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Abstract—In our previous work, we described the automatic 
reconstruction of coarse models of building interiors using a 
single photograph of an evacuation plan and an available model 
of the building’s external shell. Additionally, we presented the 
extraction of the initial position and orientation for a foot-
mounted MEMS IMU positioning system from the plan as well as 
the use of the coarse model for alignment and map-matching 
purposes. In this paper, we propose the geometric and semantic 
refinement of the coarse model employing an analysis of position 
traces delivered by such a system. While the addition of semantic 
attributes requires user interaction (like taking a photograph of a 
door plate to be analyzed by Optical Character Recognition), the 
update of the model’s geometry (i.e. reconstruction of doors) is 
delivered automatically by analyzing position traces and model 
conjointly. The model’s geometry is further refined using an 
automatic approach for the reconstruction of detailed CAD 
models of individual rooms, from the point clouds collected by 
the low-cost RGB-D sensor Microsoft Kinect. The user’s track 
derived from the MEMS IMU positioning approach will be used 
for the registration and fusion of the detailed models to the 
coarse model. 

Keywords-reconstruction, refinement, IMU, RGB-D, alignment 

I. INTRODUCTION 

With the rise of GNSS, virtual globes and navigation 
systems, maps and city models evolved from specialized tools 
used by planners to broadly available features for visualization 
and navigation support (e.g. landmarks in car navigation 
systems). The ubiquity of a sufficiently precise positioning 
system, detailed maps and mobile internet connections enable 
everybody to navigate and use Location Based Services – in 
outdoor scenarios. However, most people spend most of their 
time in building interiors, whether it is for work or leisure.  

This results in an augmented interest in indoor positioning 
and navigation methods, which can be seen in the fact that all 
major commercial map publishers (e.g. Google, Bing, Nokia) 
as well as smaller companies like Aisle411, PointInside and 
Micello produce indoor maps and advertise their availability as 
unique features of their maps. From the scientific point of 
view, this augmented interest is reflected in publications on 
indoor positioning methods as well as reconstruction methods 
for building interiors. 

Traditional use cases for indoor models were special 
interests like interior architecture, building management and 

disaster simulation, whereas, in the context of indoor 
positioning, they are needed e.g. for the installation of 
infrastructure-based methods (i.e. the placement of beacons) or 
the support of infrastructure-less methods (using map-matching 
or similar approaches). In the case of indoor navigation, their 
primary uses are route calculations as well as their 
visualization. As will be shown in section II, the reconstruction 
of indoor models is still mostly a tedious and expensive task. 
Thus, building on our previous work which presented the 
reconstruction of coarse indoor models employing the reverse-
engineering of existing evacuation plans, we present means for 
their geometric and semantic refinement using position traces 
and a low-cost range camera. 

The remainder of this paper is structured as follows: 
Section II gives a short overview over existing work in the field 
of indoor reconstruction. Section III summarizes our previously 
published approaches for the reconstruction of building 
interiors, whose results will be refined using the methods 
presented in the sections IV (using position traces and user 
interaction) and V (using a low-cost range camera). 

II. RELATED WORK 

The reconstruction of building interiors is subject to 
research in a multitude of fields ranging from image processing 
and photogrammetry to robotics and point cloud processing. It 
can be split into data acquisition and the actual reconstruction, 
each of which pose their respective challenges. Regarding the 
data acquisition, these can be found as the registration 
respectively the absolute geo-referencing of different data sets 
and disadvantageous conditions for passive sensing techniques 
(e.g. images). The model reconstruction, however, suffers from 
the low accuracy of some measurement principles (conflicting 
with the high detail density in indoor environments) as well as 
occlusions of the floor and walls caused by furniture or other 
objects. 

