
MapGENIE: Grammar-enhanced Indoor Map

Construction from Crowd-sourced Data

Damian Philipp, Patrick Baier, Christoph

Dibak, Frank Dürr, Kurt Rothermel

Institute of Parallel and Distributed Systems

University of Stuttgart, Stuttgart, Germany

Email: first.last@ipvs.uni-stuttgart.de

Susanne Becker, Michael Peter, Dieter Fritsch

Institute for Photogrammetry

University of Stuttgart, Stuttgart, Germany

Email: first.last@ifp.uni-stuttgart.de

Abstract—While location-based services are already well es-
tablished in outdoor scenarios, they are still not available in
indoor environments. The reason for this can be found in two open
problems: First, there is still no off-the-shelf indoor positioning
system for mobile devices and, second, indoor maps are not
publicly available for most buildings. While there is an extensive
body of work on the first problem, the efficient creation of indoor
maps remains an open challenge.
We tackle the indoor mapping challenge in our MapGENIE
approach that automatically derives indoor maps from traces
collected by pedestrians moving around in a building. Since the
trace data is collected in the background from the pedestrians’
mobile devices, MapGENIE avoids the labor-intensive task of
traditional indoor map creation and increases the efficiency of
indoor mapping. To enhance the map building process, MapGE-
NIE leverages exterior information about the building and uses
grammars to encode structural information about the building.
Hence, in contrast to existing work, our approach works without
any user interaction and only needs a small amount of traces to
derive the indoor map of a building. To demonstrate the perfor-
mance of MapGENIE, we implemented our system using Android
and a foot-mounted IMU to collect traces from volunteers. We
show that using our grammar approach, compared to a purely
trace-based approach we can identify up to four times as many
rooms in a building while at the same time achieving a consistently
lower error in the size of detected rooms.

I. INTRODUCTION

Location-based services (LBS) such as navigation services,
point-of-interest finders, or geo-social networks enjoy ever-
growing popularity. This trend is driven by the availability
of modern smartphones equipped with accurate positioning
systems like GPS and the availability of detailed map informa-
tion either from commercial providers or communities like the
OpenStreetMap (OSM) project. However, so far these systems
are mostly restricted to outdoor scenarios.

Looking at the current development of LBS, we see a
strong trend to extend LBS to indoor scenarios such as indoor
navigation or shopping assistants. An essential prerequisite for
such services is the availability of detailed and accurate indoor
maps. Although first map services such as Google Maps allow
users to upload their indoor maps [1], creating these maps
is still challenging and often involves labor-intensive manual
tasks. Therefore, there is a strong incentive to automate the
task of indoor mapping.

So far, only a few approaches for the completely automatic
creation of indoor maps have been reported in the literature [2],

[3]. Their basic idea is to automate the modeling of floor plans
by using a set of pedestrian traces as input. Although these
approaches are promising and show the general feasibility,
they either rely on a large set of traces to compensate for
the inaccuracy of indoor positions [2], [3] or they require the
active collaboration of users collecting traces, for instance, to
“explore” the borders of a room [2].

However, automatically constructing a floor plan from
few, possibly inaccurate traces “on the fly” without user
intervention remains a great challenge which we tackle in
this paper. To this end, we propose the MapGENIE system
for the automatic indoor modeling of floor plans from a
small number of traces gathered opportunistically by mobile
users. The basic idea of MapGENIE is to utilize different
kinds of structural information to support the mapping process
and, in particular, compensate for partially missing traces and
positioning inaccuracies without relying on a large set of
traces. As already shown by existing work [4], the outline of
the building exterior can be utilized to infer the boundaries of
floor plans and to align traces since corridors and rooms are
often aligned along the building axes. However, additionally
we are the first to utilize indoor grammars to support the
mapping process. Indoor grammars are powerful tools which
may also have an impact on the set-up of Building Information
Models (BIM) in the near future. It has been shown in existing
work that such grammars can be used to encode structural
information for different kind of architectural domains, like
buildings [5] or street networks [6]. Typically a floor plan also
follows certain architectural principles. Considering an office
building, an assistant’s office is very likely located next to an
executive’s office and both rooms have specific dimensions. If
the floor plan of a building contains such structural features,
we can use them to correct and complete (as far as possible)
a floor plan derived from traces which are typically inaccurate
and might not cover a complete floor. To encode such structural
information we use a grammar that includes, for instance, the
dimensions of rooms, the number of rooms, the relative room
ordering, geometric constraints, etc.

In detail, we make the following contributions: (1) We
define an architectural framework and multi-step process for
the automatic modeling of indoor maps supported by structural
information. (2) We present an algorithm that, as a first step,
derives an initial plan from a set of inaccurate traces. In this
initial step, we use information about the building exterior
to filter and correct traces. (3) We define a formal grammar

To appear in Proceedings of the 12th IEEE International Conference on Pervasive Computing and Communications (PerCom 2014), Budapest,
Hungary, March 24-28, 2014.
c©IEEE 2014

Fig. 1. System architecture showing the backend system and its inputs to
the individual components.

describing structural information about room layouts. (4) We
present a probabilistic algorithm that, in a second step, derives
the most likely room layout from the initial (inaccurate and
incomplete) plan. (5) We present a proof-of-concept implemen-
tation and evaluation in a real-world scenario. To this end, we
collected more than 22 km of indoor traces (which are available
to the community1), and we implemented an Android App
for trace collection using a foot-mounted inertial measurement
unit (IMU). Furthermore, we implemented a backend service
for trace processing. We show that from only few traces our
approach can derive hallways of a floor without user interaction
and a complete floor plan including rooms using an indoor
grammar. In comparison to a purely trace-based approach, we
can identify up to four times as many rooms in a building
while at the same time achieving a consistently lower error in
the size of detected rooms.

