present an algorithm for extracting Level of
Detail 2 (LOD2) building models from video streams captured
by Unmaned Aerial Vehicles (UAVs). Typically, such imageryis
of limited radiometric quality but the surface is captured with
large redundancy. The first contribution of this paper is a novel
algorithm exploiting this redundancy for precise depth compu-
tation. This is realized by fusing consistent depth estimations
across single stereo models and generating a 2.5D elevationmap
from the resulting point clouds. Disparity maps are derivedby a
coarse-to-fine Semi-Global-Matching (SGM) method performing
well on noisy imagery. The second contribution concerns a
challenging step of the context-based urban terrain modeling:
Dominant planes extraction for building reconstruction. Because
of noisy data and complicated roof structures, both dominant
plane parameters and initial values for support sets of planes
are obtained by the J-Linkage algorithm. An improved point-
to-plane labeling is presented to encourage the assignmentof
proximate points to the same plane. This is accomplished by
non-local, Markov Random Field (MRF) - based optimization
and segmentation of color information. The potential and the
limitations of the proposed methods are shown using an UAV
video sequence of limited radiometric quality.

I. I NTRODUCTION

3D city models mainly consist of a digital elevation model
and LOD2 building models showing detailed roof structures
and planar façades [1]. In their capacity as pure geometry mod-
els, such 3D city models can be used as virtual environments
for tourism or navigation systems, as well as for visualizations
and training simulations. Common representations for surface
geometry are digital elevation models or triangle meshes.
However, in many applications, extensive simplification of
this geometry is required to improve the interoperability.
Additional context information, for example, differentiation
between buildings and vegetation enables extraction of col-
lision geometry for purposes of simulation.

3D City modeling long time was primarily based on LiDAR
data due to its superior density and precision. Advances in
sensor technology as well as algorithms for orientation com-
putation and dense matching make image based reconstruc-
tion an efficient alternative. The potential of reconstructions
using imagery captured by high quality, large-frame airborne
cameras was demonstrated in [2], [3], [4]. State-of-the-art
algorithms reconstruct surface points for almost each pixel and
offer accurate results at depth discontinuities. For the mapping
of moderate sized areas UAVs equipped with consumer grade
cameras can be deployed [5], [6]. Low flying altitudes and

velocities allow for data collection providing high detailed sur-
face observations at high redundancy. However, in comparison
to professional imaging devices imagery offers only limited
signal-to-noise ratios.

In the first part of this article, we focus on the generation of
2D elevation data from highly redundant image data, however,
suboptimal in their radiometry. In Sec. II, we describe a coarse-
to-fine modification of SGM [2] which dynamically reduces
search ranges for pixel correspondences. We show that by
this modification, ambiguities in the correspondence problem
are reduced and completeness of the reconstruction can be
increased. To improve precision and eliminate gross errors,
the high redundancy is exploited. Therefore, stereo matching is
coupled with a correspondence linking strategy [7] where a set
of stereo models is computed for each image. To refine results,
redundant depth estimations are linked across the models,
checked for consistency and fused subsequently. Moreover,a
simple and efficient strategy for merging depth maps into 2.5D
elevation models is presented. One major advantage of the
proposed method is its scalability regarding resolution and the
number of images. The increased computational load emerging
from redundant processing can be tackled by parallel pro-
gramming, reduction of search ranges including the efficient
formulation for the 3D structure computation, thus allowing
an efficient computing time of under 2 sec. per stereo model
evaluation.

Within the second part of this paper, we focus on the ex-
traction of building polyhedrons from the previously generated
elevation maps. Thereby roof detail analysis, the vectorization
of roof edges, ridges and smaller components as dormers is the
most challenging step [8], [9], [10]. Our goal is to represent
roof structure by as few polygons as possible while preserving
a maximum amount of geometric information. Therefore, a
common approach is to identify a set of dominant planes in the
building point clouds. Global approaches, such as multi-model
RANSAC [11] and J-linkage [12] operate on larger portions
of points, for example point clouds representing complete
buildings. These algorithms yield a set of plane hypotheses,
each supported by a set of points. These support sets give
valuable clues about spatial extend and impact of a plane
hypothesis. However, the mentioned algorithms may extract
erroneous planes (ghost planes) caused by support of points
not representing the same geometric entity. This hinders a
meaningful vectorization and can be overcome by forcing
homogeneous labeling of neighbouring points [13], [9]. As



will be explained in section III-B, one solution to this problem
is a non-local, MRF - based optimization algorithm which
results in a significant reduction of ghost planes. We will
show that in presence of gross errors in the point clouds
these results can be further refined by segmentation of color
information of an ortho photo. In Sec. IV, we evaluate the
presented algorithms for a UAV video sequence of a small
village. Sec. V summarizes our contributions and outlines the
ideas for future research.