Apart from semi-automatic methods basing on panoramic 
images [1, 2], approaches employing a model-constrained 
analysis of single images in order to derive boundary 
representation models have been presented [3, 4]. Instead of 
directly deriving a boundary representation model, most 
publications, however, cover the acquisition of point clouds as 
an intermediate or end product. In this category, passive 
approaches using statistical analysis of single images [5] or 
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stereo-based methods [6] for the generation of point clouds as 
well as video-based SLAM approaches [7, 8] have to be 
mentioned. Due to the aforementioned problems encountered 
with passive acquisition methods, the majority of related 
publications are employing active sensors combined with 
SLAM processing. In this context, most combinations of sensor 
and carrying system can be found: human-operated [9, 10] as 
well as ground- [11] and air-borne [12] robotic systems using 
LiDAR, sonar [13] and time-of-flight cameras [14]. With the 
availability of the Microsoft Kinect, however, many research 
groups started to concentrate on this low-cost active sensing 
system with an acceptable accuracy for most indoor 
applications. While [15] is building on the complete RGB and 
depth data delivered by the Kinect, [16] and [17] only employ 
the depth data for the co-registration. Needless to say that its 
first applications in robotics [18] and unmanned aerial vehicles 
[19] have been described. 

As for the majority of the use cases described in section I 
boundary representation models are preferable or 
indispensable, their reconstruction from the collected point 
clouds is an essential research task. While some publications 
concentrate on the pre-processing segmentation of planar 
patches [20], most classify the detected planes into walls, floor 
and ceiling e.g. by semantic nets [21] or graph analysis [22]. 
Due to the regularity of man-made structures like especially 
building interiors, this semantic classification often builds on 
the Manhattan World constraints [23]. These constraints are the 
base of the plane sweeping reconstruction approach presented 
by [24], while other publications present less constrained 
methods working on the wall detection in point density 
histograms [25, 26].       

In contrast to these indoor reconstruction methods, our 
previously presented approach builds on models reconstructed 
from photographed evacuation plans and thus lives in the 
context of methods for the reverse-engineering of existing 
plans. In this field, [27] presented a system interpreting floor 
plans hand-sketched with constraints concerning the paper and 
pens used. However, most approaches build on scanned CAD 
plans. For example, [28] presents low-level analysis steps for 
such plans like the segmentation to graphics and text as well as 
thick and thin lines, vectorization and the detection of arcs and 
loops. The also presented higher-level approaches use this 
extracted information to construct a complete 3D model. In 
[29] this approach was developed into a complete system for 
the analysis of scanned CAD plans. Additional, more recent 
work in this field can be found in [31, 32]. In contrast to the 
high resolution scans employed by these approaches, we use 
lower-resolution photographs taken under the pre-existing 
lighting conditions. Additionally, the layouts to be expected are 
more heterogeneous and parts of the plans may be occluded by 
symbols. Finally, the scaling and geo-referencing of the 
reconstructed model is carried out automatically. 

III. PREVIOUS WORK 

In previous publications, we presented approaches for the 
derivation of coarse indoor models from photographed 
evacuation plans of known design [32] as well as of arbitrary 
designs [33]. The most important processing steps are depicted 

in Fig. 1. Both approaches build on an image enhancement step 
using automatic white balancing and Wallis filtering [34] in the 
LAB color space and binary image computation using adaptive 
thresholding. In order to derive geo-referenced, metric models, 
the outer contour of the photographed plan is matched to the 
building’s external shell taken e.g. from OpenStreetMap.  

In order to provide complete models, symbol areas have to 
be detected and bridged. In the case of plans of well-known 
design, cross-correlation template matching is employed for 
their detection. The generalization to arbitrary plans builds on 
the color information in the plans, as symbols are represented 
by pure signal colors (red, green, yellow and blue) in contrast 
to a light background and dark ground plan lines. The symbol 
areas identified using the Color Structure Code segmentation 
method [35] are bridged by prolonging end node edges 
identified in the skeletonized cleaned binary image.  

Analyzing the contours computed from the bridged binary 
image, they may be categorized into rooms and stair candidates 
by their thresholds concerning their maximum width and 
minimum length. These stair candidates can be grouped to 
staircases. The overall number of stairs in a staircase combined 
with a standard stair height for public buildings provides an 
approximate floor height. Thus, the 2D contours can be 
extruded to a coarse 3D model (see Fig. 2). 