The remainder of this paper is structured as follows: Sec-
tion II presents the system model and architectural framework
of our system. Section III describes the acquisition of the trace
data in detail. In Section IV we describe the processing of the
trace data including information from the building exterior,
before Section V introduces the grammar which supports the
trace processing step. In Section VI we present our real-world
evaluation, including our prototype implementation that we
built for the acquisition of traces with mobile devices, and
discuss the results. Finally, Section VII presents related work
before Section VIII concludes with an outlook on future work.

II. SYSTEM MODEL AND ARCHITECTURE

Our system consists of a server-based backend system con-
taining four different components which are described in
the following in detail. Figure 1 gives an overview over all
components with their respective input.

The trace data acquisition component receives trace data
from mobile devices via a wireless communication network
such as a WiFi network or a 3G/4G mobile network. To provide
the trace data, we assume to have a number of trace collectors
(users) that record traces with their mobile devices. The users
record the traces in an opportunistic fashion, i.e., traces are

1see http://www.comnsense.de/downloads

recorded on the fly without requiring user interaction. Details
on the trace recording process are given in the next section.

The trace-based modeling starts the processing of the
uploaded traces by applying trace correction and alignment
techniques. Unreliable and corrupted traces are filtered out, be-
fore further processing on the trace data is done. Subsequently,
hallways are identified from the trace data and the spaces of the
rooms are derived. These steps incorporate information about
the building exterior in order to derive bounds for the indoor
model. After having separated hallways from room spaces,
individual rooms are identified on base of the trace data. The
result of this processing step is a trace-based indoor model.

The resulting indoor model from the previous processing
step is only based on trace data and, therefore, still inaccurate
and incomplete. Hence, the grammar-based modeling applies
structural knowledge to this model to derive a more accurate
and complete model. A grammar defines constraints, for in-
stance, for the size of rooms, and is tailored to individual
building types. Based on the information contained in the
grammar, a room layout proposal that contains the most likely
room layout based on the trace data is derived and the system
outputs a grammar-based indoor model that is based on all
evidence from the available data and structural information.

In our paper, we assume that the grammar used for model-
ing is provided by a grammar generator. Such a grammar
generator creates an indoor grammar by parsing a known
indoor map of another floor of the same building or an indoor
map of another building that has a similar architectural style.
The detailed implementation of this grammar generator can be
found in [7] and is beyond the scope of this work. For future
work we envision that such a grammar can be automatically
constructed on-the-fly based on areas of indoor maps that are
already sufficiently validated by traces. Similar approaches
have also been shown to be feasible in our work on 3D facade
reconstruction [8].

In the next sections, we will describe each component of
the system architecture in more detail.

III. TRACE DATA ACQUISITION

The goal of the trace data acquisition component is to provide
a set of odometry traces from mobile users, which is used
by the trace-based modeling component to derive the trace-
based indoor model. To collect data, users are provided with
an App they can install on their smartphone. When enabled,
the App will collect the odometry trace data and periodically
upload it to the backend service. (In our evaluation, the App is
connected to a foot-mounted IMU that detects steps by using
a Zero-Velocity-Update protocol [9].) Formally, we define an
odometry trace t = (−→π , S) where −→π is the initial position and
S = {s1, ...sn} is an ordered set of steps. Each si is given
as a (relative) 2D vector (xi, yi), annotated with a timestamp
si.time denoting the time the step began. The position −→pk after

the k-th step is calculated as −→pk = −→π +
∑k

i=1 si, annotated
with a timestamp −→pk.time = sk.time .

To record an indoor trace we rely on inertial positioning,
as absolute positioning systems (such as GPS) are not avail-
able with sufficient accuracy [10] in indoor settings. Their
infrastructure-based indoor counterparts (using, e.g., WiFi bea-
cons) are not usable for the reconstruction task at hand, as

Hallway
Detection

Hallway Geometry
Estimation

Secondary Trace
Correction

Room Geometry
Estimation

Initial Trace Correction

Trace-based Indoor Model

Room LayoutHallway Skeleton

Fig. 2. Overview of the Trace-based Modeling component

their set-up itself involves mapping, such as fingerprints of
the received signal strength or the locations of the beacons.
Therefore, we can only use GPS to determine the initial
position −→π before entering a building [2].

Although, we assume the use of a foot-mounted IMU,
the relative positions of traces can also be derived from a
variety of other sensors. Every modern smartphone has a built-
in accelerometer, which can be used to track user movement.
Since these built-in sensors are subject to high sensor noise
[11], a large set of traces is necessary to cancel out the drift
errors [2]. The use of an external IMU using a foot-mounted
strap-down system with drift correction (cf. Fig. 11b) can
reduce drift errors and, thus, perform well even with a small set
of traces. However, this requires the deployment of additional
hardware that is rather expensive [9]. Our system is agnostic of
the actual inertial positioning system that is used for recording
traces. To deal with drift errors, it includes an initial trace
correction step that automatically preprocesses inertial traces,
as described in the next section. In this paper, we consider the
use of an IMU to record pedestrian traces. Implementing and
evaluating the system with more noisy sensors is part of our
future work.

IV. TRACE-BASED MODELING

The goal of the trace-based modeling is to derive an indoor
model for an observed floor of a building. Given an exterior
model of the building and a set T of (noisy) odometry traces
collected by the trace data acquisition component, we compute
a set of hallways (the hallway skeleton) and a set of rooms (the
room layout) that together form the trace-based indoor model.

As depicted in Fig. 2, detecting the hallway skeleton
and detecting the room layout both are multi-step processes.
As a preprocessing step to both processes, we first reduce
the noise of the traces in the initial trace correction step.
For the detection of the hallway skeleton, in the hallway
detection step, we extract hallway segments from all traces and
group these segments per hallway. These segments define the
walkable area of each hallway, which is converted into a 2D
rectangle representation in the hallway geometry estimation
step, thus forming the hallway skeleton. To detect the room
layout, we first reduce the noise of odometry traces further
using the hallway skeleton in the secondary trace correction
step. Finally, we find the room layout in the room geometry
estimation step by analyzing all steps that were taken inside
the building exterior but outside of a hallway. We present these
steps in detail in the following subsections.

