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ABSTRACT:

This article presents an approach of a multi-view stereo §yxhethod for the generation of dense and precise 3D pointslolt

is based on the Semi-Global Matching (SGM) method followgdalfusion step in which the redundant depth estimationssacro
single stereo models are merged. We present a hierarcliaeesto-fine solution for the SGM method in which matchiesguits of
low resolution pyramids are used to limit disparity searahges for high resolution pyramids. By means of large foragatal and
close range imagery we show that memory demands as well esgsiog times can be significantly decreased whereas tligyaqia
resulting disparities estimations is maintained. By meggedundant disparity estimations of multiple stereo netles precision and
robustness of the generated point clouds can be increassg@d®n basic principles of epipolar geometry we presene eifficient
algorithm for outlier detection and object point triangida minimizing the reprojection error. Thereby the geateetonfiguration of
adjacent cameras is taken into account. An implementafitimecalgorithm called SURE as well the library interfaceTi8gm of the
presented algorithm is publicly available attp://www.ifp.uni-stuttgart.de/publications/software/.

1 INTRODUCTION space method. Within our approach a reference image is etatch
to a set of adjacent images using a SGM-based stereo method.
. . o For each pair a disparity map is computed. Afterwards al dis
3D reconstruction of real world objects using imagery ha&nt®  arity maps sharing the same reference view are merged. fOne o
vivid research area for decades in computer vision as welas  the advantages of this class of algorithms is that it scatslitar
togrammetric community. Nowadays applications range filetn  |5rqe datasets. However, in order to capitalize redundaonyss
generation of high resolution surface models using large&  gjngle stereo pairs a proper and time efficient fusion mettasd
aerial or UAV imagery, object modeling in the film and game (4 pe provided. Note that the presented MVS does not implemen
industry, cultural heritage documentation, surveyingdoality 5, multi-photo consistency measufé (A. Gruen, 1988) (Qkuto
control, up to driver assistance systems claiming for reaét 5.4 Kanade, 1993), instead photo consistency measureasee b
performance. Premising good geometric configuration ofisie o single stereo pairs and geometric consistency contstraie
sufficient accuracy of interior and exterior orientationsl good imposed at the fusion stage.
radiometric quality of imagery, state-of-the-art MVS gadus re-
construct depth estimations for nearly each image pixeligitag Dense stereo matching within our implementation is based on
precisions in the sub-pixel rande (Remondino and Zhangg)200 the SGM algorithm|(Hirschmiiller, 2008). Due to its dense re
(Haala and Rothermel, 2012a). Even for radiometric lowitypial constructions preserving disparity discontinuities, hhigbust-
imagery providing extreme diversity in image content aslakke ness regarding parametrization and real-time capaliiBM of-
from online photo communities models of compelling detaila ten is the technique of choice for real world applicationgawH
size can be reconstructeéd (Merrell et al., 2007) (Goes€g]2 ever, memory demands are extensive since photo-consgjsitenc
Despite a huge number of MVS solutions have been publishedprmation of all pixels and their sets of potential corrasgences
only few number are publicly available. Foremost PMVS, anhave to be kept in memory for the subsequent semi-global op-
implementation of a patched based MVS (Furukawa and Poncéimization. For the optimization step itself a second buffe
2010) recently gained a lot of attention. This surface gngwdl-  aggregated costs of the same size is required. For large for-
gorithm initialize surface patches and the respectiventaitions  mat frames and scenes possessing large variances in depth, t
based on salient feature points. In an expansion step tfecear method demands for drastic memory consumption. This pnoble
around these patches are reconstructed. In this impletimmta was recently addressed n (Hirschmdiller et al., 2012) wiiee
all images are used simultaneously which implies large memaggregated costs are stored only for the eight most prolcable
ory demands. However, this issue can be overcome by clogteri didates. Although it is stated that results are of same tyutalan
the input images and then reconstructing sub spaces of éne sc the classical approach, the method comes at the price efdsed
as proposed in (Furukawa et al., 2010). As a second examplerocessing times (theoretically factbs). As memory demands
of freely available software the MicMac (Pierrot-desgily and  and processing times for the optimization steps scale vhi¢h t
Paparoditis, 2006) package implements a coarse-to findficeddi number of potential correspondences to be evaluated, nfore e
tion of the maximum flow matching algorithm proposed by (Roy ficient SGM modifications operating on limited disparity sda
and Cox, 1998). Thereby global cost function for the muikww  ranges were proposed. The first coarse-to-fine modification f
correspondence problem is formulated as maximum flow probSGM was presented ih (Gehrig et al., 2009). In this work dispa
lem. The minimal cut then represents the surface minimittieg ity priors from low resolution imagery are used to derivegioa
global cost. In contrast, according to the taxonomy of (Seit  of interest (ROI) representing far objects. This ROI is rhatt
al., 2006), the MVS described in this article is classifiethaege  on full resolution using a limited but constant disparityaissh
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range. Then disparity priors and ROI results are mergeds Thi 2 ALGORITHMS IN SURE

