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ABSTRACT: 

 

Self-calibration additional parameters (APs) have identified their significant role in photogrammetric calibration and orientation 

since 1970s. However, the traditional APs might not be adequate for the digital airborne camera calibration. A novel family of 

mathematical self-calibration APs is presented in this paper. We point out that photogrammetric self-calibration can, to a very large 

extent, be considered as a function approximation or, more precisely, a curve fitting problem in mathematics. Based on the rigorous 

approximation theory, the whole family of Legendre APs, which is derived from well-defined orthogonal Legendre Polynomials, is 

developed. Legendre APs are in general efficient to calibrate all the frame airborne cameras. They can also be considered as the 

superior generalization of the conventional APs developed by Ebner and Grün. A solution strategy by using Legendre APs is also 

suggested for in-situ camera system calibration. Extensive tests on various cameras including DMC, UltracamX, UltracamXp and 

DigiCAM illustrate the good performance of Legendre APs. The optimal theoretical accuracy can be achieved by applying Legendre 

APs, if a dense pattern of ground control points (GCPs) is available. The comparisons with the traditional APs show the theoretical 

and practical advantages of Legendre APs. 
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1. INTRODUCTION 

Camera calibration is an essential subject in photogrammetry. 

Self-calibration by using additional parameters (APs) has been 

widely accepted and substantially utilized for camera calibration 

in photogrammetric society. Traditionally, two types of self-

calibration APs were developed for analogue camera 

calibration: physical and mathematical. The development of 

physical APs was mainly attributed to D. C. Brown (Brown, 

1971) for close-range camera calibration and these APs were 

later extended by attaching additional polynomials for aerial 

application (Brown, 1976). Mathematical APs (or “polynomials 

APs”) were proposed by Ebner (1976) and Grün (1978), who 

used two- and four- order orthogonal bivariate polynomials 

respectively. The polynomials APs are often criticized as “have 

no foundations based on observable physical phenomena” 

(Clarke and Fryer, 1998), even though they can continuously 

reduce the image residuals. These APs, even though being 

widely used for many years even though in digital era, might be 

inadequate to fit the distinctive features of digital airborne 

cameras, such as push-broom, multi-head, virtual images 

composition, multiple image formats, etc..  

A considerable progress was made recently for the digital 

camera calibration and some new APs have been developed. 

Fraser (1997) analyzed the digital close-range camera 

calibration, based on the classical work of Brown. Cramer 

(2009) and Jacobsen et al. (2010) reported comprehensive 

empirical tests, in which different APs were employed to 

compensate the image distortion. However, lots of the APs do 

not own solid physical or mathematical foundation and some 

are limited in calibration efficiency. For example, the input 

parameter b of Grün APs, which is 0.4 l  where l  is the side 

length of the square analogue image, is set as 0.5 ( )x yl l   

where xl  and yl  are the length and width of rectangular digital 

image format. Consequently, Grün APs are orthogonal on the 

generated 5×5 fictitious grid points, of which some may lay 

beyond the image format, as illustrated in Fig. 1. The 

incorporation of navigation sensors into airborne camera 

systems also demands calibrating the whole system rather than 

camera lens distortion only (Honkavaara, 2004, Cramer et al., 

2010). 

 

 

Fig. 1 the 5×5 fictitious grid points for rectangular image format 

 

All the above motivate our present work on airborne camera 

calibration. We start with a mathematical viewpoint of self-

calibration and then develop a novel family of polynomials 

APs, which has rigorous mathematical foundation. The new so-

called Legendre APs are theoretically capable to calibrate the 

distortion of all the frame-format airborne cameras. We also 

suggest an easy but effective strategy for camera system 

calibration. Extensive empirical tests will be performed to 

evaluate Legendre APs in the system calibration. 



 

The rest is organized as follows. In Section 2, the mathematical 

principle of self-calibration is reviewed and Legendre APs are 

constructed. The practical tests are demonstrated in Section 3, 

followed by the comparisons between Legendre APs and 

traditional ones would be discussed in Section 4. This work is 

concluded in the final section. 