Require: Trace t, Exterior Model E, minLength, τ
HS t ← FINDHALLWAYSEGMENTS(t,minLength, τ)
for all hs ∈ HS t do

hs.chord ← (hs.start , hs.end)
minAngle← min({angle(hs.chord , e)| Exterior Wall e ∈ E})
rotate(t[ps, plast], minAngle)

end for

Fig. 3. Initial Trace Correction

Hallway Segment hs

pe = hs.end
 ps = hs.start

hs.chord

length < minLength
<τ

Fig. 4. Hallway Segments are defined as maximum-length sequences of steps
in a trace, where the angle of any two subsequent steps is < τ and that are
at least minLength long.

A. Initial Trace Correction

As detailed in Section III, readings from inertial measurement
systems contain errors. As an example, consider the trace
depicted in Fig. 5a, taken using a foot-mounted inertial sensor:
Turning angles were recorded incorrectly, and due to sensor
drift, the trace is slightly bent even though the user walked
in a straight line. To reduce sensor noise, we leverage two
observations: First, users commonly walk along the long axis
of a hallway, and, secondly, hallways are commonly built
parallel to an exterior wall of the building. Thus, given the
exterior model of the building—as can be readily obtained
from, e.g., OpenStreetMap—we rotate straight segments of
a trace parallel to an exterior wall as depicted in Fig. 3
and 5a: We first extract a set of hallway segments HS t (cf.
Fig. 4) of at least minLength length from each trace t. The
value of minLength must be chosen longer than the longest
room that is presumably present in the building, so that no
hallway is detected when walking along the length of such
a room. Starting from the first hallway segment, for each
hallway segment hs ∈ HS t we rotate the remainder of the
trace including hs around hs.start by the smallest possible
angle so that hs.chord is parallel to an exterior wall. Note
that if a trace is extremely noisy, it may be rotated towards
the wrong exterior wall. In this case, we say that a trace has
been corrupted. Corrupted traces are detected and handled in
the next step.

B. Hallway Detection & Hallway Geometry Estimation

To derive the hallway skeleton, we begin by filtering out cor-
rupted traces and find hallways that exist in the building from
the remaining traces in the hallway detection step. Intuitively,
we would say that a hallway has been found wherever a
hallway segment is detected on a trace. However, there are
two problems with this simple criterion: First, if multiple
users traveled through a hallway, that hallway is detected
multiple times. Secondly, non-existing hallways are detected
from corrupted traces. We solve these problems by iteratively
building a hallway skeleton and matching additional traces
with the existing hallway skeleton using a hallway relation.
Traces that cannot be successfully matched with the hallway
skeleton are considered to be corrupted and are subsequently
excluded from further computations.

0 10 20 30 40

0

10

20

30

40

Raw Trace

after Initial Trace Corr.

after Secondary Trace Corr.

(a) Raw and corrected traces shown on the actual
building layout.

0 5 10 15 20 25 30 35

35

40

45

center

w
id
th

w
id
th

Step Positions orthogonal
to hallway direction

(b) Hallway geometry estimated from the bound-
ing box, interquartile range and centerIndex.

14 16 18 20 22 24 26

34

36

38

40

42

44

46

w
a
ll

w
a
ll

fr
e
e

(c) Rooms detected from traces and constraints
for grammar-based modelling (free/wall).

Fig. 5. Example Steps of the Trace-based Modeling component

Seeding the Hallway Skeleton We first pick a set of seed
traces Tseed ⊆ T , where t ∈ Tseed iff (1) t was rotated by
less than half of the minimum angle between any two exterior
walls and (2) the first hallway segment hs0 ∈ HS t occurred
withing maxSteps steps and maxTime from the start of t, thus
ensuring that the overall drift error of each seed trace is limited.
From Tseed we compute an initial set of hallways by grouping
hallway segments according to the equivalence classes {[hs]}
of the hallway relation, defined as follows: hsi ∈ [hs] iff
∃hsj ∈ [hs] : hallway segment areas of hsi, hsj overlap.
The hallway segment area of hsk is the boundig box of
hsk , extended by a width of bbExtension in each direction
orthogonal to hsk .chord . This accounts for the fact that two
traces in the same hallway never overlap completely, as users
might walk on different sides of the hallway. We empirically
determined 0.5 m to be a suitable value for bbExtension.

Completing the Hallway Skeleton Next, we match traces
from T \ Tseed onto the initial set of hallways. A trace
t ∈ T \ Tseed matches iff (1) the first and last hallway
segment of t do not add new equivalence classes and (2) at
least 75 % of steps in hallways segments of t do not add new
equivalence classes, i.e., t fits into the current set of hallways.
New equivalence classes defined by a matching trace are added
to {[hs]}. This process is repeated until no additional traces
can be matched to the hallway skeleton. Note that even due to
our strict criteria, corrupted traces might still be matched onto
the existing hallways. To fully exclude corrupted traces, we
require that each hallway is verified multiple times, i.e., [hs]
contains either (1) at least four hallway segments from traces
in Tseed or (2) at least two hallway segments, one of which
is from a trace in T \Tseed. Non-verified hallways are present
in {[hs]} but not used in matching traces or the following
hallways geometry estimation step until they are verified.