is based on the idea that disparities of image parts repirgen

close objects were estimated sufficiently accurate in Iselte  Given a set of oriented input images the SURE-algorithmic ex

tion matching cycles. I (Hermann and Klette, 2012) didpari tracts 3D point representing the scenes surface. The ingpitrd

priors are used to initialize disparity search ranges oividdal tool chain is split-up into four main modules as displayedign

pixels for matching subsequent stereo pairs. Although @dpe ure [1). In this section first a general outline of the tooliotia

up of the matching process is attained, the algorithm stilre  given. Next, the three main software modules are described i

ates on constant disparity range buffers and does not Ieit t detail. A preprocessing module performs a network anakysis

memory requirements at all. Our stereo approach is mosksimi selection of suitable image pairs for the reconstructiovcess

to (Hermann and Klette, 2013) ard (Wenzel et al., 2011) wherend is only shortly covered in this article.

disparity priors are used to derive search ranges for ead pi Within a first main processing step epipolar images are géaer

individually and moreover the size of all required buffers dy-  for each stereo pair. Within the second step dense matching i

namically adapted. In sectién 3 we show that this leads to sigcarried out on the generated epipolar images. Within tejs dis-

nificant reduction of memory and time requirements. A céntraparities/parallaxes across stereo pairs are calculatezteby the

problem in hierarchical approaches and search space i@di&t SGM method was modified in order to enable a time and memory

to estimate ranges which allow to recover from erroneousr®ri  efficient processing. Within our tool chain an imdgein the fol-

and at the same time minimize memory consumption and compUowing referred as base image, is matched against a ceriain n

tational complexity. In[(Hermann and Klette, 2013) the agpic  ber N of proximate (match) images resulting in a set of stereo

of semi-global distance maps is introduced for search spteg-  modelsM.,,—1,... . For datasets possessing high overlaps of in-

mination. In contrast we apply a simple window based anslysi corporated imagery, within these stereo models depth rirder

locking valid disparities for the next level and reinitifig dis-  tion of the surface is estimated redundantly. In the thirdioie

parities and the corresponding ranges if matching failegtalls  this redundancy is exploited to eliminate blunders andeiase

of the stereo approach are discussed in seEfion|2.2.2. the accuracy of depth measurements. Thereby only depth maps
of stereo models sharing the same base imBhgE.,,i—1,...,» are

Within image space MVS methods disparity estimations of sin fused. The result is a depth image (or point cloud) with respe

gle stereo models are typically merged in order to increbee t the base imags,.

reliability and precision of the final depth maps or pointuds.

The methods in[ (Goesele et al., 2D06) utilize a volumetric apThe information, which stereo models should be incorpadrate

proach for depth map fusion based on (Curless and Levoy,)1996into the reconstruction process, is defined by connectivity

Thereby depth maps are used to construct a signed distattte fidrices. These are stored as ASCII files and passed to theesing|

from which a isosurface is extracted. This isosurface caafbe modules. For small datasets and structured image confignsat

ficiently converted to a triangular mesh using for example th the stereo models to be incorporated might be obvious and con

marching cube algorithm (Lorensen and Cline, 1987). In (Famn nectivity matrices can be specified manually. However, dogé

and Goesele, 2011) an algorithm capable of fusing depth ofaps and unstructured image collections this task is not trividlere-

image sets possessing large variances in image scale was pfore, a method for the initialization of the image networlk baen

posed. Itis based on a hierarchical signed distance fieldliega developed, which derives and filters the connectivity infation

the representation of surfaces with varying detail. Thehmes using the exterior orientation of the images. For some SEEV/B

based approach proposed |in (Turk and Levoy, 1994) removes @ackages the connectivity information is already avadablf

fuses triangles of overlapping regions across two depthsmap necessary it can be thinned out by thresholding or basedss ba

Then resultant sub-meshes are glued together. (Merrell,et alines limitation or analysis of intersection angles of thimgiple

