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ABSTRACT:

This article presents an approach of a multi-view stereo (MVS) method for the generation of dense and precise 3D point clouds. It
is based on the Semi-Global Matching (SGM) method followed by a fusion step in which the redundant depth estimations across
single stereo models are merged. We present a hierarchical coarse-to-fine solution for the SGM method in which matching results of
low resolution pyramids are used to limit disparity search ranges for high resolution pyramids. By means of large formataerial and
close range imagery we show that memory demands as well as processing times can be significantly decreased whereas the quality of
resulting disparities estimations is maintained. By merging redundant disparity estimations of multiple stereo models the precision and
robustness of the generated point clouds can be increased. Based on basic principles of epipolar geometry we present a time efficient
algorithm for outlier detection and object point triangulation minimizing the reprojection error. Thereby the geometric configuration of
adjacent cameras is taken into account. An implementation of the algorithm called SURE as well the library interface libTSgm of the
presented algorithm is publicly available at:http://www.ifp.uni-stuttgart.de/publications/software/.

1 INTRODUCTION

3D reconstruction of real world objects using imagery has been a
vivid research area for decades in computer vision as well aspho-
togrammetric community. Nowadays applications range fromthe
generation of high resolution surface models using large frame
aerial or UAV imagery, object modeling in the film and game
industry, cultural heritage documentation, surveying forquality
control, up to driver assistance systems claiming for real time
performance. Premising good geometric configuration of views,
sufficient accuracy of interior and exterior orientations and good
radiometric quality of imagery, state-of-the-art MVS solutions re-
construct depth estimations for nearly each image pixel providing
precisions in the sub-pixel range (Remondino and Zhang, 2006)
(Haala and Rothermel, 2012a). Even for radiometric low quality
imagery providing extreme diversity in image content as available
from online photo communities models of compelling detail and
size can be reconstructed (Merrell et al., 2007) (Goesele, 2007).
Despite a huge number of MVS solutions have been published,
only few number are publicly available. Foremost PMVS, an
implementation of a patched based MVS (Furukawa and Ponce,
2010) recently gained a lot of attention. This surface growing al-
gorithm initialize surface patches and the respective orientations
based on salient feature points. In an expansion step the surfaces
around these patches are reconstructed. In this implementation
all images are used simultaneously which implies large mem-
ory demands. However, this issue can be overcome by clustering
the input images and then reconstructing sub spaces of the scene
as proposed in (Furukawa et al., 2010). As a second example
of freely available software the MicMac (Pierrot-deseilligny and
Paparoditis, 2006) package implements a coarse-to fine modifica-
tion of the maximum flow matching algorithm proposed by (Roy
and Cox, 1998). Thereby global cost function for the multi-view
correspondence problem is formulated as maximum flow prob-
lem. The minimal cut then represents the surface minimizingthe
global cost. In contrast, according to the taxonomy of (Seitz et
al., 2006), the MVS described in this article is classified asimage

space method. Within our approach a reference image is matched
to a set of adjacent images using a SGM-based stereo method.
For each pair a disparity map is computed. Afterwards all dis-
parity maps sharing the same reference view are merged. One of
the advantages of this class of algorithms is that it scales well to
large datasets. However, in order to capitalize redundancyacross
single stereo pairs a proper and time efficient fusion methodhas
to be provided. Note that the presented MVS does not implement
an multi-photo consistency measure (A. Gruen, 1988) (Okutomi
and Kanade, 1993), instead photo consistency measures are based
on single stereo pairs and geometric consistency constraints are
imposed at the fusion stage.

Dense stereo matching within our implementation is based on
the SGM algorithm (Hirschmüller, 2008). Due to its dense re-
constructions preserving disparity discontinuities, high robust-
ness regarding parametrization and real-time capability,SGM of-
ten is the technique of choice for real world applications. How-
ever, memory demands are extensive since photo-consistency in-
formation of all pixels and their sets of potential correspondences
have to be kept in memory for the subsequent semi-global op-
timization. For the optimization step itself a second buffer for
aggregated costs of the same size is required. For large for-
mat frames and scenes possessing large variances in depth, the
method demands for drastic memory consumption. This problem
was recently addressed in (Hirschmüller et al., 2012) where the
aggregated costs are stored only for the eight most probablecan-
didates. Although it is stated that results are of same quality than
the classical approach, the method comes at the price of increased
processing times (theoretically factor1.5). As memory demands
and processing times for the optimization steps scale with the
number of potential correspondences to be evaluated, more ef-
ficient SGM modifications operating on limited disparity search
ranges were proposed. The first coarse-to-fine modification for
SGM was presented in (Gehrig et al., 2009). In this work dispar-
ity priors from low resolution imagery are used to derive a region
of interest (ROI) representing far objects. This ROI is matched
on full resolution using a limited but constant disparity search