In addition to their use for the reconstruction of building 
interiors, the photographed plans may provide the location and 
orientation of the user photographing it. As has been shown 
[32], these can be used as initial values for a foot-mounted 
MEMS IMU positioning method. Still existing misalignment 
errors have successfully been corrected by detection of straight 
lines in the traces and their alignment to the nearest building 
axis (computed from the external shell).  

As the most prominent error source, however, remains the 
initial position. This is caused by two factors: firstly, the 
accuracy of the position in the plan (as well as the surrounding 
parts of the ground plan) is reduced by the displacement which 
is part of the generalization and secondly, the distance of the 
user taking the photograph to the plan cannot be recovered 
(unless the plan’s dimensions are known). This error could be 
overcome by the use of additional known coordinate updates or 
map-matching. 

 
Fig. 1: Processing steps (from left to right): original image, enhancement, 
binarization, symbol detection, symbol bridging, stair detection (green) 
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Fig. 2: User trace starting at the evacuation plan’s position before (red) and 

after (yellow) alignment to building’s principal axis 

An efficient way to provide the geometric information for 
the update and refinement of the generated coarse models is to 
collect point clouds of the building interiors. In [36] we 
employed the RGB-D sensor Microsoft Kinect for this purpose. 
For the alignment of the collected point clouds we compared 
different approaches and analyzed their accuracy and flexibility 
in different scenarios [37]. In the first approach, the sensor 
poses were estimated using the Structure from Motion (SfM) 
approach employing point features detected and matched 
across corresponding RGB images. The accuracy of this 
approach depends on the amount and distribution of image 
features across the views. Therefore, this approach may not 
work properly in bad lighting conditions or in sparsely textured 
scenes.  

To overcome this limitation, one may take the advantage of 
the 3D object space observations provided by the range sensor. 
In the second approach we used the KinectFusion software [16] 
to estimate the sensor pose purely using the geometric 
information. This software aligns the range images in real-time 
using the GPU implementation of a coarse-to-fine Iterative 
Closest Point (ICP) algorithm [38] and delivers a surface with 
low noise. This approach fails in the alignment of the range 
images along planar objects, as the sensor pose’s 6 degrees of 
freedom cannot be fixed by the ICP algorithm. 

Although the abovementioned approaches may solve the 
problem of point cloud alignment in many indoor scenes, still 
there are some scenarios where neither enough image features 
for a successful SfM can be found, nor can the ICP approach 
estimate the sensor pose. In such cases, external information 
(e.g. provided by an available Building Information Model or 
fused sensors like MEMS IMU) might solve the problem to 
some extent. In [39] we showed that the user’s position track 
provided by the MEMS IMU positioning method can support 
the point clouds alignment in some scenes like hallways (poor 
texture and insufficient 3D information). The accuracy of this 
alignment approach is directly related to the precision of 
positioning per single step, which was estimated to be less than 
10cm in our study case. Moreover, the information extracted 

from the available coarse model provided us with some 
geometric constraints to improve the alignment accuracy. 

IV. MODEL REFINEMENT USING POSITION TRACES 

As visible in Fig. 2, apart from the detected stairs, the only 
additional information in the coarse model generated from the 
photographed sample evacuation plan are the doors which were 
identified as walls crossed by evacuation routes. The wall
locations are sufficient for the model’s use as support 
information for an infrastructure-less positioning method (see 
section IV.B). For the model’s use in a navigation scenario, 
however, the door positions as well as semantic information 
like a room number are needed. In the following, approaches 
employing the user traces produced by the aforementioned 
foot-mounted MEMS IMU positioning method are used for the 
derivation of this information. 

A. Semantic annotation 
Due to the positioning method being available, users of the 

system are enabled to interactively collect any geo-referenced 
information and thus model the indoor environment in an 
OpenStreetMap-like fashion. In OpenStreetMap, such 
information is often collected using geo-tagged photos or audio 
files, which will be transferred to the map in a manual post-
processing step. In building interiors, the locations of doors and 
windows are of interest as well as information about the rooms 
present in the coarse model (room number, people associated to 
the room, opening hours etc.).  