2007) fuse a large number of limited quality stereo depthsigp camera rays. If this connectivity information is not avaiaa

claiming geometric consistency incorporating confidenaam 3D reconstruction for the dataset using low resolution iesaig

sures available from image matching. In a following step re-carried out. This low resolution imagery enables fast psetgy.

dundant depth estimations of fused maps are merged to one veFhen, based on the generated (sparse) 3D surface the astual o

tex and the final mesh is generated using a quad tree metholhps, scale differences and angles across different gpaieocan

Our approach is most similar to (Koch et al., 1998) which in- be derived and pairs suitable for processing can be autcaigti

troduced correspondence linking technique for dispariyprfu-  determined.

sion in sequence of images. Disparity maps are generated for

each reference view and its two adjacent views. Using hoaogr 2.1 Rectification Module

phies redundant measurements are linked across multiphesvi

in the sequence. Outlier detection and inlier fusion fortaéee- ~ Within the image rectification module epipolar images foe th

dundant disparities is performed using a Kalman filter. Beea matching process are generated. LeandI,, be a pair of im-

of the requirement to deal with unstructured image coexti ages to be rectified arkj andI;, the resultant epipolar images.

and to incorporate a larger number of stereo models, within o I; andI;, are virtual images providing the same optical centers

approach a reference view is matched against multiple edfac as originall, andI,, but posses updated rotations and internal

views. Within this cluster of views redundant corresporedsn parameters. Rectified and original orientations then defiee

are linked and checked for geometric consistency. Comsiste two 3 x 3 matricesH,, H,, relating the homogeneous image co-

measurements are then fused minimizing the reprojectiar.er ordinatesx;, x,, in the original images ang;, x7, in rectified

Using basic principles of epipolar geometry we expressthbp  images according to

lems of consistency check and triangulation in dependefiteo .

depth only, which enables efficient computation. The atbari xp = Hpxp )

is explained in detail in sectidn 2.3. The result is one aateur Xr = HpmXm.

depth image or point cloud per reference view. Although gene

ated point clouds are of good quality redundancy could iéur ~ The inverse mapping can be simply calculated as

exploited by depth image integration. .
xp = Hy xp @

—1
xm = H,,, X;,.
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Figure 1: Flow chart of the implemented algorithm. In thei@dization module stereo pairs to be incorporated intord@nstruction
process are chosen. Selected stereo pairs then are reatiledatched. Eventually disparity maps which correspotide@ame base
image are fused and resulting depth image or point cloudacalated.

For the central task of finding the homographi#s andH,,, two within the presented framework. In our experience ¢he 7

algorithms are implemented. Using the approach of (Fusiell Census cos{ (Zabih and Woodfill, 1994) is the most insemsitiv

et al.,, 2000) the rotation of the image plands,I;) respec- to parametrization, provides acceptable computation giared

tively (I,I;,) is minimized. Within the method proposed by memory consumption and yields robust results. Moreoveallo

(Loop and Zhang, 1999) the projective distortion in the irect costs can be computed based on Mutual Information (P. Viola,

fied images is minimized. Despite approaches of the metheds a1997) and the DAISY descriptar (Tola et al., 2008).

quite different, originall, andI,, are warped such that epipolar All parameters and options can be specified by the user in an

lines are horizontal and an arbitrary object pa¥t is mapped  ASCII control file which is parsed at program start. The inpiut

to the rectified image planes ®f andI;, possessing the same this module is rectified images as derived from the previeas r

y-coordinates, therefore tification module. The output is a raster data set reprazgiitie
disparity of each base image pixel wit respect to the matetyen

xp (25, Y5 1) = X0 (T, Y, 1), 3)

Recall that within the operation of rectification only théeor . .
tation of image planes are modified, the optical cen@rand ~ 2:2-1 Review of the SGM algorithm The problem of dense

C’ remain identical. As a consequence also the optical rays angfe"€0 matching is densely finding corresponding pixelssacr

distances between object points and perspective centeigar- (WO Views representing the same world object. Using epipola
tical: images, potential correspondences (representing the wante

object) are located in the same rowlgfandl,, and the problem
can be reformulated as finding the disparity= x,, — x,. The
SGM algorithm aims to estimate disparities across ster@s pa
such that the global cost function

C,—-X;,=C, —X;
C, — X; =Cp — X,.
After deriving the homographidd, andH,,, gray values for pix-

els at integer positions in the rectified frames are caledlatn-
teger coordinatex,, are mapped to the original images using

4)

equation[{ll) and the respective gray values are intergblate
The input of this module is the original imagery and the iiatier
and exterior orientations. Within a first step radial distor of