http://www.ifp.uni-stuttgart.de/publications/software/


range. Then disparity priors and ROI results are merged. This
is based on the idea that disparities of image parts representing
close objects were estimated sufficiently accurate in low resolu-
tion matching cycles. In (Hermann and Klette, 2012) disparity
priors are used to initialize disparity search ranges of individual
pixels for matching subsequent stereo pairs. Although a speed
up of the matching process is attained, the algorithm still oper-
ates on constant disparity range buffers and does not limit the
memory requirements at all. Our stereo approach is most similar
to (Hermann and Klette, 2013) and (Wenzel et al., 2011) where
disparity priors are used to derive search ranges for each pixel
individually and moreover the size of all required buffers are dy-
namically adapted. In section 3 we show that this leads to sig-
nificant reduction of memory and time requirements. A central
problem in hierarchical approaches and search space reduction is
to estimate ranges which allow to recover from erroneous priors
and at the same time minimize memory consumption and compu-
tational complexity. In (Hermann and Klette, 2013) the concept
of semi-global distance maps is introduced for search spacedeter-
mination. In contrast we apply a simple window based analysis
locking valid disparities for the next level and reinitializing dis-
parities and the corresponding ranges if matching failed. Details
of the stereo approach are discussed in section 2.2.2.

Within image space MVS methods disparity estimations of sin-
gle stereo models are typically merged in order to increase the
reliability and precision of the final depth maps or point clouds.
The methods in (Goesele et al., 2006) utilize a volumetric ap-
proach for depth map fusion based on (Curless and Levoy, 1996).
Thereby depth maps are used to construct a signed distance field
from which a isosurface is extracted. This isosurface can beef-
ficiently converted to a triangular mesh using for example the
marching cube algorithm (Lorensen and Cline, 1987). In (Fuhrmann
and Goesele, 2011) an algorithm capable of fusing depth mapsof
image sets possessing large variances in image scale was pro-
posed. It is based on a hierarchical signed distance field enabling
the representation of surfaces with varying detail. The mesh-
based approach proposed in (Turk and Levoy, 1994) removes or
fuses triangles of overlapping regions across two depth maps.
Then resultant sub-meshes are glued together. (Merrell et al.,
2007) fuse a large number of limited quality stereo depth maps by
claiming geometric consistency incorporating confidence mea-
sures available from image matching. In a following step re-
dundant depth estimations of fused maps are merged to one ver-
tex and the final mesh is generated using a quad tree method.
Our approach is most similar to (Koch et al., 1998) which in-
troduced correspondence linking technique for disparity map fu-
sion in sequence of images. Disparity maps are generated for
each reference view and its two adjacent views. Using homogra-
phies redundant measurements are linked across multiple views
in the sequence. Outlier detection and inlier fusion for a set of re-
dundant disparities is performed using a Kalman filter. Because
of the requirement to deal with unstructured image collections
and to incorporate a larger number of stereo models, within our
approach a reference view is matched against multiple adjacent
views. Within this cluster of views redundant correspondences
are linked and checked for geometric consistency. Consistent
measurements are then fused minimizing the reprojection error.
Using basic principles of epipolar geometry we express the prob-
lems of consistency check and triangulation in dependence of the
depth only, which enables efficient computation. The algorithm
is explained in detail in section 2.3. The result is one accurate
depth image or point cloud per reference view. Although gener-
ated point clouds are of good quality redundancy could be further
exploited by depth image integration.

2 ALGORITHMS IN SURE

Given a set of oriented input images the SURE-algorithmic ex-
tracts 3D point representing the scenes surface. The implemented
tool chain is split-up into four main modules as displayed infig-
ure (1). In this section first a general outline of the tool chain is
given. Next, the three main software modules are described in
detail. A preprocessing module performs a network analysisand
selection of suitable image pairs for the reconstruction process
and is only shortly covered in this article.
Within a first main processing step epipolar images are generated
for each stereo pair. Within the second step dense matching is
carried out on the generated epipolar images. Within this step dis-
parities/parallaxes across stereo pairs are calculated. Thereby the
SGM method was modified in order to enable a time and memory
efficient processing. Within our tool chain an imageIb, in the fol-
lowing referred as base image, is matched against a certain num-
berN of proximate (match) images resulting in a set of stereo
modelsMn=1,...,N . For datasets possessing high overlaps of in-
corporated imagery, within these stereo models depth informa-
tion of the surface is estimated redundantly. In the third module
this redundancy is exploited to eliminate blunders and increase
the accuracy of depth measurements. Thereby only depth maps
of stereo models sharing the same base image,Ib,Im,i=1,...,n are
fused. The result is a depth image (or point cloud) with respect to
the base imageIb.