 

2. LEGENDRE SELF-CALIBRATION APS 

 The collinearity equation which is the mathematical 

fundamental of photogrammetry reads as follows.  
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Where x  and y  denote image distortion,    random error. 

The other notations can be seen in textbooks such like Kraus 

(2007). The image distortion terms, ( ),x x y  and ( ),y x y , 

are two-variable functions whose form is unknown. They have 

to be approximated by some models, i.e., self-calibration APs.  

In general, two modeling approaches are possible. On the one 

hand, if the physical properties of the distortion are readily 

understood, then the distortion can be represented by some 

specific functions, like the physical APs developed by Brown. 

On the other hand, if the precise knowledge on the distortion is 

not available, we need to approximate the distortion in some 

more abstract means. There are advantages and disadvantages 

for both modeling approaches. The first model can be quite 

accurate but usually case-dependent, while the second one are 

very generally effective but may face the risk of 

overparameterization. 

We consider the second approach. We would like to find a 

mathematical approach to model and compensate the distortion. 

It shall be orthogonal, mathematically rigorous, and generally 

effective for all airborne cameras.  

As image measurements are available to fix the distortion, the 

distortion of unknown form can be approximated by the linear 

combination of mathematical basis functions. The coefficients 

can be estimated during the adjustment process. Therefore, 

photogrammetric self-calibration can to a very large extent be 

considered as a function approximation or, more precisely, a 

curve fitting problem in mathematics. Therefore, we will start 

with the general principle of the mathematical approximation as 

follows. 

 

2.1 Orthogonal polynomials approximation 

The algebraic polynomial approximation is founded on the 

Weierstrass Theorem (Mason & Handscomb, 2002). It indicates 

that any univariate function can be approximated with arbitrary 

accuracy by a polynomial of sufficiently high degree. Among all 

the possible forms, the orthogonal polynomials (OPs) are often 

favored in both theoretical and practical applications due to 

many elegant properties. The OPs can be categorized into two 

types: discrete and continuous. The former is orthogonal on 

specific discrete measurements while the later is orthogonal 

over the whole domain of definition.  

For the curve fitting problem, the analytical form of the function 

is unknown while some sample measurements are available.  

The unknown function can be approximated by the combination 

of OPs. If the number of the measurements is close to the 

degree of the used polynomials, the discrete OPs are usually 

employed and can be obtained by orthogonalization process. It 

is noteworthy that the discrete OPs are orthogonal on the 

measured locations only, but not necessarily on the others. Else, 

if the measurements are very dense and the number is much 

larger than the polynomials‟ degree, the continuous OPs is 

preferred. More theoretical materials can be seen in such as 

Berztiss (1964) and Mason & Handscomb (2002). 

Legendre Polynomials, denoted by 0,1,...{ ( )}m mL x   where m  

indicates the order, are a series of continuous OPs over [ 1,1] , 

i.e., 
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Legendre polynomials grant the optimal approximation in the 

least-square sense (Mason & Handscomb, 2002) and are widely 

used in many applications. The first few normalized Legendre 

Polynomials are listed in appendix A. 

The bivariate OPs can be generalized from the univariate cases. 

They could be much more complicated, depending on the two-

dimensional definition domain. Particularly, the two-

dimensional generalization on the rectangular domain turns out 

to be rather straightforward. Namely, if 
0,1,...

{ ( )}
m m

p x


 are a 

series of univariate OPs over [ 1,1] , then 
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are complete bivariate OPs over the rectangular domain 

[ 1,1] [ 1,1]   , satisfying 
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 “Complete” indicates that any two-variable function can be 

approximated well by the  
,m n

p  (Koornwinder, 1975). 