Hallway Geometry Estimation To find the geometrical
outline of each hallway, we compute four values: Length
(the dimension along the direction), width (the dimension
orthogonal to the direction), the center line (location of the
hallway) and the topological extension (connecting topological
neighbors). The length is taken from the bounding box around
all steps of all hallway segments. The width is computed as the
interquartile range of step positions, i.e., 25 % of steps are not
included on either side of the hallway. This is motivated by
the observation that traces exhibit a normal-distributed error
orthogonal to the direction of a hallway (see Fig. 5b). Further-

more, we observed that the position of hallway segments with
respect to the true position of a hallway trends towards the side
of entry. When users can enter a hallway from only one side,
e.g., at the edge of a building, the center of the hallway is found
too close to the center of the building. Thus, we compute the
ratio of entrances into a hallway from either side and push the
center towards the side with fewer entries. To this end, we set
centerIndex = (

enter left−enter right

2(enter left+enter right)
+ 0.5) ∗ number of steps

and choose the center line of the hallway so that it passes
through the centerIndex’th step from the left. Finally, for each
hallway hi we adjust the length and width so that if a trace
passes from hi to hj , hi and hj intersect (topological exten-
sion) and no space of depth minRoomDepth is left between a
hallway and an exterior wall, i.e., the space to place rooms in
must have sufficient size to at least open the door. The set of all
rectangles computed in this step forms the hallway skeleton.

C. Secondary Trace Correction & Room Geometry Estimation

Using the hallway skeleton computed in the previous section,
we now determine the room layout. As explained in the
hallway geometry estimation step, in each hallway, traces
exhibit a normal-distributed error orthogonal to the direction
of the hallway. Therefore, we add a secondary trace correction
step, where we move the hallway segments of each trace onto
the center line of their corresponding hallway (see Fig. 5a),
analogous to the rotation process shown in Fig. 3.

These doubly-corrected traces are used in the room geom-
etry estimation step to find the room layout. We first extract
room segments, i.e., maximum-length continuous sequences
of steps that do not overlap with the hallway skeleton. In the
following, we limit our discussion to rectangular rooms for
simplicity. Support for non-rectangular rooms may be added
using, e.g., clustering and alpha shapes [2]. We first detect
initial rooms for each room segment by creating a bounding
box around the room segment and placing the door at the point
where the trace crosses a hallway wall as shown in Fig. 5c. As
rooms may have been detected by multiple traces, we find the
actual rooms as merged rooms, based on the door position and
the geometrical center of the rooms: All rooms where (1) doors
are no more than 1 m apart and (2) the distance between the
center points is no more than 2 m are replaced by a single room
comprised of a bounding box around the area of all individual
rooms and a door placed at the mean position of all merged
doors.

Rroom
1 Runit

5
Rule Space → r1 Space Space → r3r2r3 Space

Width 2.4 m 19.2 m
A-Priori 0.06 0.04

Type Small Office
Two executives with

assistant’s office

Fig. 6. Example for room rules and room unit rules

Finally, the hallway skeleton together with the detected
rooms forms the trace-based indoor model.

V. GRAMMAR-BASED MODELING

The information in the trace-based indoor model can be
incomplete for areas where we do not have traces, or the map
can be inaccurate due to the inaccuracies in the trace data. In
the grammar-based modeling component, we try to improve
the quality of the trace-based indoor model by filling white
spots in the map and by trying to correct these inaccuracies
by imposing constraints on valid indoor maps. For instance, in
the trace-based model, rooms of the same type have slightly
different geometries, and some walls might have been missed
due to missing traces in a room. The grammar-based modeling
will try to align walls such that these errors are corrected.

In the following, we first present the formal definition of
our grammar that encodes structural knowledge of the building.
Subsequently, we present an algorithm to derive a room layout
with the help of this grammar. Note that for simplicity, we
limit our discussion to rectangular rooms. The full grammar
that supports arbitrarily shaped rooms is presented in [7].

A. Room Grammar

In general, the structure of a building can be separated in two
different areas: Hallway spaces and non-hallway spaces. While
hallway spaces are traversed by users to reach different rooms,
non-hallway spaces contain the rooms which are ordered in a
certain sequence along each non-hallway space. However, the
size and relative ordering of these rooms is not created by
random composition of walls, but follows architectural princi-
ples and semantic relationships. For instance, public buildings
often feature a very limited set of room sizes. Furthermore,
individual rooms may be grouped into superior room units by
their semantic relationship, e.g., the office of an assistant is
very likely next to the office of an executive. Thus, once an
executive office has been detected from traces, we implicitly
detected the neighboring assistant’s office along with it.

Formal Grammar We encode such structural information
for non-hallway spaces by a formal grammar for a regular
language of the form G = (N,T, P, S), where N = {Space}
is the set of non-terminal symbols, T = {ǫ, ra, rb, rc, ...} is
the set of terminal symbols, P is the set of production rules
and S = Space is the axiom. Each terminal ri ∈ T represents
a class i of rooms, identified by their geometric extent (see
Fig. 6, 10). For instance, assistant’s office and executive office
are two different classes of rooms that can occur more than
once in one floor plan. Furthermore, we encode knowledge
about room units as fixed sequences of rooms that can be
produced. Therefore, we define the production rules P as
follows (cf. Fig. 6):

Trace-based

model
Grammar

Constraints Model 1Model 1Model 1
Compare

Layout Error

Room Layout
Generation

Fig. 7. Overview of the grammar-based room layout generation

Require: Rule Sequence w, Wall Constraints WC , Free Constraints FC

errors ← ∅
2: for all [start , end] ∈WC do

if w generates wall ∈ [start , end] then

4: errors ← errors ∪ {0.0}
else

6: x← wall with minimum distance to [start , end]
errors ← errors ∪ {MINDIST(x, [start , end])}

8: end if

end for

10: for all [start , end] ∈ FC do

if w does not generate any wall ∈ [start , end] then

12: errors ← errors ∪ {0.0}
end if

14: for wall ∈ [start , end] generated by w do

errors ← errors ∪ {MINDIST(wall, [start , end])}
16: end for

end for

18: if |errors| = 0 then return ⊥
end if

20: return
∑

e∈errors
e2/|errors|

Fig. 8. Algorithm for computing the layout error of a rule sequence

• Rroom
i : Space → ri Space for i ∈ room classes found

in the building

• Runit
n : Space → rj ...rk Space for n ∈ room units

found in the building

• Rǫ : Space → ǫ

For instance, one possible sequence of rules to fill a non-
hallway space with this grammar is: Space → r3 Space →
r3r1r5.