The information, which stereo models should be incorporated
into the reconstruction process, is defined by connectivityma-
trices. These are stored as ASCII files and passed to the single
modules. For small datasets and structured image configurations
the stereo models to be incorporated might be obvious and con-
nectivity matrices can be specified manually. However, for large
and unstructured image collections this task is not trivial. There-
fore, a method for the initialization of the image network has been
developed, which derives and filters the connectivity information
using the exterior orientation of the images. For some SFM/BA
packages the connectivity information is already available. If
necessary it can be thinned out by thresholding or based on base-
lines limitation or analysis of intersection angles of the principle
camera rays. If this connectivity information is not available a
3D reconstruction for the dataset using low resolution images is
carried out. This low resolution imagery enables fast processing.
Then, based on the generated (sparse) 3D surface the actual over-
laps, scale differences and angles across different stereopairs can
be derived and pairs suitable for processing can be automatically
determined.

2.1 Rectification Module

Within the image rectification module epipolar images for the
matching process are generated. LetIb andIm be a pair of im-
ages to be rectified andIrb andIrm the resultant epipolar images.
I
r
b andIrm are virtual images providing the same optical centers

as originalIb andIm but posses updated rotations and internal
parameters. Rectified and original orientations then definethe
two 3×3 matricesHb, Hm relating the homogeneous image co-
ordinatesxb, xm in the original images andxr

b , xr
m in rectified

images according to

x
r
b = Hbxb

x
r
m = Hmxm.

(1)

The inverse mapping can be simply calculated as

xb = H
−1

b x
r
b

xm = H
−1

m x
r
m.

(2)
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Figure 1: Flow chart of the implemented algorithm. In the initialization module stereo pairs to be incorporated into thereconstruction
process are chosen. Selected stereo pairs then are rectifiedand matched. Eventually disparity maps which correspond tothe same base
image are fused and resulting depth image or point cloud are calculated.

For the central task of finding the homographiesHb andHm two
algorithms are implemented. Using the approach of (Fusiello
et al., 2000) the rotation of the image planes(Ib, I

r
b) respec-

tively (Im, Irm) is minimized. Within the method proposed by
(Loop and Zhang, 1999) the projective distortion in the recti-
fied images is minimized. Despite approaches of the methods are
quite different, originalIb andIm are warped such that epipolar
lines are horizontal and an arbitrary object pointXi is mapped
to the rectified image planes ofIrb andIrm possessing the same
y-coordinates, therefore

x
r
b(x

r
b , y

r
, 1) = x

r
m(xr

m, y
r
, 1). (3)

Recall that within the operation of rectification only the orien-
tation of image planes are modified, the optical centersC and
C

r remain identical. As a consequence also the optical rays and
distances between object points and perspective centers are iden-
tical:

C
r
m −Xi = Cm −Xi

C
r
b −Xi = Cb −Xi.

(4)

After deriving the homographiesHb andHm gray values for pix-
els at integer positions in the rectified frames are calculated. In-
teger coordinatesxm are mapped to the original images using
equation (1) and the respective gray values are interpolated.
The input of this module is the original imagery and the interior
and exterior orientations. Within a first step radial distortion of
the imagery is removed, then the actual rectification is carried out.
Thereby an interface to common structure from motion and aerial
triangulation software (as Bundler, VSFM, Inpho...) is provided.
The output is epipolar images and the corresponding interior and
exterior orientations.

2.2 Dense Stereo Matching Module

In this section the implemented module for dense image match-
ing is described. It is a stereo method based on SGM but extends
the classic approach as proposed in (Hirschmüller, 2008) by dy-
namically estimated disparity search ranges. Key advantages are
reduced processing time, reduced memory consumption and the
ability of processing scenes without previous knowledge about
depth or disparity ranges. Furthermore, ambiguities of photo con-
sistency measures as a result of weak or high frequent texture are
resolved. However, a processing mode using the classical SGM
approach operating on constant disparity search ranges is pro-
vided. Three different types of cost functions are implemented

within the presented framework. In our experience the9 × 7
Census cost (Zabih and Woodfill, 1994) is the most insensitive
to parametrization, provides acceptable computation times and
memory consumption and yields robust results. Moreover, local
costs can be computed based on Mutual Information (P. Viola,
1997) and the DAISY descriptor (Tola et al., 2008).
All parameters and options can be specified by the user in an
ASCII control file which is parsed at program start. The inputof
this module is rectified images as derived from the previous rec-
tification module. The output is a raster data set representing the
disparity of each base image pixel wit respect to the match image.