+ 3" PT(D(x) — D) | = 1]

E(D) = (C(xs,D(xs))

Xp

Q)

the imagery is removed, then the actual rectification isedut. N
Thereby an interface to common structure from motion anidber + Z P,T[||D(x) — D(xn)|| > 1].
triangulation software (as Bundler, VSFM, Inpho...) is\pded. XN

The output is epipolar images and the corresponding intarid

exterior orientations. is minimized. TherebyD represents the disparity image holding

disparity estimations of all base image pixels. 7T is an op-
erator evaluating to one if the subsequent condition is amne
evaluates to zero elsg denote base image pixels in the neigh-
In this section the implemented module for dense image matchborhood ofx;. The global cost functio is composed of a data
ing is described. It is a stereo method based on SGM but extenderm and two terms claiming for smooth surfaces. The data ter
the classic approach as proposed in (Hirschmilller, 209&)yb  is computed by pixel-wise similarity measur€$xs, x,,). The
namically estimated disparity search ranges. Key advastage  penalty parameterB; and P. control the gain of surface smooth-
reduced processing time, reduced memory consumption &nd thing. Within a first step of the SGM method local coétéxs, d)
ability of processing scenes without previous knowledgeuab for each base image pixel and its set of potential correspues
depth or disparity ranges. Furthermore, ambiguities ofghon-  are calculated. Therehyis an integer value in a constant range
sistency measures as a result of weak or high frequent eeater  d[dmin, dmas| defining all the potential correspondences. Each
resolved. However, a processing mode using the classicll SG C'(xs, d) is assigned to a three dimensional, cube-shaped cost
approach operating on constant disparity search rangeis p structure of the dimensionsx ¢ X (dmaz — dmin + 1). Next,
vided. Three different types of cost functions are impletedn the aggregated cost$(xs,d) are computed. Therefor€ are

2.2 Dense Stereo Matching Module



S(xs,d) is no longer guaranteed (figuré 2). In disparity space
these structures represent a band containing potentjzarities
of the assumed surface. In practice all values of thesetatas:
are stored subsequently in one dimensional arrays andtdosfss
f\/ T associated with a base image pixel are accessed using aa imag
Y Y providing the respective offsets. Furthermore the patlumce
) ) ] lation as given in equatio](6) had to be modified. Since cost
Figure 2: Cost structures of classic SGM (left) and tSGMHJg  strings of neighboring pixels may overlap only partly or dat n
Red cubes represent costs for the true correspondencey. Grgverlap at all, the term&,. (xp — ri, d + k) might not exist. In
cubes mark the costs of potential correspondences, thudighe  this case the bottom or top elements of the neighboring tiiisjs
parity search ranges. Ly, (xp — ri, dmin(xs — 1)) and Ly, (Xp — T, dmac (Xp — 1))
are employed. Equatiofl(6) is enhanced according to

recursively accumulated alorigmage paths:; according to

Ly, (x5, d) =C(xp, d) + min(Ly(x, — 11, d), it d> dmar(xp —1i) :
Le,(xp —1i,d— 1) + P Lr, (xp,d) = Cr, (xp,d) + P2
Ly, (xp —15,d + 1) + Py, (6) if d<dmin(xp —ri) : @®
Ly, (xp — 14,7) + P2) Ly, (%p,d) = Cr; (x5, d) + P2
—ming Ly (xp — 13, k) else:

The last subtraction guarantees that(xy, d) < Craz(xs, d)+ Lri(x5,d) = Lr; (xo — 13, )