 

2.2 Self-calibration APs 

Let 2
x

b  and 2
y

b  denote the width and length of the image 

format, respectively. By scaling we obtain, 
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where x  and y  are the metric image coordinates, 
m

L  and 
n

L  

are univariate Legendre Polynomials ( , 0,1, 2,...)m n  . The 
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Similar formulae of  ( , )
n y n

l y b
 
could be derived. Denote 

 

  
, ,

( , ; , ) ( , ) ( , )
m n m n x y m x n y

f f x y b b l x b l y b       (8)
  

 
 

then  
, ,m n m n

f  are the bivariate OPs over the rectangular frame 

   , ,
x x y y

b b b b    and 
,

1
m n
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distortion is typically in the order of m , we obtain 
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multiplying 
,m n
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10
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 for numerical stability. 
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 
, ,m n m n

p  can be ordered lexicographically as Eq. (10), 

following Koornwinder (1975). 
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It indicates that if the image measurements are densely 

distributed, then 
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Eq. (12) implies that  
, ,m n m n

p  is (almost) orthogonal over the 

all image measurements. 

Therefore, the bivariate distortion ( ),x x y
 
( ( ),y x y ) in 

Eq. (1) could be approximated by a series of continuous OPs 
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x
M  and 

x
N  (

y
M  

and 
y

N ) are the chosen maximum degrees which are not 

necessarily equal. Further, six of them should be eliminated, as 

done by Ebner (1976) and Grün (1978). Specially, the constant 

terms 
0,0

p  in ( ),x x y
 
and ( ),y x y  are nothing but the 

principle point offset; 
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are highly correlated with 
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1,1
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p  in 

( ),y x y , respectively. Thus, the number of the unknown 

parameters is ( 1)( 1) ( 1)( 1) 6
x x y y
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As examples, the APs with 5
x y
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and 5

x y
N N   

are obtained in Eq. (13) with 66 unknown parameters (
i

a , 

1, 2,..., 66i  ). The APs with 34 unknowns, 4
x y

M M   

and 3
x y

N N  , are given in Eq. (14). 

So far the whole family of APs has been completely 

constructed. The input of APs includes the image length and 

width ( 2
x

b  and 2
y

b ), and the chosen degrees (
x

M , x
N , y

M  

and y
N ). Usually, it can further adopt 

x y
M M M

 
and 

x y
N N N  in practice. This class of APs is based on 

Legendre Polynomials and thus called Legendre APs. 
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2.3 Overall system calibration 

Nowadays the integrated navigation systems are incorporated as 

a part of the digital airborne camera systems. The GPS/IMU 

incorporation, on the one hand, accelerates the photogrammetric 

mapping and remarkably reduces the number of ground control 

points (GCPs). On the other hand, it brings extra systematic 

effects, e.g., the misalignment between the camera and the 

navigation instruments and the drift/shift effect in the direct 

georeferencing measurements. Therefore, the overall camera 

system calibration becomes a must in current photogrammetry. 

For the system calibration, one most challenging work could be 

to minimize the coupling effect of the different systematic 

errors. The decoupling is of vital importance in the sense that 

each systematic error must be independently and appropriately 

calibrated and the calibration results are block-invariant. 

For this purpose, we suggest the joint application of the 

Legendre APs (for calibrating the image distortion) with other 

correction parameters, i.e., the three interior orientation (IO) 

parameters used for correcting the principle point offset and the 

focal length deformation, and GPS/IMU drift/shift and 

misalignment correction parameters. The low correlation must 

be warranted among these calibration parameters and between 

them and exterior orientation (EO). As will be seen in Section 

4, the correlations between Legendre APs and EO, and between 

Legendre APs and other correlation parameters, are fairly small. 

The low correlation is one advantage of Legendre APs over the 

traditional APs. 

 

3. PRACTICAL TESTS 

The Legendre APs are empirically tested by using the data from 

the recent DGPF project (German Society for Photogrammetry, 

Remote Sensing and Geoinformation), which was performed 

under the umbrella of DGPF and carried out in the test field 

Vaihingen/Enz nearby Stuttgart, Germany. This project aims at 

an independent and comprehensive evaluation on the 

performance of digital airborne cameras, as well as offering a 

standard empirical dataset for the next years.  

Four flights‟ data of the frame cameras are adopted: DMC 

(GSD 20cm, ground sample distance), DMC (GSD 8cm), 

UltracamX (GSD 20cm) and UltracamX (GSD 8cm). For each 

flight, we are interested in two most often contexts: the in-situ 

calibration one and the operational project one. The former 

context is with high side overlapping (≈60%) and dense GCPs 

and the later with low side overlapping (≈20%) and few GCPs. 