2.2.1 Review of the SGM algorithm The problem of dense
stereo matching is densely finding corresponding pixels across
two views representing the same world object. Using epipolar
images, potential correspondences (representing the sameworld
object) are located in the same row ofIb andIm and the problem
can be reformulated as finding the disparityd = xm − xb. The
SGM algorithm aims to estimate disparities across stereo pairs
such that the global cost function

E(D) =
∑

xb

(C(xb,D(xb))

+
∑

xN

P1T [‖D(xb)−D(xN)‖ = 1]

+
∑

xN

P2T [‖D(xb)−D(xN)‖ > 1].

(5)

is minimized. TherebyD represents the disparity image holding
disparity estimations of all base image pixelsxb. T is an op-
erator evaluating to one if the subsequent condition is trueand
evaluates to zero else.xN denote base image pixels in the neigh-
borhood ofxb. The global cost functionE is composed of a data
term and two terms claiming for smooth surfaces. The data term
is computed by pixel-wise similarity measuresC(xb,xm). The
penalty parametersP1 andP2 control the gain of surface smooth-
ing. Within a first step of the SGM method local costsC(xb, d)
for each base image pixel and its set of potential correspondences
are calculated. Therebyd is an integer value in a constant range
d[dmin, dmax] defining all the potential correspondences. Each
C(xb, d) is assigned to a three dimensional, cube-shaped cost
structure of the dimensionsr × c × (dmax − dmin + 1). Next,
the aggregated costsS(xb, d) are computed. ThereforeC are
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Figure 2: Cost structures of classic SGM (left) and tSGM (right).
Red cubes represent costs for the true correspondences. Gray
cubes mark the costs of potential correspondences, thus thedis-
parity search ranges.

recursively accumulated alongi image pathsri according to

Lri
(xb, d) =C(xb, d) +min(Lr(xb − ri, d),

Lri
(xb − ri, d− 1) + P1

Lri
(xb − ri, d+ 1) + P1,

Lri
(xb − ri, i) + P2)

−minkLr(xb − ri, k)

(6)

The last subtraction guarantees thatLri
(xb, d) < Cmax(xb, d)+

P2. The sum over all paths

S(xb, d) =
∑

ri

Lri
(xb, d) (7)

results in a three dimensional structure holding costs for each
pixel and its set of potential correspondences. Computing the
minimumdfinal = mindS(xb, d) for eachxb results in the fi-
nal disparity imageD minimizing an approximation of functional
(5).

2.2.2 Modifications of the SGM algorithm - tSGM Within
(Hirschmüller, 2008) a hierarchical approach was proposed to
initialize and refine the MI matching cost. Initial disparity im-
ages were computed by matching high level (low resolution) im-
age pyramids. The resulting disparities were then used to re-
fine the MI matching cost for processing the subsequent pyramid
level. Within our implementation disparities from a pyramid level
l are furthermore used to limit the disparity search range used for
matching the next lower pyramid levell − 1. This hierarchical
approach is carried out for all implemented matching costs.The
search ranges are determined for each base image pixel individ-
ually. LetDl be a disparity image resulting from matching the
image pyramidl. For each pixelxb the new search range is deter-
mined by evaluation of valid disparities aroundDl(xb). If xb was
matched successfully minimum and maximum disparitiesdmin

anddmax contained in a rather small7 × 7 window are derived
and stored in the two additional imagesRl

min andRl
max. If xb

was not matched successfully a larger31×31 window is searched
for valid disparity estimationsdmin anddmax. Moreover, the dis-
parity estimation ford(xb) of the current levell is updated to the
median value of all disparities contained in the search window.
The maximal disparity search ranges for valid and invalid pixels
are limited to values of16 and32. In a next step the imagesDl,
R

l
max andRl

min are upscaled. These images define the disparity
search range for matching images of the next pyramid levell−1.
Potential correspondences during matching levell − 1 are only
searched in the ranges[2∗(xb+d−dmin), 2∗(xb+d+dmax)].
Note that this implies a limitation of final search ranges to32
pixels for valid and64 pixels for invalid pixels. When process-
ing the first (highest) pyramid level no initial disparity estima-
tions are available. In this case all pixels in the match image
along the horizontal epipolar are treated a potential correspon-
dences. By the pixel-wise adaption of disparity search ranges
the cubic shape of arrays holding the local costsC(xb, d) and