P». The sum over all paths
Within matching of an image pair for a certain pyramid leved t
S(xp,d) = Z Ly, (xp,d) (7)  roles of base and match images are exchanged. This allows for
™ consistency check of estimated disparities, clainfigig—d. || <
1. Moreover, speckles are filtered using an algorithm distat
results in a three dimensional structure holding costs &mhe py the OpenCYV library (Bradski, 2000).
pixel and its set of potential correspondences. Computieg t The penalty parameteP, adapts smoothing based on the gray
miNiMuM d finar = minaS(xs, d) for eachx, results in the fi-  yajues in the base image. In SURE possesses binary character
nal disparity imagd minimizing an approximation of functional  and is calculated based on an canny edge image. Whereas if an
®. edge was detected, low smoothing usiRg = P»; is applied.
Increased smoothing is forced by settiRg = P»1 + Pas if no
2.2.2 Maodifications of the SGM algorithm - tSGM  Within edge was detected. In addition to search range limitati@tcim
(Hirschmiiller, 200B8) a hierarchical approach was progase ing is carried out only on image areas representing sceris par
initialize and refine the MI matching cost. Initial dispgrim- ~ commonly captured in the two views. In order to derive these
ages were computed by matching high level (low resolution) i image parts disparity maps of the lowest pyramid level are fil
age pyramids. The resulting disparities were then used-to rgered rigorously. Afterwards pixels are passed columreviriem
fine the MI matching cost for processing the subsequent ggram the left and right image borders to the image center. All Isixe
level. Within our implementation disparities from a pyraitével ~ passed before the first successfully matched pixel is detene
I are furthermore used to limit the disparity search rangd e invalidated and excluded from further processing. As the di
matching the next lower pyramid level- 1. This hierarchical  parity range limitation this leads to a significant speed fithe
approach is carried out for all implemented matching cobte matching procedure.
search ranges are determined for each base image pixeidindiv
ually. Let D' be a disparity image resulting from matching the 2.3 Structure Computation Module
image pyramid. For each pixek, the new search range is deter-
mined by evaluation of valid disparities arouBd(x;). If x, was  In this paragraph the implemented algorithms for 3D objeittp
matched successfully minimum and maximum disparitigs,, triangulation are described. The input of the triangulatiood-
andd.. contained in a rather small x 7 window are derived ule are orientations of rectified/original base and matchges
and stored in the two additional imagBs,,;,, andR},... If x; and the correspondent disparity images. The output is a 3 po
was not matched successfully a largéx 31 window is searched  cloud or a depth image. Two main processing strategies are im
for valid disparity estimationg,:, andd... Moreover, the dis-  plemented. The first strategy directly computes the degthmeo
parity estimation foel(xs) of the current level is updated to the gle stereo pairs. For aerial applications where 2.5D DSMs ar
median value of all disparities contained in the search mind of interest this first approach is sufficient most of the tim&s
The maximal disparity search ranges for valid and invaligejsi  remove blunders and increase precision of point cloudwvelbri
are limited to values of6 and32. In a next step the imagdd', from the single stereo models, all points are assigned tounglr
R!,.. andR!,,;, are upscaled. These images define the disparityligned xy-grid and height values are median filtered. Fosel
search range for matching images of the next pyramid level. range and oblique aerial applications the second dispagtyfu-
Potential correspondences during matching lével1 are only  sion approach is of larger importance. Dealing with real 8Dcs
searched in the rangé®« (x, + d — dmin), 2% (2 + d+dmaz)].  ture, the griding approach and involved filter mechanisreshat
Note that this implies a limitation of final search ranges3®o  applicable because too much information would be lost. tteor
pixels for valid and64 pixels for invalid pixels. When process- to still remove blunders and improve accuracy when dealiitiy w
ing the first (highest) pyramid level no initial disparitytiesa- 3D scenes, redundant measurements across stereo models sha
tions are available. In this case all pixels in the match ienag ing a common base view are linked and checked for geometric
along the horizontal epipolar are treated a potential epoa-  consistency. Because for each set of redundant dispaesies
dences. By the pixel-wise adaption of disparity search @ang mations depth information has to be computed and time efficie
the cubic shape of arrays holding the local caSi{xs,d) and  algorithm has to be provided.



be calculated as

B\/(tl,nxb)2 + (t2,nxb)2 +1

Db,n(xb7Tn7Dn) = D (T Xb)

(11)

TherebyT,, = K; 'H, andt1,,, t2, denote the first respec-
tively second row ofT',,.

Outlier elimination  In the dense stereo matching process erro-
Figure 3: Confidence intervals of disparity estimationsuébl neous disparity estimations are eliminated using forwaackward
and red dotted lines) induce a ranges on the base image rapnsistency check and speckle filters. However, not all raishes
[bmin pmeT]  If these ranges overlap disparity estimations arecan be removed by these 2D filter methods. Therefore errsneou
considered consistent. disparities are filtered additionally by checking for gedricecon-

sistency in object space. Itis claimed that 3D coordinatgsied
2.3.1 Structure from Stereo Pairs 3D information for a pair by re_dundan; di_sparities across ase_t of stereo modelsamia!gp
of epipolar imaged;, I, (as generated during rectification de- consistent within some confidence interval. For the spezise
scribed iZ1L) can be extracted using the well known formuIaOf rectified |mages_the c_on5|stency check_of 3D points can be
(Kraus, 1994) reduc_:ed to a one dimensional problem. This aI_Iows for fast pr