The block configuration of four flights is not detailed here and 

the readers are referred to Cramer (2010) and DGPF website 

(2010) for the project details as well. 

 

3.1 In-situ calibration context 

The system calibration strategy in Section 2.3 is adopted for all 

the blocks. Particularly, IMU misalignment, horizontal GPS 

shift, IO parameters and Legendre APs with 

5
x x y y

M N M N   
 

are employed. The order of 

Legendre APs is empirically selected by the compromise 

between achieving the optimal accuracy and reducing 

overparameterization. The derived external accuracy, indicated 

by “self calibrating”, would be compared to the theoretical 

accuracy and the “without APs” one, for which the same 

correction parameters except Legendre APs are used.  

The derived external accuracy is demonstrated in Fig. 2. By 

comparing “Self calibrating” with “Without APs”, the 

refinement of Legendre APs is significant in all tests, up to 10 

cm in the DMC (GSD 20cm) block. Moreover, all the “self 

calibrating” accuracy reaches very close to the theoretical one 

and it means that the optimal accuracy has been achieved. The 

closeness keeps well when the presumptions of the std. dev. of 

the GPS observations are varied from 2cm to 20cm (though not 

illustrated here). All the “self calibrating” accuracy reaches to 

1/5 GSD in the horizontal directions and 2/5 GSD in the 

vertical directions in four blocks. It is also interesting to notice 

that although the DMC and UltracamX cameras are differently 

manufactured, very similar external accuracy can be obtained by 

using Legendre APs in the blocks of similar configuration, i.e., 

similar GSD, similar forward and side overlapping levels and 

similar GCPs distribution. This fact, independent of the used 

cameras, coincides well with our photogrammetric accuracy 

expectation.  

Now look at the estimation of the precision of the image 

measurements. The posterior std. dev. estimation is 1.6, 1.4, 

0.89 and 0.78 (unit: m ) for DMC (GSD 20cm, GSD 8cm) 

and UltracamX (GSD 20cm, GSD 8cm) blocks, respectively. 

These values are around 0.12 pixel size, which are 12 m  and 

7.2 m  for DMC and UltracamX cameras, respectively. They 

well match the expected precision of the automatic tie point 

transfer techniques, which are 0.1-0.2 pixel size for aerial 

images. 

 

3.2 Operational project context 

There are 4 GCPs and 20% side overlapping level in each 

block, which is much weaker than the in-situ calirbation 

context. The IMU misalignment, IO parameters  and the 

Legendre APs with 4, 3
x y x y

M M N N   
 
are employed 

in the adjustment. Using Legendre APs of lower degree tries to 

avoid the potential overparameterization. This derived external 

accuracy is analogously denoted as “self calibrating” one. Due 

to 4 GCPs available only, the GPS/IMU observations have to be 

weighted carefully to achieve best accuracy. 

We also evaluate the quality of the in-situ calibration in last 

sub-section. The calibration results of IO and image distortion 

in Section 3.1 are utilized as known and fixed values in the 

adjustment of the corresponding “reduced” operational block, 

i.e., the cameras are assumed being calibrated and need no 

further self-calibration. The derived external accuracy is named 

as “after calibration”. We compare “after calibration” with “self 

calibrating”, “without APs” and theoretical ones. 

The adjust accuracy in four blocks is illustrated in Fig. 3. From 

those results, the self-calibrating Legendre APs help improve 

the external accuracy and the “after calibration” yields further 

refinement, more than 1/2 GSD in DMC (GSD 8cm) block. The 

“after calibration” accuracy is very close to the optimal 

theoretical one in every block. Therefore, these tests not only 

recognize the sufficient accuracy obtained by Legendre APs in 

the operational projects, but also confirm again their great 

efficiency in the in-situ calibration. More discussions would be 

appeared in Tang et. al (2012). 