S(xb, d) is no longer guaranteed (figure 2). In disparity space
these structures represent a band containing potential disparities
of the assumed surface. In practice all values of these structures
are stored subsequently in one dimensional arrays and cost strings
associated with a base image pixel are accessed using an image
providing the respective offsets. Furthermore the path accumu-
lation as given in equation (6) had to be modified. Since cost
strings of neighboring pixels may overlap only partly or do not
overlap at all, the termsLr(xb − ri, d + k) might not exist. In
this case the bottom or top elements of the neighboring cost string
Lri

(xb − ri, dmin(xb − ri)) andLri
(xb − ri, dmax(xb − ri))

are employed. Equation (6) is enhanced according to

if d > dmax(xb − ri) :

L̄ri
(xb, d) = Cri

(xb, d) + P2

if d < dmin(xb − ri) :

L̄ri
(xb, d) = Cri

(xb, d) + P2

else:

L̄ri
(xb, d) = Lri

(xb − ri, d)

(8)

Within matching of an image pair for a certain pyramid level the
roles of base and match images are exchanged. This allows fora
consistency check of estimated disparities, claiming‖db−dm‖ ≤
1. Moreover, speckles are filtered using an algorithm distributed
by the OpenCV library (Bradski, 2000).
The penalty parameterP2 adapts smoothing based on the gray
values in the base image. In SUREP2 possesses binary character
and is calculated based on an canny edge image. Whereas if an
edge was detected, low smoothing usingP2 = P21 is applied.
Increased smoothing is forced by settingP2 = P21 + P22 if no
edge was detected. In addition to search range limitation, match-
ing is carried out only on image areas representing scene parts
commonly captured in the two views. In order to derive these
image parts disparity maps of the lowest pyramid level are fil-
tered rigorously. Afterwards pixels are passed column-wise from
the left and right image borders to the image center. All pixels
passed before the first successfully matched pixel is detected are
invalidated and excluded from further processing. As the dis-
parity range limitation this leads to a significant speed up of the
matching procedure.

2.3 Structure Computation Module

In this paragraph the implemented algorithms for 3D object point
triangulation are described. The input of the triangulation mod-
ule are orientations of rectified/original base and match images
and the correspondent disparity images. The output is a 3D point
cloud or a depth image. Two main processing strategies are im-
plemented. The first strategy directly computes the depths of sin-
gle stereo pairs. For aerial applications where 2.5D DSMs are
of interest this first approach is sufficient most of the times. To
remove blunders and increase precision of point clouds derived
from the single stereo models, all points are assigned to a ground
aligned xy-grid and height values are median filtered. For close
range and oblique aerial applications the second disparitymap fu-
sion approach is of larger importance. Dealing with real 3D struc-
ture, the griding approach and involved filter mechanisms are not
applicable because too much information would be lost. In order
to still remove blunders and improve accuracy when dealing with
3D scenes, redundant measurements across stereo models shar-
ing a common base view are linked and checked for geometric
consistency. Because for each set of redundant disparitiesesti-
mations depth information has to be computed and time efficient
algorithm has to be provided.
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2.3.1 Structure from Stereo Pairs 3D information for a pair
of epipolar imagesIrb , Irm (as generated during rectification de-
scribed in 2.1) can be extracted using the well known formula
(Kraus, 1994)

Z =
Bf

d
, (9)

the so called normal-case of stereo imagery. Beside low com-
putational costs precision analysis is convenient. Thereby B de-
notes the baseline‖Cr

b − C
r
m‖, d is the disparity andf repre-

sents the focal length.Z represents the z-component of the point
with respect to the camera frames. 3D coordinate computation
for the more general case in which varyingfr

x , fr
y and sheering is

present can easily be adapted by transforming the homogeneous
image coordinatesxb to the planez = 1, denoted by(x̄r

b , ȳ
r
b , 1).