 

Fig. 3: Semantic annotation (room number) by OCR analysis of a geo-
referenced photograph of a door plate (overlay on Google Maps, Imagery 

©2013 AeroWest, Landeshauptstadt Stuttgart, Map data ©2013 GeoBasis-
DE/BKG) 

In addition to a fully manual post-processing step, 
photographed door plates can be converted to text using state-
of-the-art Optical Character Recognition (OCR) software (see 
Fig. 3). Analyzing the resulting text, room numbers can be 
extracted as well as people assigned to the room by comparing 
the text to a names database. The associated room can be 
detected employing the viewing direction of the user during the 
image capturing (extracted from the position traces). As 
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additional information, the position of the door plate can be 
used as a good approximation for the location of a door. 

B. Map matching and automatic door reconstruction 
In addition to the aforementioned alignment, the 

availability of the coarse model enables the use of map-
matching as a further correction method for the improvement 
of the position traces. Our simple map-matching approach
employs constraints for the interaction between the user’s 
movement vectors and the model which are inverse to the 
constraints used for the automatic reconstruction of door 
openings. The reconstruction of a door is only possible if the 
position trace hits a wall in the model a) in a reasonable angle 
and b) in a location where the wall features enough space for 
the reconstruction of a door. Using a standard door size (see 
[40]), the latter constraint is straightforward. For the angle 
threshold, this door size is combined with an average human 
shoulder width. This results in an angle interval of 40° to 140° 
in which an average human can pass a door comfortably and in 
which a trace crossing a wall will cause the reconstruction of a 
door. All other intersections between trace and wall and the 
translation needed for their correction contribute to a vector 
correcting the trace as a whole. A sample result for both map-
matching and door reconstruction is depicted in Fig. 4. 

 
Fig. 4: Door automatically reconstructed from map-matched user trace 

V. MODEL UPDATE AND REFINEMENT USING A LOW-COST 
RANGE CAMERA 

The reconstructed coarse model can be further refined by 
adding the details missing in the evacuation plans due to the 
generalization process or recent changes in the building 
interiors (e.g. new walls and cupboards). For the geometry data 
acquisition, Microsoft Kinect is employed to actively sense the 
indoor scenes. This affordable and accessible sensor system 
captures the range images in real-time with few programming 
efforts. After the alignment of the collected point clouds, the 
CAD models of rooms and hallways are automatically 
reconstructed with a higher level of detail. The detailed models 
are then fused with the coarse model using the position traces 
derived by the positioning method described in section IV. The 
details are described in the following parts. 

A. Reconstruction of individual entities 
In this study case, the point clouds of the rooms are 

collected and aligned separately based on the SfM approach 
employing the point features detected and matched in the 
corresponding RGB images. The scale information is retrieved 
from the 3D coordinates of the image features, having the link 
between the RGB and range data provided by the stereo 
calibration of the RGB and IR cameras.  

For the hallway scenario, as the amount of the point 
features is not sufficient for a robust estimation of the sensor 
pose, we use the position traces described in section IV. For the 
collection and alignment of the point clouds in this method, the 
user walks through the hallway and collects the MEMS IMU 
data, while automatically capturing the scene point clouds at 
the track points by a Kinect system. At each track point, the 
coordinates are used for the computation of the approximate 
sensor position, considering a constant shift between the 
MEMS IMU and Kinect. The approximate orientation in the 
horizontal plane is computed, assuming the sensor is oriented 
toward the direction of the next track point. The sensor tilt is 
estimated by the analysis of the normal vectors in an iterative 
process, assuming the ground points’ normal vectors comprise 
smaller angles with the vertical axis. The estimated orientations 
are further improved by fulfilling some geometric constraints, 
e.g. parallelism of walls in the coarse model and the point 
clouds. More details about this approach can be found in [39]. 