Probabilistic Grammar While this grammar encodes
knowledge about existing room classes and room units, it does
not contain knowledge about the typical neighborhood of these
elements. For example, a combination of assistant’s office and
executive office may typically occur in combination with other
office rooms, but hardly ever in combination with maintenance
access rooms. Therefore, we define two probability models for
the grammar: (1) The a priori probabilities of rules and (2)
the relationship probabilities between rules. The a priori prob-
ability Pa(Ri) encodes the relative frequency of occurrence of

a room or room unit defined by rule R
{room,unit}
i . The rela-

tionship probability Prel(Ri|Rj) is a conditional probability
which models neighborhood relationships between rooms or
room units. For instance, Prel(R

room
j |Rroom

i) = 0.5 states that

with a probability of 50%, room rnext = rj in any sequence
...rirnext. To use these probabilities, we translate the grammar
into a Markov chain. Room rules Rroom

m and unit rules Runit
n

form the nodes of the Markov chain. The probability for a

transition from Ri to Rj is defined as
Pa(Rj)
Pa(Ri)

·
Prel (Ri |Rj)
Prel (Rj |Ri)

according to [12].

Layout Error The grammar can create a multitude of

Require: Current Rule Sequence w, Set of Rules P, Wall Constraints WC ,
Free Constraints FC

P ← {R ∈ P |wr fits in the available space} ⊲ Annotate
2: for all R ∈ P do

R.RE ← GETERROR(w ,R,WC ,FC)
4: Q← last rule in w

R.prob ←
P(R)
P(Q)

·
P(Q|R)
P(R|Q)

6: end for

Perror ← {R ∈ P |r.RE 6=⊥} ⊲ Filter
8: Pprob ← {R ∈ P |r.RE =⊥}

minRE ← MIN({R.RE |R ∈ Perror})
10: Perror ← {R ∈ P |R.RE ≤ minRE}

P ← {R ∈ Perror ∪ Pprob|R.prob > 0}
12: if P is empty then ⊲ Recover

P ← Perror

14: for all R ∈ P do

R.prob ← 1/|P |
16: end for

end if

18: normalize all R.prob to 1.0 ⊲ Select
return R randomly selected according to R.prob

Fig. 9. Constraint-Augmented Random Walk

r4 r2

r3

r3r1

free constraint

Fig. 10. Example application of rules. Combining Error- and Probability-
Rules avoids unnecessary increases of the layout error.

different indoor models. To determine the model that best fits
the observations from the trace-based indoor model, we derive
a set of constraints on the grammar-based room layout from
the trace-based room layout and define the layout error (LE,
Fig. 8) to determine how well a given model fits the constraints
(see Fig. 7). Constraints and individual errors are derived
as follows: (1) For each room in the trace-based model, we
introduce a free constraint as an area where no wall should be
placed. The error is the distance of each wall placed inside the
constraint to the respective nearest end of the constraint (l. 10–
17). (2) For each neighboring pair of rooms, we introduce a
wall constraint, placed in between these rooms, indicating that
at least one wall should be placed in between these rooms. The
error is the smallest distance from either end of the constraint
to the closest room wall placed by the grammar (l. 2–9). The
mean square over these individual errors is returned as the
layout error (l. 20).

Finally, note that the grammar can produce room layouts
that do not completely fill (or may overflow) the available area.
Avoiding such layouts is the responsibility of the room layout
generation algorithm presented in the next section.

B. Room Layout Generation

The goal of the room layout generation algorithm is twofold:
(1) Find a room layout with minimal layout error and (2)
provide a probable room layout for unobserved areas that
completely fills the non-hallway space. Note that achieving a
LE of 0 may not be possible: due to noisy observations, e.g.,
rooms detected at a short distance left or right of their actual
position, it may not be possible to perfectly recreate the trace-
based room layout from the grammar. Finding the minimum-

error room layout from the grammar is an NP-hard problem
that can be reduced to the Knapsack problem. Therefore,
we employ a heuristic solution: We perform a constraint-
augmented random walk on the Markov chain to find different
room layouts. The random walk is repeated numRandomWalk
times and the room layout that minimizes the LE is chosen.
The algorithm, depicted in Fig. 9, iteratively performs the four
steps of Annotate, Filter, Recover and Select as follows.

Annotate: Initially, rules are annotated with their transition
probability and error they will cause. Given an (initially empty)
sequence of rooms and the rules w that were used to produce
these rooms, we first determine which rules can be applied
without overflowing the current non-hallway space (l. 1). For
the remaining rules, we compute a rule error (R.RE, l. 3) and
set their transition probability from the Markov chain (l. 5).
The RE is computed analogously to the LE, limited to the
area of the non-corridor-space that is affected by R. If no
constraints are encountered in the affected area, e.g., when
computing a layout in a part of the building that has not been
observed at all, no RE value (⊥) is set for R (cf. Fig. 8).