Z-coordinates with respect to the first camera can then be calcu-
lated analogously to equation (9) settingf = 1. Respective x-
and y coordinates can be obtained using the intercept theorem.
The distanceDr

b between camera centerCr
b and object pointXr

b

on the optical ray can be calculated as

D
r
b =

B

√

(x̄r
b)

2 + (ȳr
b )

2 + 1

d
(10)

2.3.2 Structure from Multiple Stereo Pairs In many recon-
struction scenarios captured imagery may overlap to a high de-
gree. Therefore image pairs incorporated in the matching process
can be chosen such that redundant disparity estimations forthe
same surface area are available. In a first step this redundancy is
exploited to remove erroneous disparity estimations by evaluation
of geometric consistency. Once a set of consistent measurements
is derived final object point coordinates are computed. Thereby
redundancy is further exploited to increase the precision of trian-
gulated points. An example for two redundantly estimated dispar-
ities is visualized in figure (3). Correspondent image coordinates
acrossn stereo models are derived as follows. Base image pixel
coordinatesxb = (xb, yb, 1) are transformed to rectified base im-
age coordinatesxr

b = (xr
b , y

r
b , 1) using homographies as stated

equation (2). Forxr
b disparities were calculated within the match-

ing process and coordinates in the rectified match images canbe
obtained asxr

m = (xr
b +D(xr

b), y
r
b , 1). Sincexr

b in general are
real valued numbers the actual disparities are bilinearly interpo-
lated. The distanceDr

b between the optical centers of rectified
base images and the object point can be efficiently calculated us-
ing equation (10). Linking a base image pixelxb with n stereo
models results inn depth estimations(Dr

b,1, ..., D
r
b,N ). Note that

Dr
b,n are defined with respect to the rectified base coordinate sys-

tems. However, equation (4) clarifies that depthsDr
b,n along rec-

tified base image rays equal the depths along the original base
image rays thereforeDr

b,n = Db,n. By extension of equation
(10) depths in the common original base coordinate system can

be calculated as

Db,n(xb,Tn,Dn) =
B

√

(t1,nxb)
2 + (t2,nxb)

2 + 1

Dn(Tnxb)
. (11)

TherebyTn = K
r
b
−1

Hb andt1,n, t2,n denote the first respec-
tively second row ofTn.

Outlier elimination In the dense stereo matching process erro-
neous disparity estimations are eliminated using forward-backward
consistency check and speckle filters. However, not all mismatches
can be removed by these 2D filter methods. Therefore erroneous
disparities are filtered additionally by checking for geometric con-
sistency in object space. It is claimed that 3D coordinates implied
by redundant disparities across a set of stereo models are spatially
consistent within some confidence interval. For the specialcase
of rectified images the consistency check of 3D points can be
reduced to a one dimensional problem. This allows for fast pro-
cessing and exact error modeling. Let a base image be rectified
and matched againstn match images. Furthermore it is assumed
that disparities are estimated with an precision defined by acon-
fidence intervalσ along the epipolar line. The intervalσ induces
an uncertainty rangeRn = [bmin

n , bmax
n ] on the optical base im-

age ray defined byxb. Its borders are calculated according to
equation (11) as

b
min,max
n = Db,n(xb,Tn,Dn(xb)± 0.5σ) (12)

If the uncertainty rangesRn of the single object points are over-
lapping, the depth measurements are regarded as consistentand
assigned to a cluster. All measurements contained by the biggest
cluster are then used for the final object point triangulation. If two
or more clusters possess the same sizem, the cluster providing
the lowest average of ray intersection angles

1

m

∑

m

( 6 (X−Cb,X−Cm)) (13)

is considered as most reliable and used for structure computa-
tion. Note that within this approach image space accuraciesare
correctly propagated. This is important for reliable outlier detec-
tion particularly in presence of varying geometric configurations
of stereo models.

Triangulation The problem of 3D point triangulation minimiz-
ing the reprojection error is a nonlinear problem. Typically it
is solved using iterative numerical approaches as Gauss-Newton
or Levenberg-Marquardt. This involves solving a linear system
of equations possessing a design matrixA with two rows per
incorporated model. In the special case of rectified images the
problem can be reformulated as a system of equations possessing
anA with only one row per stereo model. In projective space
object point triangulation can be formulated as linear problem
(R. I. Hartley, 2004). However, only an algebraic error without
any geometric meaning is minimized. Within SURE a method for
3D coordinate computation by minimization of the object space
error from multiple redundant depth

∑

n

(D̂ −Dm)
2 !
= min (14)

is implemented. The solution is simply the average of estimated
depths1

n

∑

Dn. The accuracy along the optical ray can be esti-
mated using standard deviations. Despite this method is fast, ge-
ometric properties of different image pairs are not properly mod-
eled. Therefore an approach minimizing the reprojection error in



the rectified match images

∑

n

1

2
(x̂m − xm)2

!
= min (15)

is provided. Reprojection errors can be expressed by scalars since
measurements as well as updated image coordinates are located
on the horizontal epipolar line. The minimum of equation (15) is
defined by derivation and equating to zero. Using equation (10)
and the relationDm = D̂ this functional can be reformulated as
function dependent of the common unknown depthD̂

fm(D̂) =
Bm

√

(x̄r
b,m)2 + (ȳr

b,m)2 + 1

D̂
− dm. (16)