 

It is worth mentioning that the Legendre APs have also been 

assessed by the flight data of other airborne cameras in other 

test fields, like medium-format DigiCAM and large-format 

UltracamXp. The similar good results are confirmed while the 

details are not published here. 

 



 

 
Fig. 2 External accuracy in four in-situ calibration blocks, dense 

GCPs and p60%-q60% („without APs‟ indicates without using 

Legendre APs only) 

 

 
Fig. 3 External accuracy in four operational project blocks, 4 

GCPs and p60%-q20% („without APs‟ indicates without using 

Legendre APs only) 

 

4. DISCUSSIONS 

In this section, we make comparisons between Legendre APs 

and the conventional APs from the theoretical and practical 

viewpoints. 

Based on the “standard” 60% forward overlapping level and a 

small few photographic measurements in analogue time, Ebner 

and Grün built polynomials APs of two and four orders, 

respectively. These APs are restricted in the assumed regular 

3×3 and 5×5 “grid points” configurations, respectively. Both 

APs can be obtained by orthogonalizaiton and elimination of six 

highly correlated parameters, and finally get the models of 12 

and 44 unknown parameters respectively. It is known, 

somewhat confusingly, that both APs can improve the accuracy 

even when the regular grid patterns are not satisfied. This is a 

source of criticism posed on these polynomials APs.  

All these bewilderments can be clarified easily by using the 

theory of function approximation. First, Ebner and Grün APs 

are merely special orthogonal arrangements of polynomials. In 

fact, they belong to discrete OPs in the mathematical jargon; see 

the mathematical materials in Section 2.1. Second, the 

mathematical principle behind Ebner and Grün APs is still 

Weierstrass theorem, exactly the same with Legendre APs. 

Therefore, the irregular patterns only affect the correlations 

among APs rather than their effect in compensating lens 

distortion. That is why they still work even though tie points do 

not satisfy the grid pattern. Third, it is also easy to understand 

from the approximation view why Ebner APs sometimes 

achieve quite poor performance. That is, the distortion is too 

complex for two-order polynomials to well approximate. Higher 

degree‟s polynomials are required and that is the reason why 

Grün APs perform better in general. Two examples are 

illustrated for the comparison on the external accuracy in DMC 

(GSD 20cm) calibration and operational blocks, in Fig. 4 and 

Fig. 5 respectively. It is clear that Ebner APs obtain quite poor 

accuracy, particularly in Fig. 4. 

However, Legendre APs must be preferred to these two 

traditional polynomials APs. First, from the mathematical 

viewpoint, continuous polynomials are more reasonable than 

discrete polynomials for calibration purpose, i.e., Legendre APs 

are more theoretically reasonable than these two APs. This is 

basically due to the wide-accepted assumption that the 

geometric distortion of each image is homogeneous in a single 

photogrammetric block. It implies equivalently that all 

measurements in all images are put into one single image 

dimension for the calibration purpose. Consequently, very 

dense image measurements encompass the image format for 

almost all the cases. As a simple example, considering a block 

including 50 images, each image contains a very small amount 

of measurements, say around 30. It turns out to be roughly 1500 

measurements usable for self-calibration, much more than the 

number of unknown APs (usually quite smaller than 100). 

Therefore the continuous polynomials (Legendre polynomials) 

should be favored. Second, Ebner and Grün APs are single 

order polynomials while Legendre APs are a whole family of 

polynomials. Thus, Legendre APs offer much more flexibility 

for applications. Third, Legendre APs are advantageous in low 

correlations. An example in DMC (GSD 20cm) calibration 

block is illustrated in Table. 1, where „<0.1‟ indicates the 

percentage of correlations smaller than 0.1 and „max‟ denotes 

the maximum correlations. It is demonstrated that Legendre 

APs have much lower correlations with IO and IMU than Grün 

APs. The intra-correlations among APs (denoted by „intra-corr‟) 

show that Legendre APs are „more orthogonal‟. Fig. 4 and Fig. 