Filter: Next, rules are filtered for their applicability, i.e.,
whether they have a non-zero transition probability and min-
imize the resulting error. To this end, we split rules into two
disjoint subsets: Error-Rules Perror (rules that have an RE
value set, l. 7) and Probability-Rules Pprob (all remaining
rules, l. 8). Error-Rules are filtered, keeping only the rules
with the minimal RE value (l. 10). Note that we cannot limit
the selection to either Error- or Probability-Rules, as illustrated
by the example depicted in Fig. 10. r1 ∈ Pprob as r1 does not
touch the free constraint, whereas r3 ∈ Perror. For instance,
if we were to focus only on Perror, we lose the chance to
select the room sequence r1r3 which would improve the LE
over selecting r3. Furthermore, the grammar would be biased
towards choosing rules that place more and larger rooms, as
all rules in Perror occupy more space than any rule in Pprob.
The reverse is also true if we were to focus only on Pprob.
Therefore, both sets are rejoined, removing all rules with a
transition probability of 0 in the Markov chain, i.e., rules that
cannot occur in this neighborhood (l. 11).

Recover: As the grammar may be incomplete, it may
not account for all combinations of rooms that occur in the
building. Thus, we could encounter a situation where none of
the remaining rules in either set has a transition probability > 0
in the Markov chain, effectively deadlocking our algorithm. In
this case, we override the Markov chain by using the set of
Error-Rules with minimal RE value and temporarily adjusting
their transition probabilities to a uniform value (l. 12–17).

Select: Finally, we choose a rule out of the remaining ones
at random according to the (adjusted) transition probabilities
(l. 19). When no space is left in the current non-corridor space
to use any additional rule, Rǫ is applied and the resulting
sequence of rooms is returned as the room layout for this non-
corridor-space.

The hallway skeleton from the trace-based indoor model
together with the set of grammar-based room layouts for all
non-corridor-spaces forms the grammar-based indoor model,
which is the final output of our system.

−
2
0

0
2
0

4
0

6
0

8
0

0

2
0

4
0

6
0

8
0

(a) Trace-based Indoor Model

−
2
0

0
2
0

4
0

6
0

8
0

0

2
0

4
0

6
0

8
0

(b) Grammar-based Indoor Model
−
2
0

0
2
0

4
0

6
0

8
0

0

2
0

4
0

6
0

8
0

(c) Ground-Truth Indoor Model

Fig. 12. Dense Scenario: Indoor-Models derived using all recorded traces

0 %

20 %

40 %

60 %

80 %

100 %

10 30 50 70 90 110

F
ra

ct
io

n
o

f
H

al
lw

ay
s

Number of Traces

Top Left
Building

(a) Average fraction of detected hallways over the
number of traces used.

0

0.5

1

1.5

2

25 % 50 % 75 % 100 %

A
v
er

ag
e

S
iz

e
E

rr
o

r
[m

]

Fraction of Rooms

Traces
Accurate

Semi-Accurate

(b) Fraction of matched rooms vs. average error in
room size. Values for 50 traces.

0 %

20 %

40 %

60 %

80 %

100 %

10 30 50 70 90 110

F
ra

ct
io

n
o

f
R

o
o

m
s

Number of Traces

Accurate
Semi-Accurate
Trace-Based

(c) Average fraction of matched rooms over the
number of traces used.

Fig. 13. Sparse Scenario: Quality result of models derived from a varying number of traces

(a) Android App (b) Foot-mounted IMU

Fig. 11. Utilities used for recording the pedestrian traces: A foot-mounted
IMU that sends relative position changes to an Android App which merges
these steps to a trace and shows it on a map.

System Parameter Value System Parameter Value

minLength 4 m bbExtension 0.5 m
maxSteps 1 minRoomDepth 2 m
maxTime 1 s numRandomWalk 10

Fig. 14. Parameters used in the evaluation

VI. EVALUATION

To demonstrate the effectiveness of MapGENIEs’ grammar-
based approach, we tested our system in a real-world scenario.

We first describe the setup of our evaluation, before we discuss
evaluation results for sparse and dense scenarios, showing the
performance of our system during trace acquisition and when
a full set of trace data for the building is available.

A. System Setup

To set up the inertial positioning system, we designed an
Android App, communicating with a foot-mounted inertial
measurement unit via Bluetooth (see Fig. 11). We used a
Zero-Velocity-Update protocol [9] to limit the sensor drift of
the foot-mounted unit. All other components are implemented
as a backend-service on a Linux server (cf. Section II). The
parameters used in our evaluation are shown in Fig. 14.

To test our implementation, we collected 250 odometry
traces, measuring a total of over 22 km from four volunteers.
Traces are collected from the 2nd floor of the computer science
building in Stuttgart (see Fig. 12c). Volunteers could freely
walk all hallways in the building. Room access was limited to
only a subset of office rooms, mainly located in the top left
quadrant. Thus, hallways in this quadrant are well traveled,
whereas only very few traces passed through hallways at the
right and lower edges of the building. Furthermore, users did
not visit maintenance rooms, which are not publicly accessible.

We evaluate our system in two scenarios. In the dense

trace scenario, we show the output of the system when using
all available information, i.e., we derive the indoor-model
using all traces and using an accurate grammar for the floor.
This demonstrates how even a well-mapped area can benefit
from using a grammar-supported approach. In the sparse trace
scenario, we analyze the performance of the system with
incomplete information, i.e., using only a fraction of the traces,
showing how the grammar-based approach is used to enhance
the incomplete information of these traces. Furthermore, in
the sparse scenario we use two grammars for the room layout
generation: An accurate grammar derived from the floor plan
of the 2nd floor and a semi-accurate grammar derived from
the 1st floor of the same building, which, while overall similar
to the 2nd floor, features different room types, room units
and neighborhood relationships. Neither grammar includes
knowledge of maintenance access rooms, which we cannot
find without having an accurate floor plan in the first place.
The semi-accurate grammar illustrates the performance of our
system when using data obtained from a similar building.
Note that using a fully inaccurate grammar will lead to fully
inaccurate floor plans.