For n stereo models this leads to a set ofn equations nonlinear
in D̂. The optimalD̂ minimizing equation (15) is determined
using the Levenberg-Marquardt (Lourakis, Jul. 2004) or Gauss-
Newton algorithm. This implies linearization and solving ainho-
mogeneous linear systemAx = b. The least squares solution
is obtained aŝx = (AT

A)−1
A

T
b. Note that since the design

matrix A is of dimensionn × 1, AT
A is a scalar, and no ma-

trix inversion is required. Initial depth values are calculated from
equation (14). Accuracies of estimated depths can be obtained by
evaluation of covariance matrices. So far we assumed accuracies
of disparities estimations to be identical. Using a-prioriknowl-
edge of matching accuracies in dependence of ray intersection
angles, outlier detection could be refined and weighted adjust-
ment could be used within the minimization of the reprojection
error.

3 RESULTS

3.1 Comparison of SGM and tSGM

Within this section results of SGM and tSGM approaches are
compared. Therefore two sets of rectified images pairs were matched
and resulting disparity images were evaluated. For the SGM solu-
tion a constant disparity search range covering exactly allpreva-
lent disparities was specified. The first image pair consistsof
two (2298×2290) sub tiles cropped from two large format aerial
frames. Matching was carried out on full resolution imagery. The
resulting disparity image was calculated in 44 seconds( Pentium
R dual core, 2.6 GHz) and is shown in figure 4a. The maximal
memory consumption amounted 2.6GB. The parallax image de-
rived by tSGM was computed in 30 seconds and is displayed in
figure 4b. A visualization of dynamic search ranges for all subse-
quent pyramid levels is displayed in figure 5. Due to the reduced
size of the structures used for cost computation and cost aggrega-
tion memory consumption of tSGM could be reduced by 68.2%
to 0.8GB. Same observation holds for processing times. Within
this example execution time was reduced by 31.8%. Note that
for the chosen aerial scenario minimal and maximal prevalent
disparities do not heavily vary and cube structures are compa-
rable small. For scenes inducing larger variances in depth,as
particularly prevalent in close range applications, memory de-
mand can be reduced by multiples. For a second test two images
from the Fountain data set (Strecha et al., 2008) were rectified
and matched. Matching using the classical approach was carried
out in 65 seconds (I7 quad core, 3.4 GHz). The top memory
consumption amounted 21.1 GB. The time for matching using
the tSGM solution could be reduced by 89.3% to 6.88 seconds.
The memory consumption could be reduced by 93.8% to 1.3 GB
which enables processing on standard computers. However, in
all tests SGM was calculated using the same core algorithmic

for cost computation and aggregation as used for tSGM. Assum-
ing regular cubic structures, before mentioned operationscould
be designed and executed more efficiently for the classical SGM
and lead to lower processing times. The memory consumption of
tSGM can be further reduced by tiled processing. Thereby tile
sizes are adapted according to the available physical memory.

Visual comparison of the disparity images clarifies that tSGM
hinders reconstruction of largely undulating structures represented
by only few pixels in the images. As for the power pole in figure
4d small pixel patches might not be passed to lower pyramid lev-
els due to resolution reduction and smoothing. Therefore the pre-
dicted search range in the next higher resolution pyramid might
not contain the correct disparities and reconstruction forthese ob-
jects might fail. However, in many data sets the surfaces arecap-
tured in various angles. Structures therefore might be represented
by a larger number of pixels in additional views, which then en-
ables successful reconstruction. Moreover, the proposed tSGM
algorithm provides beneficial reconstruction of low textured ob-
jects and objects possessing repetitive texture as the roofin figure
4c. High frequencies are not passed to lower levels which enables
robust parallax estimation. In subsequent levels ambiguities are
resolved due to the reduced search range which leads to a reduc-
tion of mismatches. The same observation holds for image parts
possessing weak texture and larger differences in appearance as
the ground in the Fountain data set. When matching low pyramid
levels the appearance is more similar and Census matching costs
are more distinctive since a larger area in object space is captured
by the9× 7 correlation window. As before, disparities are prop-
agated to subsequent levels and ambiguities are resolved bythe
limited disparity search range. This leads to a higher complete-
ness of the disparity maps.