5 also illustrate that Legendre APs deliver slightly better 

accuracy. In fact, Legendre APs can also be seen as the superior 

generalization of the traditional polynomials APs from the 

mathematical viewpoint.  
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Fig. 4 Comparison on the external accuracy in DMC (GSD 

20cm) calibration block (47GCPs/138ChPs, p60%-q60%) 
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Fig.5 Comparison on the external accuracy in DMC (GSD 

20cm) operational block (4GCPs/181ChPs, p20%-q60%) 
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Fig. 6 Insignificant impact of moderate overparameterization on 

the external accuracy in DMC (GSD 20cm) operational block 

(4GCPs/181ChPs, p20%-q60%) 

 

Table 1. Correlation analysis in DMC (GSD 20cm) calibration 

block (47GCPs/138ChPs, p60%-q60%) 
APs corr. EO IO IMU Intra-corr 

Grün  

APs (44) 

< 0.1 100% 80% 83% 88% 

max --- 0.73 0.53 0.93 

Brown  

APs (21) 

< 0.1 98% 78% 86% 78% 

max 0.19 0.87 0.55 0.92 

Legendre  

APs (66) 

< 0.1 100% 97% 100% 96% 

max --- 0.44 --- 0.57 

 

We also compare Legendre APs with the physical APs proposed 

in Brown (1971) (Fraser (1997) as well) and Brown (1976). 

Although Brown model achieves the comparable accuracy as 

Legendre APs do in Fig. 4 and Fig. 5, the later possesses much 

better performance in low correlations, as demonstrated in 

Table 1. In fact, the image distortion of the multi-head airborne 

cameras is not dominated by the radial-symmetric distortion 

anymore; and this is the main reason why Fraser model delivers 

rather poor accuracy (Fig. 5). 

The mathematical APs are sometimes criticized for 

overparameterization. It is true that mathematical APs achieve 

general effectiveness at the price of more parameters than 

physical counterparts. However, we urge here that moderate 

overparameterization is tolerable and would not degrade 

remarkably the accuracy. Fig. 6 depicts an example of DMC 

(GSD 20cm) operational block (2 flight lines, 4 GCPs, 20% 

side overlap and 28 images). The Legendre APs of 66 and 34 

unknowns are applied. It is seen that no significant difference is 

observed. The influence of redundant APs can be further 

reduced in the blocks of higher overlapping and more GCPs. 

From the view of curve fitting, this tolerance of moderate 

redundant APs is mainly due to the number of image 

measurements being much larger than number of APs. 

 

5. CONCLUSIONS 

We proposed a new class of self-calibration Legendre APs for 

calibrating digital frame-format airborne cameras. The prime 

theoretical foundations of Legendre APs are mathematical 

polynomial approximation and the renowned Weierstrass 

Theorem. This is one significant theoretical development in this 

work. It is thus guaranteed that Legendre APs of proper degree 

can, at least theoretically, calibrate the distortion of all the 

frame cameras.  

The excellent performance of Legendre APs is demonstrated in 

the extensive tests on various airborne cameras, including 

DMC, DigiCam, UltracamX and UltracamXp. Legendre APs 

are generally effective and flexible for calibrating all digital 

frame airborne camera architectures, no matter which system 

design have been chosen by the camera manufacturer. In 

principle, they can be used for calibrating frame cameras of 

large-, medium- and small-format CCDs, mounted in single- 

and multi-head systems. Moreover, the very low correlation 

between Legendre APs and other parameters, such as those for 

exterior orientation (EO) and GPS/IMU offsets or 

misalignments, guarantees reliable calibration results. 

We also compare Legendre APs with other traditional APs. 

Both the theoretical investigations and practical experiments 

show Legendre APs are superior to the conventional Ebner and 

Grün APs. Compared with the physical APs, Legendre APs 

show its advantages in general efficiency and very low 

correlations.  

Although the polynomials APs are sometimes dubbed 

„empirical‟ (McGlone et al., 2004), Legendre APs are in fact 

„more objective‟ in many senses. It is allowed to conclude that 

Legendre APs are orthogonal, rigorous, generic and effective 

for the digital frame airborne cameras‟ calibration. 
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APPENDIX 

The first few normalized orthogonal Legendre Polynomials over 

the interval  1,1  are following. 
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