B. Dense Trace Scenario

Figure 12a shows the trace-based indoor model from the dense
trace scenario, i.e., using all traces. Hallways, on the one hand,
were estimated almost perfectly in areas covered by a large
number of traces, i.e., the top-left quadrant and the center
hallways. The rightmost and bottommost hallways are derived
from only four traces each, which do not contain a sufficient
number of samples to accurately find their width and position.
The room layout, on the other hand, is very poor. Out of a
total of 74 office rooms in the building, only 26 were found.
Rooms are only of the right size if they are either very narrow
or were detected from multiple (in our case three) traces.

Next, we look at the grammar-based indoor model, depicted
in Fig. 12b. When comparing the grammar-generated room
layout to the trace-based indoor model and the ground truth,
we see that in areas where no rooms were found, the grammar
provides a plausible but not necessarily perfectly accurate
layout of rooms. In areas with observations, the observed
rooms are reproduced by the grammar. Note that while the
grammar-based layout reduces the error of the room layout, it
is faithful to the observations. For instance, when a single room
is detected as multiple rooms due to an overall insufficient
number of traces entering the room, the incorrect room is
recreated by the grammar. Overall, the basic structure of the
building is reflected in the model.

C. Sparse Trace Scenario

In the sparse trace scenario, we analyze the performance of
our system when operating on a limited set of traces only. For
varying numbers of traces n, we repeatedly selected random
subsets of n traces out of the set of all traces. For each set
of traces we construct the trace-based indoor model and the
grammar-based indoor model.

We first compare the hallway skeleton from the computed
indoor model to the ground truth hallway skeleton. Figure 13a
shows the average number of hallways detected for each
number of traces. Using 30 traces, we can find 12 % of

hallways in the building (“Building”). Finding more than 80 %
of hallways requires at least 70 traces. This is due to our
strict verification criteria. We require a number of high-quality
seed traces, which are usually not present in a smaller number
of traces. Loosening these parameters leads to finding more
hallways. However, it also leads to false positives, i.e., finding
non-existent hallways, which we avoid with our strict criteria.
When limiting the analysis to the top left quadrant (“Top
Left”), results show a similar trend but are overall better, since
traces concentrate in that area, i.e., we are more likely to find
hallways here than in any other part of the building.

Next, we analyze the accuracy of the room layout gen-
eration. For each computed indoor model, we match detected
rooms to rooms from the ground truth model. Matching rooms
lie on the same side of the same hallway and have similar size.
Furthermore, we respect the ordering of rooms, i.e., if room
b is located to the right of room a in the computed model
and a was matched to x from the ground truth, then b cannot
be matched to a room left of x. From here on we limit our
analysis to the top left quadrant, where room information from
traces is available. Note that maintenance access rooms cannot
be detected from traces nor the grammar-based room layout,
which account for about 19 % of rooms in the top-left quadrant.

Figure 13b shows the average error in the size of matched
rooms compared to the fraction of rooms that have been found
on detected hallways for all indoor models built from 50 traces.
The trace-based indoor model (“Traces”) finds only very few
rooms (up to 35 %) and shows a large error in the room
size (0.48 m to 1,5 m), whereas using the accurate grammar
(“Accurate”), many more rooms (at least 72 %) with a much
lower size error (at most 0.37 m) are found. Furthermore,
the semi-accurate grammar (“Semi-Accurate”) finds the same
number of rooms, with a slightly higher average size error.
Thus, using grammar support greatly increases the accuracy
of the floor plan even when the grammar is not perfect.

To analyze the impact of the grammar further, we look at
the overall fraction of matched rooms. Figure 13c shows the
average number of matched rooms for each sample size of
traces. Using 110 traces, we find only 31 % of rooms from
traces alone, while using either grammar we detect 81 % of
rooms, i.e., all rooms that can be found, with only 70 traces.
Overall, we find up to 4 times as many matching rooms
using the grammar-based model. Note the steep increase in
the number of matching rooms from 30 to 50 traces. As
argued before, more traces lead to detecting more hallways. For
the trace-based model, the number of detected rooms grows
with the number of traces. For the grammar-based model, the
number of detected hallways is the important factor, as on each
hallway, multiple matching rooms are detected. With only a
few hints in existing rooms from the trace-based model, the
grammar provides a far more accurate indoor model.

VII. RELATED WORK

Most approaches for indoor mapping build on different
flavours of the Simultaneous Localization and Mapping
(SLAM) principle, originating from robotics. Recently, also
human-operated SLAM approaches have emerged which em-
ploy miniature laser scanners [13], or the Microsoft Kinect
[14]. Instead of using scanning techniques that require man-
ual effort, the idea of using position traces, which may be

acquired using low-cost ubiquitously available hardware, was
proposed. Systems employing this data as the sole base for
the reconstruction of building interiors are described in works
like CrowdInside [2], FootSLAM [3] and SmartSLAM [15].
FootSLAM—as in our approach, using a foot-mounted IMU—
reconstructs the building’s interior as a map of walkable areas,
not distinguishing between hallways or rooms. Instead of
being constrained to a dedicated external IMU, CrowdInside
and SmartSLAM employ the set of sensors found in mod-
ern smartphones. However, SmartSLAM merely reconstructs
hallway structures from the resulting data. CrowdInside, on
the one hand, requires a large amount of traces following the
room walls in order to function well and, on the other hand,
reconstructs the rooms as alpha shapes, not taking knowledge
about common features of interior architecture like paral-
lelism, rectangularity, or repetition into account. Following
the evaluation, CrowdInside needs 290 trace segments to fully
reconstruct all corridor areas and the 12 rooms in the floor
plan used in the testbed. The system presented in [16] uses
a combination of smartphone sensors and WiFi fingerprints
to learn hallway layouts as well as to distinguish different
rectangular rooms. The authors state that the system needs
only 20 data points per floor plan to converge, while delivering
an average room position accuracy of 91%, but a room area
estimation error of 33% and a room aspect ratio error of 24%.
The exact reconstruction of, e.g., repetitive structures is also
not tackled by this approach.