II. EXTRACTION OF 2.5D HEIGHT RASTER DATA FROM
IMAGES AND V IDEOS

The input of the presented algorithm is a set of images and
the corresponding interior and exterior orientations of cameras.
These can be derived using structure from motion and bundle
adjustment techniques such as [14] or [15]. Each available
imageIb is treated as a reference image and is stereo matched
against a set of match imagesIm,i . The selection of images
corresponding to a cluster(Ib, Im,i) is based on evaluation of
camera poses assuring base lines and viewing directions to be
in an appropriate range. To speed up the matching process,
images are rectified to epipolar geometry.

In order to reject mismatches and improve accuracy, depth
estimations inIb are linked to correspondent depths inIm,i
and checked for geometric consistency. This results in a
refined depth map or point cloud. We are aware of superior
techniques evaluating image consistency across multiple views
[16], [17], [18], however, to limit processing time we rely on
stereo processing and subsequently filter mismatches basedon
geometric properties. In the final stage, all refined depth maps
are fused using a gridding approach resulting in a 2.5D surface
model.

A. Depth Map Generation and Refinement

The implemented stereo algorithm is a coarse-to-fine mod-
ification of the SGM method [2]. The problem of dense match-
ing can be stated as densely estimating the correspondencesxbi
andxmi = xmi(d) across a reference viewIb and a second frame
Im. In the first stage, a photo-consistency measureEdata(dx)
is computed [19] and stored for each potential correspondence
pair (xb,xmi). The search range for correspondences is given
by the 1D horizontal epipolar line and a pre-defined, constant
disparity search range. Secondly, costs of photo-consistency
are accumulated along eight image paths in order to force
piecewise smoothness of the underlying surface. The set of
minimal accumulated costs yields a set of disparitiesD corre-
sponding to a strong local minimum of an energy function:

E(D) = ∑
x

Edata(dx)+ ∑
x,y∈N

Esmooth(dx,dy), (1)

whereN represents the neighbourhood of a pixel, andEsmooth
is usually the truncated linear penalty term

Esmooth(dx,dy) = min(λ1 |dx −dy| ,λ2) , 0< λ1 ≤ λ2. (2)

In contrast to the original approach, we evaluate potential
correspondences only in a reduced search range as visualized
in Fig. 1. The modification aims at reducing ambiguities of
photo consistency measures. This is particular beneficial for
matching imagery of low radiometric quality since photo

consistency measures in general are less distinctive. Within our
approach the search range is limited for each pixel individually
based on disparities available from disparity maps already
computed on the next higher pyramid level. The choice of
a suitable range is crucial to assure small details possessing
large depth changes to be reconstructed completely. In our
algorithm, ranges are derived by analysis of the local surface
structure and validity in a window around the respective pixel.
On the highest pyramid level, correspondences are searched
along the full range of epipolar lines.
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Fig. 1: Visualization of cost structures of classic SGM (left)
and the dynamic solution (right). Red cubes represent costs
for the true correspondences. Gray cubes mark the costs of
potential correspondences.

The high redundancy in the image sequences is exploited
by stereo matching each frame with multiple proximate frames
to retrieve consistent depth estimations for each pixel. Thereby,
multiple measurements acrossi disparity maps in one image
cluster(Ib, Im,i) are fused using the concept of correspondence
linking inspired by [7]. A base image pixelxb can be related to
the pixel coordinatesxr

b in the rectified base imagesI r
b,i by the

homographiesH i used within the rectification processxr
b,i =

H ixb. For the rectified coordinates, disparity estimatesdr
i (xb,i)

can be derived by lookup in the disparity maps available from
matching. The relation between the disparityd and the depth
D of the corresponding 3D point with thez-coordinateZ in a
relative coordinate system can be calculated using the formula
for the stereo normal case [20]:

d =
f B

Z(xr
b)

=
Ba

D(xb)
, wherea=

√

f 2+(xr
b)

2+(yr
b)

2, (3)

and f is the focal length andB the baseline. The fact that
distances between camera centers and object points remain
the same in the original and the rectified coordinate systems
implies that depthsD(xr

b,i) computed for single stereo models
equal depths on the base image ray, thusD(xr

b,i) = Db. We
calculate the final depth from the set ofi consistent disparities
by minimizing the 1D reprojection error|xr

m,i − x̂r
m,i|2 along the

epipolar lines. This is the same as claiming‖di − d̂i‖2
!
= min.