Bf cessing and exact error modeling. Let a base image be rdctifie

Z = a 9) and matched againatmatch images. Furthermore it is assumed

that disparities are estimated with an precision defined dyna

the so called normal-case of stereo imagery. Beside low cOMfqence intervab along the epipolar line. The intervalinduces
putational costs precision analysis is convenient. Ther@lle- an uncertainty rang&,, = [b7*"", b™*] on the optical base im-
n — n rvn

notes the baselingCj, — Cy,||, d is the disparity and’ repre- 540 ray defined by,. Its borders are calculated according to

sgnts the focal length? represents the z-compo_nent of the poir_1t equation[(TlL) as

with respect to the camera frames. 3D coordinate computatio

for the more general case in which varyifip, f,, and sheering is prminmar Dy (%0, T, D (x3) £ 0.50) (12)
present can easily be adapted by transforming the homogeneo

image coordinates; to the planez = 1, denoted byz;, g5, 1). If the uncertainty rangeR,, of the single object points are over-

Z-coordinates with respect to the first camera can then leei-cal lapping, the depth measurements are regarded as consistént
lated analogously to equatiop] (9) settifig= 1. Respective x- assigned to a cluster. All measurements contained by thyebig
and y coordinates can be obtained using the intercept timeore cluster are then used for the final object point triangutatibtwo
The distanceD; between camera cent€l; and object poinXj or more clusters possess the same sizahe cluster providing

on the optical ray can be calculated as the lowest average of ray intersection angles
1
By\/(z)* + (53)° +1 — ) (L(X - Cy, X~ Cp)) (13)
Dy = ——— (10) 2

is considered as most reliable and used for structure camput
tion. Note that within this approach image space accurauies
correctly propagated. This is important for reliable arthiletec-
tion particularly in presence of varying geometric confagions

of stereo models.

2.3.2 Structure from Multiple Stereo Pairs In many recon-
struction scenarios captured imagery may overlap to a high d
gree. Therefore image pairs incorporated in the matchioggss
can be chosen such that redundant disparity estimatiorthéor
same surface area are available. In a first step this redapdgn
exploited to remove erroneous disparity estimations biuetian

of geometric consistency. Once a set of consistent measmtem
is derived final object point coordinates are computed. &lner
redundancy is further exploited to increase the precisfdrian-

Triangulation  The problem of 3D point triangulation minimiz-
ing the reprojection error is a nonlinear problem. Typigatl
is solved using iterative numerical approaches as Gausdexe

2 ) i or Levenberg-Marquardt. This involves solving a lineartsys
gulated points. An example for two redundantly estimategat- ¢ equations possessing a design matixwith two rows per

ities is visualized in figuré{3). Correspondent image coatgs incorporated model. In the special case of rectified imabes t
acrossn stereo models are derived as follows. Base image p'XebrobIem can be reformulated as a system of equations puggess
coordinatesc, = (zv, y, 1) are transformed to rectified base im- 4, A with only one row per stereo model. In projective space
age coordinates; = (x,y;, 1) using homographies as stated gpiact point triangulation can be formulated as linear fEwh
equation[(R). Fox; disparities were calculated within the match- (R. T. Hartley, 2004). However, only an algebraic error with
ing process and coordinates in the rectified match imagebean any geometric meaning is minimized. Within SURE a method for

obtained asc;,, = (¢4 + D(x;), y;, 1). Sincex;, in general are 3 coordinate computation by minimization of the objectcepa
real valued numbers the actual disparities are bilineatrpo-  orror from multiple redundant depth

lated. The distanc®; between the optical centers of rectified

base images and the object point can be efficiently calailze A 21

ing equation[(T0). Linking a base image pixal with n stereo Z (D= Dm)" = min (14)
models results im depth estimationéDj +, ..., Dy, ). Note that
Dy, ,, are defined with respect to the rectified base coordinate syss implemented. The solution is simply the average of edgétha
tems. However, equatiohl(4) clarifies that depf¥js, along rec- depths% >~ D,,. The accuracy along the optical ray can be esti-
tified base image rays equal the depths along the origin& basnated using standard deviations. Despite this methodtisgas
image rays thereford; ,, = D, . By extension of equation ometric properties of different image pairs are not properbd-
(@I0) depths in the common original base coordinate system caeled. Therefore an approach minimizing the reprojectioaren

n



the rectified match images for cost computation and aggregation as used for tSGM. Assum
ing regular cubic structures, before mentioned operatoansd
Z l(fgm —Zm)? L omin (15)  be designed and executed more efficiently for the classiGM S
2 and lead to lower processing times. The memory consumpfion o
tSGM can be further reduced by tiled processing. Thereby til