Due to parallelism and rectangularity being the most promi-
nent rules used in man-made construction, many reconstruction
approaches build on the Manhattan World constraints [17].
To further include, e.g., repetition or to model more general
constraints, formal grammars have been applied successfully
to the modeling of geometric structures for several years.
While [18] focuses on line structures by, e.g., simulating
growth processes of plants through Lindenmayer-systems (L-
systems), [5] and [6] proved the usability of grammars for the
reconstruction of street networks and building shells. In terms
of procedural modeling of building interiors, the authors of
[19] present an appropriate split grammar, however, without
the possibility of its use in the reconstruction from erroneous
observation data.

VIII. CONCLUSION & FUTURE WORK

In this paper, we presented the MapGENIE approach that
automatically infers indoor maps from pedestrian traces and
structural building information. First, we presented a trace-
based modeling approach, which is then improved by structural
knowledge encoded in a formal indoor grammar. To show
its performance, we conducted a large-scale experiment by
collecting pedestrian indoor traces. The results show that Map-
GENIE enhances the indoor mapping process significantly, i.e.,
producing detailed indoor maps from only a small set of traces.

So far, we require an input grammar to derive a grammar-
based indoor model. In the future, we will analyze automatic
derivation and improvement of the grammar by using trace
information. Eventually, we aim at a closed-loop system where
the traces feed the grammar derivation while the knowledge
stored in the grammar supports the acquisition of the traces.
Furthermore, we aim at improving the hallway derivation by a

hallway grammar. This will speed up the hallway creation step
and improve the accuracy of the derived hallway skeleton.

ACKNOWLEDGMENT

The authors would like to thank Naresh Nayak for his help in
the implementation.

This work is supported by the German Research Foun-
dation (Deutsche Forschungsgemeinschaft, DFG), grants FR
823/25-1 and RO 1086/17-1, and the Ministry Of Science,
Research and the Arts Baden-Württemberg.

REFERENCES

[1] A. Moses. (2012, Nov.) ’Indoor GPS’: Every step you take, every move
you make, Google’s got maps for you. Accessed: 07.01.2014. [Online].
Available: http://www.theage.com.au/digital-life/smartphone-apps/
indoor-gps-every-step-you-take-every-move-you-make-googles-got-\
maps-for-you-20121115-29e1b.html

[2] A. Moustafa and Y. Moustafa, “Crowdinside: Automatic construction of
indoor floorplans,” in Proc. Conf. Advances in Geographic Information

Systems (SIGSPATIAL), 2012.
[3] M. Angermann and P. Robertson, “Footslam: Pedestrian simultaneous

localization and mapping without exteroceptive sensors – hitchhiking
on human perception and cognition,” Proc. of the IEEE, vol. 100, pp.
1840–1848, 2012.

[4] A. R. Jiménez, F. Seco, F. Zampella, J. C. Prieto, and J. Guevara,
“Improved heuristic drift elimination with magnetically-aided dominant
directions (MiHDE) for pedestrian navigation in complex buildings,” J.

Location Based Services, vol. 6, pp. 186–210, 2012.
[5] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Procedural

modeling of buildings,” ACM Trans. Graph., vol. 25, pp. 614–623, 2006.
[6] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,” in

Proc. 28th Annu. Conf. Comp. Graph. and Interactive Techniques, ser.
SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 301–308.

[7] S. Becker, M. Peter, D. Fritsch, D. Philipp, P. Baier, and C. Dibak,
“Combined grammar for the modeling of building interiors,” in ISPRS

Ann. Photogramm. Remote Sens. Spatial Inf. Sci., 2013.
[8] S. Becker and N. Haala, “Grammar supported facade reconstruction

from mobile LiDAR mapping,” in Proc. WS Object Extraction for 3D

City Models, Road Databases and Traffic Monitoring, 2009.
[9] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,”

IEEE Comp. Graph. and Applicat., vol. 25, pp. 38–46, 2005.
[10] M. B. Kjærgaard, H. Blunck, T. Godsk, T. Toftkjær, D. L. Christensen,

and K. Grønbæk, “Indoor positioning using gps revisited,” in Proc.

Conf. on Pervasive Computing (Pervasive), 2010.
[11] O. Woodman, “An introduction to inertial navigation,” University of

Cambridge, Technical Report 696, 2007.
[12] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Mech, and V. Koltun,

“Metropolis procedural modeling,” ACM Trans. Graph., vol. 30, pp.
11:1–11:14, 2011.

[13] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of a spring-mounted
3-d range sensor with application to mobile mapping,” IEEE Trans.

Robotics, vol. 28, pp. 1104–1119, 2012.
[14] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,

J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“KinectFusion: real-time dense surface mapping and tracking,” in Proc.

Symp. Mixed and Augmented Reality (ISMAR), 2011.
[15] H. Shin, Y. Chon, and H. Cha, “Unsupervised construction of an

indoor floor plan using a smartphone,” IEEE Trans. Syst., Man, and

Cybernetics, C: Applicat. and Reviews, vol. 42, pp. 889–898, 2012.
[16] Y. Jiang, Y. Xiang, X. Pan, K. Li, Q. Lv, R. P. Dick, L. Shang, and

M. Hannigan, “Hallway based automatic indoor floorplan construction
using room fingerprints,” in Proc. Joint Conf. Pervasive and Ubiquitous

Computing (UbiComp), 2013.
[17] J. M. Coughlan and A. L. Yuille, “Manhattan world: Compass direction

from a single image by bayesian inference,” in Proc. 7th IEEE Int. Conf.

Comp. Vision, vol. 2, 1999, pp. 941–947.
[18] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants.

Springer New York, 1990.
[19] G. Gröger and L. Plümer, “Derivation of 3D indoor models by grammars

for route planning,” Photogrammetrie-Fernerkundung-Geoinformation,
vol. 2010, pp. 193–210, 2010.