Substitution of equation 3 and derivation leads to

D =

(

∑
i

B2
i a2

i

)(

∑
i

Biaid(xr
b,i)

)−1

. (4)

In order to discard spurious disparities for the multi-view
triangulation, we assume that each disparitydi is estimated
with a certain precisionσi and calculate, by means of con-
siderations on error propagation for 3, the uncertainty interval
Di ±σi . If these ranges mutually overlap, respective disparities
are considered consistent and used within the subsequent



triangulation step. If the number of consistent measurements
is below a thresholdtc, the point is not triangulated.

B. Depth Map Fusion for 2.5D Elevation Maps

For the application of simulation, we strive for a possibly
complete (water-tight) representation of urban terrain, and in
particular, buildings. Because it is not realistic to coverall
walls of all buildings during a UAV flight, we merely want
to reconstruct the roof structure of buildings and add wall
polygons at roof edges at later stage. Within the present
approach we fuse 3D clouds available from the reconstruction
process into a 2.5D elevation map. Automatic correction
of wall positions using the available façade points will be
addressed in our future work. We assign all extracted points
to a n×m grid located parallel to the ground. The dimension
of a single grid cell corresponds to the average pixel footprint.
Let p be the average number of points assigned to one grid
cell. In order to preserve clear edges, points representing3D
structure are removed by only considering thep highest points.
The final height value of each grid cell is then computed as
the median of all z-components of the assigned points.

Additional to the height data, a color value is computed for
each grid cell. The resulting RGB image will be referred to as
true ortho photo. The color value for each cell is computed
as average color of all assigned points. Its dimension and
resolution are equal to that of the elevation map. It is used
to support dominant plane extraction and to texture the final
model.

III. E XTRACTION OF SEMANTIC MODELS FROM
ELEVATION MAPS

City models contain geometric entities of different object
types, such as buildings, trees, streets, etc. In this work,we are
interested in the extraction of geometric primitives from point
(sub-)clouds representing building roofs. Based on the gen-
erated elevation data, the set of points representing buildings
is identified as the set of points neither classified as ground
nor as vegetation. We derive ground points following [21]. For
classification of vegetation points, the Normalized Difference
Vegetation Index is applied using the green channel and the
maximum of red and blue channels. The remaining points
form our building hypothesis. Spurious points or point patches
are filtered by means of minimal area, minimal eccentricity
and local height differences [8]. Moreover the evaluation of
local height differences allows a further subdivision of larger
building complexes. Additional or alternative ways to reduce
the set of points is to detect small roof segments (such as
chimneys, see [22]) in advance and then subdivide building
complexes along their diagonals (see [23]) once building
ground polygon has been obtained. The obtained sub-clouds
represent roof structure of buildings and comprise the main
input for the subsequent vectorization.

A. Dominant Plane Computation

Assuming piecewise planarity of the roof structure, a set
of planes can be fitted to a building point cloud. For this
purpose, multi-model RANSAC is a well-known method that
can be successfully applied at least for simple configurations
[24]. Assessing the hypotheses of RANSAC according to the

geometric distributions of inliers [25] or preferring neigh-
bouring points for hypotheses generation make the global
method of RANSAC more local and reduces the number
of erroneous hypothesis, so-called ”ghost planes”. The latter
strategy constitutes one significant idea of the J-linkage [12]
algorithm which is used in this work. Another innovation of
J-linkage is not to discard a hypothesis after a better one was
found, but keeping a user-specified number of hypotheses. The
extracted planes can be intersected to retrieve the desiredcut
lines. Besides dominant planes, the set of points supporting
each hypotheses plays an essential role. These support sets
hold information regarding spatial extend and impact of each
plane hypotheses. For the point-to-plane assignment (labeling),
different strategies can be used. Two examples are assigning
the label of the first plane that has the point as inlier (finder)
or assigning the label of the plane possessing the minimum
distance (winner). However, no constraints regarding spatially
homogeneous labeling is applied and assignments supporting
erroneous plane hypotheses can not fully be avoided.