To reconstruct the CAD models of the individual entities, 
we first reduce the problem from 3D to 2D space. This 
simplifies the algebraic relationships and the topological 
analysis (which is necessary for a consistent and robust 
reconstruction), while preserving the 2D structure of the 
building interiors. The 2D CAD models are reconstructed by 
estimation of the lines representing the walls in 3D and 
applying some topological corrections. The models can be 
reconverted to 3D by a simple extrusion, having the height of 
the rooms. The correct height of the rooms which is considered 
as an update for the coarse model can be derived by analyzing 
the height histogram of the point clouds. The following 
sections describe the procedure in more detail. 

Pre-processing of the point clouds 
To reduce the reconstruction task from 3D to 2D space, the 

point cloud has to be projected onto the horizontal plane after 
the compensation of the existing tilt of the point cloud with 
respect to this plane. To estimate the tilt, again, the orientations 
of the normal vectors are analyzed, clustering the points into 
groups of walls and floor/ceiling. After the compensation of the 
tilt and removing the points corresponding to the floor and 
ceiling, the furniture inside a room can be removed by filtering 
the points having heights less than a typical threshold (e.g. 
1.5m). The final result of this step is the leveled point cloud of 
the inner shell of the room. Although some parts of the point 
cloud might be filtered out during the floor/ceiling and 
furniture removal process, the remainder can still deliver the 
information about the 2D structure of the walls. Fig. 5 shows 
the results of this process for an exemplary room. 
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Fig. 5: Collected point cloud (a); removing the ceiling, floor and furniture by 

height filtering (b); projection of the points to the horizontal plane (c).  

Estimation of the lines representing the walls in 2D 
The resulting point cloud is additionally smoothed and 

converted to a 2D grayscale ortho projected image by counting 
the number of the points in each horizontal grid cell (Fig. 6-a). 
To estimate the lines in the projected image, the image first has 
to be binarized by setting a threshold on the gray values. The 
thresholding may remove the remaining horizontal surfaces 
and small objects while keeping the main vertical objects like 
walls.  

In practice, due to the noise of the range data and errors in 
the alignment of the point clouds and tilt removal, the 
projections of the walls are represented by some shapes which 
are not necessarily line segments (depending on the grid size). 
Therefore, using morphological closing followed by a 
skeletonization process, the shapes are firstly thinned to 1 pixel 
width structures (Fig. 6-b and -c). 

The skeletonized shapes are then generalized to straight 
lines using the Hough transformation. As it can be seen in Fig. 
7-a, each wall segment might be approximated by several 
Hough line segments. Therefore, they are first clustered into 
the groups of individual walls, and then averaged within the 
groups to estimate an equivalent line segment per wall 
segment. Clustering of the line segments is performed 
hierarchically, first by their orientation and then by their 
distance to the centroid of the point cloud (Fig. 7-b). The 
thresholds for the angular and distance clustering are chosen 
regarding the noise of the point clouds and the level of detail 
required for the modeling step.  

After the clustering process, for assigning a single line 
segment to each wall, the parameters of the resulting line 
segments are averaged within their groups (Fig. 7-c). The 
weights in this averaging correspond to the lengths of the 
segments.  

 
Fig. 6: Grayscale ortho projected image (a); binarization and morphological 

closing (b); skeletonized image (c) 

 
Fig. 7: Estimated Hough line segments (a); clustering the line segments 

(groups are distinguished with colors) (b); averaging the line segments within 
the groups (c) 

Topological corrections 
Considering the noise of the point clouds, imperfect point 

clouds alignment, occlusions in the point cloud and errors in 
the line estimation process, the resulting line segments do not 
fulfill a topologically correct geometry. Therefore, the 
following correction steps are applied to the resulting line 
segments to solve the topological issues. 

In the first step, the orientations of the averaged line 
segments are refined by imposing a geometric constraint 
enforcing parallelism and rectangularity at the detection of 
small angular differences. For this purpose, the line 
orientations are analyzed and clustered to find the main two 
perpendicular directions. The main directions however may 
need to be slightly corrected to make a difference of 90 
degrees. The orientations of the line segments are then 
compared to the two main directions, and are corrected if they 
make a difference of less than a given threshold (Fig. 8-a). 