is provided. Reprojection errors can be expressed by scsiffte  sjzes are adapted according to the available physical nyemor
measurements as well as updated image coordinates aredocat
on the horizontal epipolar line. The minimum of equation)(®5  Visual comparison of the disparity images clarifies that M8G
defined by derivation and equating to zero. Using equali@ (1 hinders reconstruction of largely undulating structusgsesented
and the relatiorD,,, = D this functional can be reformulated as by only few pixels in the images. As for the power pole in figure

n

function dependent of the common unknown depth small pixel patches might not be passed to lower pyramid le
els due to resolution reduction and smoothing. Therefagth-
_ Bn \/(a?g R (7 | dicted search range in the next higher resolution pyramighni
fm(D) = : 5 : — dpm. (16)  not contain the correct disparities and reconstructiotHese ob-

jects might fail. However, in many data sets the surfacesape
For n stereo models this leads to a setroéquations nonlinear tured in various angles. Structures therefore might beessmted

in D. The optimalD minimizing equation[(I5) is determined by a larger number of pixels in additional views, which then e
using the Levenberg-Marquardt (Lourakis, Jul. 2004) org3au ables successful reconstruction. Moreover, the propdSedt
Newton algorithm. This implies linearization and solvingnao-  algorithm provides beneficial reconstruction of low tertliob-
mogeneous linear systetix = b. The least squares solution jects and objects possessing repetitive texture as thérrdigtire

is obtained ak = (AT A)"'A”b. Note that since the design [4d. High frequencies are not passed to lower levels whichleaa
matrix A is of dimensionn x 1, AT A is a scalar, and no ma- robust parallax estimation. In subsequent levels ambéasuére
trix inversion is required. Initial depth values are caitatl from  resolved due to the reduced search range which leads to e redu
equation (14). Accuracies of estimated depths can be @lat&ip  tion of mismatches. The same observation holds for imags par
evaluation of covariance matrices. So far we assumed aziesra Possessing weak texture and larger differences in appez&n
of disparities estimations to be identical. Using a-priatowl-  the ground in the Fountain data set. When matching low pytami
edge of matching accuracies in dependence of ray inteosecti levels the appearance is more similar and Census matchatg co
angles, outlier detection could be refined and weightedsadju are more distinctive since a larger area in object spaceptsicea
ment could be used within the minimization of the reprojewti by the9d x 7 correlation window. As before, disparities are prop-
error. agated to subsequent levels and ambiguities are resolvéieby
limited disparity search range. This leads to a higher cetepl
ness of the disparity maps.

3 RESULTS

3.1 Comparison of SGM and tSGM

and resulting disparity images were evaluated. For the SBM s
tion a constant disparity search range covering exactlgralla-
lent disparities was specified. The first image pair consits
two (2298<2290) sub tiles cropped from two large format aerial
frames. Matching was carried out on full resolution imagdiye
resulting disparity image was calculated in 44 secondstifan : ‘ DLl
R dual core, 2.6 GHz) and is shown in figlirg 4a. The maximal (@ (b)
memory consumption amounted 2.6GB. The parallax image de-

rived by tSGM was computed in 30 seconds and is displayed ir
figure[4h. A visualization of dynamic search ranges for dhisa
guent pyramid levels is displayed in figlile 5. Due to the reduc
size of the structures used for cost computation and cosegag
tion memory consumption of tSGM could be reduced by 68.2%
to 0.8GB. Same observation holds for processing times. ivith
this example execution time was reduced by 31.8%. Note th
for the chosen aerial scenario minimal and maximal pretalen
disparities do not heavily vary and cube structures are eemp
rable small. For scenes inducing larger variances in deggh,
particularly prevalent in close range applications, meme-
mand can be reduced by multiples. For a second test two images () (d)

from the Fountain data set (Strecha et al., 2008) were redtifi

and matched. Matching using the classical approach waigdarr Figure 4: (a): Disparity map of classic SGM approach. (b)s-Di
out in 65 seconds (17 quad core, 3.4 GHz). The top memonparity map of tSGM, (c): Original image (d): Absolute differ
consumption amounted 21.1 GB. The time for matching usingences in disparity maps (a) and (b)

the tSGM solution could be reduced by 8%.30 6.88 seconds.