B. Point Labeling Using Non-Local Optimization and Segmen-
tation

Given a set of planes, we want to impose a soft constraint
such that neighbouring pointsy of x possess the same label
lx. Therefore, we use discrete optimization and consider the
same form of cost function as given in equation (1). Instead
of optimizing the disparity of a pixeldx as in Sec. II, the label
lx is optimized.Edata(lx) is the truncated and rescaled distance
of x to the planepl labeled byl from andEsmooth is a special
case of equation (2) forλ1 = λ2 = λ, which is the well-known
Potts term multiplied by a constant:

Edata(lx) = 211min(dist(x,pl )/δ,1)
Esmooth(lx, ly) = 0 if lx = ly andλ otherwise.

(5)

Therebyδ is the inlier threshold multiplied by a scalar (1–2).
The normal vector is rescaled by one. The scale 211 is needed
in order to perform computations with 16 bit integers. For the
smoothness parameterλ, a constant value of 1000 was used
in this work.

The simplest non-local method in order to find an approx-
imation for the solution of the Markov Random Field problem
(equation (1)) is to apply the dynamic programming as pro-
posed by [26]. This method only considers 1D neighborhoods
and operates on every scanline. We do not go into the details
of this method, but we note that it is a special case of SGM
accumulating costs along one path only. The computation of
the 1-D minimum of equation (1) is especially fast in case of
the computational inexpensive smoothness function provided
by equation (5). Since the data term in equation (2) is already
very distinctive, the performance for different scan-lines is
quite the same and the running time is below one second even
for buildings containing around 50000 pixels and 15 labels.

For datasets with many outliers, the labeling of the non-
local optimization method described above can be further
refined by segmentation of the ortho photo, by means of [27].
We discard those segments that are to small and too narrow. A
further assumptions is that if almost all pixels of the segment
are part of the roof segment, the rest of its pixels will likely
also belong to the same roof segment. For a pixelx, we have
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Fig. 2: Disparity maps generated from input images (a)(b). Our
approach(c) outperforms the classical SGM (d) on repetitive
structures (roofs) and low textured areas (streets).

a new labell̂ :

l̂(x) =
{

l if |S(x)∩ (= l)|> γ |S|
l(x) otherwise,

whereS is the segment label andγ ≈ 0.8 is a scalar. After ex-
traction of dominant planes for one building and polygonizing
the label masks, the neighbouring polygons are intersectedin
space between each other and building outlines, thus encour-
aging a consistent representations of building roofs.

IV. RESULTS

We demonstrate the performance of the presented approach
on a urban UAV video sequence captured over the village
Bonnland in Southern Germany. The flight instability of UAVs
result in considerable variations in camera orientation. Thus,
captured imagery is rather unstructured and often blurred.
To guarantee sufficient base lengths for the respective image
pairs, every 20th frame was extracted from the sequence
resulting in 647 images. Strucure from motion and bundle
block adjustment were carried out using a state-of-the-arttool
[15]. Self calibration was performed to estimate distortion and
internal camera parameters.

Figure 2 shows five examples of stereo pairs and respective
disparity maps generated by the proposed method and the
classical SGM. Thereby all parameter settings were identical.
It becomes clear that higher point density can be achieved
using the dynamic approach both in weakly textured image
areas (streets, shadows) and in areas with repetitive texture
(roofs, vegetation). This is because ambiguities are reduced by
narrowing down the search ranges. However, reconstruction
of areas close to height jumps is more accurate for the
classical SGM method. The depth maps by the coarse-to-fine
solution were generated in the range from 1.9 to 2.4 seconds
including I/O operations using a I7 quad-core processor. The
maximum memory consumption was in the range of 0.1GB
to 0.3GB. Disparity maps using SGM were constructed in
3.3 to 9.4 seconds using a maximum of 0.4GB to 1.6GB

of RAM. However, our SGM program uses the same core
implementation as the dynamic solution and could possibly
be implemented in a more efficient way.