In the second step, the intersections of the line segments are 
analyzed. The end points of the resulting line segments do not 
necessarily meet each other at the intersection points (walls 
junctures). This issue might be solved by extension or 
trimming of the line segments within a specific threshold. The 
extension or trimming is performed first in the original 
direction and alternatively in the perpendicular direction, if no 
intersection is found. However, as it can be seen in Fig. 8-b and 
-c, the extension process may generate invalid line segments 
which will be detected and removed in the next step. 
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Fig. 8: Before (red) and after (green) parallelism and rectangularity 

constraining (a); extension and trimming in the original direction (b); 
extension and trimming in the perpendicular direction (c) 

 
Fig. 9: Overlap with the point cloud data (a); marking as invalid (red), if the 

line segment is made by an extension and has less than 50% overlap (b) 

In the third step, invalid line segments are detected by 
analyzing the overlap of the line extensions with the point 
cloud data. In other words, a line segment is marked as invalid, 
if it is made by an extension, and at the same time, it has 
insufficient (e.g. less than 50%) overlap with the point cloud 
data within a buffer (Fig. 9). For the correctness of the overlap 
analysis, it is necessary to consider the overlaps before 
imposing the parallelism and rectangularity constraining step. 
This means that the corrections made by the constraining step 
have to be temporarily applied in the opposite way. 

As visible in Fig. 5, a part of the exemplary room 
corresponds to a window with open curtains, for which no 
range data from Kinect is available. To derive a closed polygon 
representing the room interiors, one may connect the free end 
points as the last correction step in simple cases. However, this 
solution may not be valid in a more general case, e.g. having 
windows in two perpendicular walls. To overcome this issue, 
information extracted from the coarse model will be used to 
correctly and consistently reconstruct the gaps, using the 
following fusion process.  

B. Fusion of detailed models and coarse model 
For the refinement of the coarse model, the detailed models 

of individual rooms (resulting from the previous step) have to 
be registered and merged into the 2D coarse model.  

The initial position and orientation of the detailed models 
with respect to the coarse model can be inferred having the 
position traces derived from the described MEMS IMU 
positioning method. For this purpose, the user has to walk from 
the position of the evacuation plan into the room whose point 
cloud has to be acquired by the Kinect system. Then the 

centroids of the detailed model and the corresponding room in 
the coarse model will be coincided. Assuming the user starts 
capturing the point clouds while the sensor is oriented toward 
the door position, the initial orientation of the detailed model 
with respect to the coarse model is computed (Fig. 10-a).  

 
Fig. 10: Initial registration to the coarse model (a); corresponding lines in the 
detailed and coarse models (b); best fitting of the detailed coarse models (c) 

The initial registration is further refined by the optimal 
fitting of the corresponding line segments in the detailed and 
the coarse models. To find the line correspondences, first the 
line segments corresponding to the outer shell of the detailed 
model have to be derived by analyzing the convex hull of the 
model. The correspondences in the coarse model are then 
found by searching for the closest line segments having closest 
orientations (Fig. 10-b). The optimal registration of the detailed 
model of the exemplary room to the coarse model is depicted 
in Fig. 10-c. As the door thickness in comparison to the wall 
thickness is usually negligible, the coincident of the line 
segments corresponding to the door are considered as a 
constraint in the registration process. Such line segments are 
already known in both models from the intersection of the 
user’s track and the coarse model. 

The wall thickness which is not considered in the coarse 
model is detectable after the registration process, by analyzing 
the registration residuals (distance between the corresponding 
line segments after the registration). In other words, residuals 
similar to a default value within a given threshold are 
considered as the actual wall thickness of the room. However, 
this value is affected by the accuracy of the detailed model 
which will be investigated later within the paper. The 
information about the wall thickness enables a correct fusion, 
and at the same time, comparison between the detailed and the 
coarse models for finding the changes in the building interiors 
and updates to the coarse model. 