The memory consumption could be reduced by 93t8 1.3 GB

which enables processing on standard computers. However, Figured 4 an@6d decode the absolute differences of the SGM
all tests SGM was calculated using the same core algorithmiand tSGM disparity images. These differences could onlydbe ¢




ject point to be evaluated as valid. Figlide 7 shows the result
300 P % J ing point clouds/meshes. The first dataselih 7a was captured
200 —d" —a with a large format aerial camera (UltraCamX). Side and fodv
overlap amount 80/70% possessing a GSD of 8cm. The second
datasdi 7lb was captured by a unmanned areal vehicle usimg a co
sumer grade camera (Haala and Rothermel, 2012b). The pverla
200 amounts 75/70% at a GSD of 4 to 8cm. The well documented
00500 1000 1500 2000 2500 % 200 400 600 Fountain dataset (Strecha et al., 2008) provided by the E®FL
el e shown in figurd_7d. Within processing each image was matched
@ () against at least 4 proximate images leading to 27 stereolmode
and 54 disparity maps. The time for dense matching amounted
4 q less then 3 minutes including input and output operatiofs (i
% —d quad core, 3.4 GHz). Multi-view triangulation was carriadt o
in 63 seconds including 10 operations. The dataset disglaye
in figur¢Z¢ was collected using the camera of a mobile phone
(HTC One S). The captured object is a sculpture (approx. 1.5m
in height) captured in unbeneficial light conditions. Déshe
0 100 1500 500 1000 1500 2000 2500 signal-to-noise ratio of the mobile phone imagery is ratbes
x [pixels] x [pixels] A
© () dense surfacgs could be recor)structed in most parts.. I.re@r
a reconstruction of the test object 'Testy’ (35cm in heightyi-
sualized. FigurE_¥f shows the reconstruction of oblique iy
agery. Thereby98 frames were extracted from a video sequence
kindly provided by Fraunhofer IOSB. All displayed point alis
are direct output of the algorithm and no further point clquo-
cessing was applied.

Disparity [pixels]
o
Disparity [pixels]
) )
S &
o

o

Disparity [pixels]
= @ @
=) S 3
Disparity [pixels]
2 N @ © 3 2
8 o 8 &8 8 o
Ll
=
s

o.
@
<]

Figure 5: Visualization of disparity search ranges of pyichiev-
els 3-0 (a-d). Blue line marks the estimated / interpolaisgat-
ity from previous pyramid level. Green and red mark the di¢pa
search range for current level.

culated for pixels for which disparity estimations in bottaps
were available. If a disparity was estimated only in one areno 4 SUMMARY
of the maps the pixel is marked in red. Disparities diffeningre
than one pixel are mainly located at larger disparity stdfmsual
inspection leads to the conclusion that within the SGM apgino
edges are reconstructed more clearly, particularly forclbse
range example. These errors propagate and lead to difesenc
on sub-pixel level in surrounding edge areas. However, @R co
tinuous surfaces both solutions yield rather same resnttstze
differences of disparities are mostly below 0.1 pixels.

Within this article implementation details of the softwaeeckage
SURE were presented. One main contribution is the enhamteme
of the SGM approach by the capability of searching pixeleorr
spondences using dynamic disparity search ranges. Thefigrm
cube shaped structure storing costs of potential correfgraes
in a constant search range was modified to a tube-shapeus&uct
containing costs from dynamic search ranges. Thereby tte pa
aggregation was enhanced such that same global cost fomactio
given in the classic SGM approach is minimized. The second
contribution is the exploitation of epipolar geometry foulth
view structure computation and blunder filtering. The peobl
was formulated as a nonlinear problem minimizing the regmoj
tion error in dependence of only in the depth. This set of equa
tions can be solved using iterative numerics, for which ntrima
@) (0) inversion is needeq. At the same ti_me blynde_r filtering based
the geometric consistency of disparity estimations cartaaed
to a one dimensional clustering problem. This strategy siiniy
disparity maps leads to depth maps with reduced number of out
liers and increased precision. Compared to the classic SBM a
proach within our tests memory demands as well as compatatio
times could be reduced by closeX@%. Moreover, the complete-
ness of results was increased. Height discontinuities weras
clearly reconstructed as in the classical approach. Thaitign

© %) scales well to large number of images and high resolution im-

agery. This and robustness regarding parametrization sniake

Figure 6: (a): Disparity map of classic SGM approach. (bjs-Di Suitable for reconstruction of close range, UAV and aenia i

parity map of tSGM, (c): Original image (d): Absolute difer 2dery. The SURE package as well as the libTSgm library provid
ences in disparity maps (a) and (b) ing an OpenCyv APl is available for free and non-commercial us

3.2 Robustness Regarding Parameters for Variety of Scenes
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