To demonstrate the surplus of the correspondence linking
method, we computed point clouds using different thresholds
tc for the minimal number of spatially consistent depth esti-
mations. For the center of the test area, all points clouds were
merged in model space and the numberne obvious blunders
above the church top and below the ground was recorded
and removed for visualization purposes. Fig. 3a depicts points
generated from pure stereo matching (tc = 0). Here, the result
possesses a large number of blundersne= 20141 and is rather
noisy. By claiming spacial consistency oftc = 2 in Fig. 3b and
tc = 3 in Fig. 3c, the number of blunders becomes significantly
lower: ne = 18 andne = 0, respectively, and the noise level
is drastically reduced. As shown in Fig.3a, 3c, and 3c large
parts of the building walls are reconstructed. The point cloud
representing the elevation map is depicted in Fig. 3d. Thereby
results from correspondence linking withtc = 2 were fused as
explained in section II-B. It can be observed that 3D structure
at house walls is reliably removed, roof edges are extracted
precisely, the noise level is further reduced while small details
as chimneys or dormers are preserved.

For the evaluation of J-linkage coupled with the improved
point labeling, we concentrate on a rather challenging building
in the test area, depicted in Fig. 4. Input points are colored
black. Fig. 4a visualizes the point labeling for RANSAC using
the winner strategy. Fig. 4b depicts results of J-Linkage using
the same strategy. RANSAC yields one ghost plane (specified
by cyan colour, arrow 1) while one big plane is lost (arrow 2).
This plane is detected by J-linkage (dark-green). Due to inlier
thresholds, both procedures are not able to detect dormers
(arrow 3) and other smaller planes; efforts will be made in
the future to identify these segments either before or afterthe
dominant planes computation process. By using J-linkage and
the finder strategy (Fig. 4c) the number of ghost planes is
reduced. However, for all approaches narrow segments remain,
which degrade the process of polygonizaition of roof details.
Mostly, these points are inliers of more than one plane but
are assigned to a plane with majority of inliers in another
part of the building. By applying J-linkage and the subsequent
discrete optimization algorithm proposed in III-B (Fig. 4d),
ghost planes can be further reduced. The small remaining
mislabelings – for example for points representing the power
transmission lines (arrow 4) – can be removed by segmentation
of an orthophoto as explained in III-B.

The complete reconstruction based on the point cloud
derived by all 647 UAV-video frames is shown in Fig. 5. Beside
the video stream for reconstruction of geometry and texturing
roofs, several oblique videos were registered into the model
coordinate system and used for texturing building walls. Fig.
6 shows three examples of building models.

V. CONCLUSIONS AND OUTLOOK

We presented an image-based reconstruction method han-
dling images sets with challenging radiometric and geometric
properties of a video stream captured by an UAV. It is based
on a coarse-to fine modification of the SGM algorithm with
dynamically adapted disparity search ranges. The method
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Fig. 3: Point clouds for test area depending on different number of minimal geometric consistent disparitiestc. See text for more
comments.

Fig. 4: Performance of RANSAC and J-Linkage algorithm for a complicated building. See text for more comments.

Fig. 5: A view of the textured reconstruction of the data-setBonnland by our algorithm.

Fig. 6: Three exemplary building models of higher complexity.

allows to reduce both computation time and memory load for
stereo-pair disparity computation. Moreover, higher densities
of reconstructions for image parts of repetitive texture and low
signal-to-noise ratios were achieved, however, with a slight
reduction of accuracy in regions with jumps of elevation.
In order to exploit redundancy, stereo matching is coupled

with a correspondence linking approach efficiently filtering
blunders and increasing precision. We presented an algorithm
for fusing these results by the generation of 2.5D elevation
models. Although the elevation models are of impressive
precision, real 3D structure cannot be adequately represented.
This issue will be addressed in our future work aiming for the
reconstruction of façades including entities such as windows
and doors for LOD3 modeling purposes. The reconstruction
pipeline is free for academic use and is publicly available at
http://www.ifp.uni-stuttgart.de/publications/software/.

The standard building reconstruction procedure has its
main innovation in the dominant plane extraction step. It is
carried out by J-Linkage followed by a non-local optimization
for point labeling which reliably reduces the influence of
ghost planes and at the same time preserves small details.



Thereby elevation data can be compressed to several hundreds
of polygons. For our future work towards real 3D geometry,
we strive for improving positions of building walls by means
of depth maps, foreground extraction, cleaning textures infront
of the building walls, and annotation of the foreground objects.
The optimization module will be replaced by graph-based
methods (Alpha-Expansion and Alpha-Beta swap) which are
excellent tools for minimization of cost functions on arbitrary
graphs.
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