(a) (b)

(c) (d)

Figure 4: (a): Disparity map of classic SGM approach. (b): Dis-
parity map of tSGM, (c): Original image (d): Absolute differ-
ences in disparity maps (a) and (b)

Figures 4d and 6d decode the absolute differences of the SGM
and tSGM disparity images. These differences could only be cal-



(a) (b)

(c) (d)

Figure 5: Visualization of disparity search ranges of pyramid lev-
els 3-0 (a-d). Blue line marks the estimated / interpolated dispar-
ity from previous pyramid level. Green and red mark the disparity
search range for current level.

culated for pixels for which disparity estimations in both maps
were available. If a disparity was estimated only in one or none
of the maps the pixel is marked in red. Disparities differingmore
than one pixel are mainly located at larger disparity steps.Visual
inspection leads to the conclusion that within the SGM approach
edges are reconstructed more clearly, particularly for theclose
range example. These errors propagate and lead to differences
on sub-pixel level in surrounding edge areas. However, on con-
tinuous surfaces both solutions yield rather same results and the
differences of disparities are mostly below 0.1 pixels.

(a) (b)

(c) (d)

Figure 6: (a): Disparity map of classic SGM approach. (b): Dis-
parity map of tSGM, (c): Original image (d): Absolute differ-
ences in disparity maps (a) and (b)

3.2 Robustness Regarding Parameters for Variety of Scenes

Insensitivity to parametrization is essential to reduce extensive
interference by the operator. In order to show that the algorithm
is rather robust to parametrization, datasets captured by different
type of cameras and varying geometric configurations were pro-
cessed using the same matching settings. Within the 3D point
triangulation the only parameter changed was the minimal num-
ber of geometric consistent depth estimations required foran ob-

ject point to be evaluated as valid. Figure 7 shows the result-
ing point clouds/meshes. The first dataset in 7a was captured
with a large format aerial camera (UltraCamX). Side and forward
overlap amount 80/70% possessing a GSD of 8cm. The second
dataset 7b was captured by a unmanned areal vehicle using a con-
sumer grade camera (Haala and Rothermel, 2012b). The overlap
amounts 75/70% at a GSD of 4 to 8cm. The well documented
Fountain dataset (Strecha et al., 2008) provided by the EPFLis
shown in figure 7d. Within processing each image was matched
against at least 4 proximate images leading to 27 stereo models
and 54 disparity maps. The time for dense matching amounted
less then 3 minutes including input and output operations (i7
quad core, 3.4 GHz). Multi-view triangulation was carried out
in 63 seconds including IO operations. The dataset displayed
in figure7c was collected using the camera of a mobile phone
(HTC One S). The captured object is a sculpture (approx. 1.5m
in height) captured in unbeneficial light conditions. Despite the
signal-to-noise ratio of the mobile phone imagery is ratherlow,
dense surfaces could be reconstructed in most parts. In figure 7e
a reconstruction of the test object ’Testy’ (35cm in height)is vi-
sualized. Figure 7f shows the reconstruction of oblique UAVim-
agery. Thereby198 frames were extracted from a video sequence
kindly provided by Fraunhofer IOSB. All displayed point clouds
are direct output of the algorithm and no further point cloudpro-
cessing was applied.

4 SUMMARY

Within this article implementation details of the softwarepackage
SURE were presented. One main contribution is the enhancement
of the SGM approach by the capability of searching pixel corre-
spondences using dynamic disparity search ranges. The formerly
cube shaped structure storing costs of potential correspondences
in a constant search range was modified to a tube-shape structure
containing costs from dynamic search ranges. Thereby the path
aggregation was enhanced such that same global cost function as
given in the classic SGM approach is minimized. The second
contribution is the exploitation of epipolar geometry for multi
view structure computation and blunder filtering. The problem
was formulated as a nonlinear problem minimizing the reprojec-
tion error in dependence of only in the depth. This set of equa-
tions can be solved using iterative numerics, for which no matrix
inversion is needed. At the same time blunder filtering basedon
the geometric consistency of disparity estimations can be reduced
to a one dimensional clustering problem. This strategy of fusing
disparity maps leads to depth maps with reduced number of out-
liers and increased precision. Compared to the classic SGM ap-
proach within our tests memory demands as well as computation
times could be reduced by close to90%. Moreover, the complete-
ness of results was increased. Height discontinuities werenot as
clearly reconstructed as in the classical approach. The algorithm
scales well to large number of images and high resolution im-
agery. This and robustness regarding parametrization makes it
suitable for reconstruction of close range, UAV and aerial im-
agery. The SURE package as well as the libTSgm library provid-
ing an OpenCv API is available for free and non-commercial use.
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