After the registration process, the remaining gaps in the 
detailed model can be reconstructed by the fusion of the 
detailed model and the parallel offset of the coarse model (to 
consider the wall thickness). For this purpose, the line 
segments are first converted to graph edges (Fig. 11-a), and 
those containing a vertex of degree 1 will be extended 
simultaneously in the same and perpendicular directions to find 
their first intersection with the offset shell (the edge with red 
color in Fig. 11-a). Assuming the gap parts are smaller than 
50% of the model, edges generating the shortest path from the 
two most distant vertices of degree 1 will be merged to the 
detailed model to reconstruct the gaps (Fig. 11-b).  Fig. 11-c 
shows the fusion of the detailed models of some exemplary 
rooms with the coarse model. 
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Fig. 11: Fusion of the detailed model to the coarse model. a): detailed model 
(blue), offset shell (black) and extensions connecting the vertices of degree 1 
in the detailed model to the offset shell (red); b): detailed model (blue) and 

reconstructed gaps (red); c): fusion of the detailed models of some exemplary 
rooms and the coarse model 

C. Quality assessment of the reconstructed models 
Regarding the described procedure for the reconstruction of 

detailed models and their fusion with the coarse model, several 
error sources may affect the quality of such models. In more 
detail, one may expect an average noise of around 3cm for the 
collected point clouds by the Kinect system (at around 3m 
distance to the object). However, this value is increased by the 
errors in the alignment process of the point clouds. In contrast, 
the averaging concept which is the basis of the walls estimation 
together with the described topological corrections may reduce 
the effect of the errors on the final results.  

 
 Fig. 12: Comparison of the laser point cloud to the reconstructed 3D model of 

the exemplary room: maximum distance: 0.259m, mean distance: 0.048m, 
standard deviation: 0.051m 

 
Fig. 13: Walls outside of the buffer (red) are considered as update to the 

coarse model 

To  assess the accuracy of the reconstruction process, the 
reconstructed 3D model of the exemplary room is compared to 
the point cloud collected by a terrestrial laser scanner as the 
ground truth (Fig. 12). As this TLS point cloud is registered in 
a different local coordinate system, the point cloud is registered 
to the 3D model using the ICP algorithm. The comparison 
shows a mean difference of 0.048m with a standard deviation 
of 0.051m.  

The precision of the coarse models generated from the 
evacuation plans depends on the scale and drawing precision of 
the plans, and also the resolution of the camera capturing them. 
In this study case, the overall precision of the coarse model is 
around 0.10-0.15m. Therefore, the accuracy of the detailed 
model meets the requirements of this application. 

The fusion and comparison of the detailed to the coarse 
models not only verifies the accuracy of the coarse model, but 
also enables the detection of changes and details missing in the 
coarse model. For the comparison, a buffer equivalent to the 
wall thickness (around 15cm in this example) is generated 
around the coarse model. Objects outside of the buffer are 
considered as changes to the building interiors (Fig. 13 and Fig. 
14). 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented approaches for the geometric 

and semantic refinement and update of the coarse models 
generated based on the approaches presented in our previous 
work. In order to reach this goal, we employed a relative indoor 
positioning approach complemented by initial values extracted 
from the evacuation plan and supported by the coarse model. 
This enables the users to geo-reference semantic features in a 
way similar to the modeling approach used in OpenStreetMap. 
Moreover, it has been shown that a conjoint analysis of model 
and position traces may be used to refine the model’s geometry 
by automatically reconstructing door openings.  

Additionally, we showed that the geometry of the coarse 
models can be further refined by the fusion of the detailed 
model of individual rooms automatically reconstructed from 
the point clouds collected by the low-cost range camera 
Microsoft Kinect. The presented approach for the 
reconstruction of the detailed models delivers results with 
acceptable accuracy and robustness regarding the available 
noise in the Kinect point clouds. Imposing geometric 
constraints and topological corrections assures the correctness 
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and consistency of the reconstruction process and the fusion 
with the coarse model.  

As future work, the model shall be further enhanced by 
texture mapping using the RGB images captured by the Kinect 
system.  

 
Fig. 14: Refinement of the coarse model by the fusion of detailed models of 
some exemplary rooms and a hallway (front walls are removed for visibility 

purposes) 
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