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ABSTRACT: 

In this paper, two approaches for the alignment of point clouds from the RGB-Depth sensor Microsoft Kinect, based on image and 

object space observations are described and evaluated. The first approach is based on the RGB images and estimates a sensor pose 

using image features, while the second one uses only the geometrical information provided by the range data. For the image-based 

method, Structure from Motion methods are used, which incrementally estimate relative orientations between images based on 

feature points and merges the solution in a bundle adjustment. For the object space-based method, the depth image is used within the 

software KinectFusion, which estimates surfaces by volumetric range image integration and determines the sensor pose by the 

Iterative Closest Point algorithm (ICP). Within this paper both methods are evaluated and compared regarding their performance in 

the estimation of the sensor pose. Also, an application of these registration methods is presented, where the sensor pose is used in 

combination with two additional cameras in order to retrieve high density point clouds by means of dense image matching. 

 

1. INTRODUCTION 

During the last two years, the low-cost sensor system Microsoft 

Kinect has been widely considered by many researchers for a 

variety of indoor applications, in particular for mapping and 

navigation. The system consists of an infrared (IR) laser 

projector, an RGB and a monochrome IR CMOS sensor. The 

depth measurement is realized by projecting a known pseudo-

random speckle pattern onto the object surface using the IR 

laser. The IR camera acquires the pattern in 30Hz at VGA 

resolution (640 by 480 pixels). By analysis of the IR speckle 

pattern, automatic stereo measurement is realized, in order to 

compute a range image (with 11 bit depth) from spatial 

intersection using the relative orientation between projector and 

IR camera. The system angular field of view is 57° horizontally 

and 43° vertically. The Kinect system has a practical ranging 

limit of 1-3.5m, although the sensor can maintain tracking 

through an extended range of about 0.7-6m (Wikipedia: Kinect, 

2012). 

The relative orientation between the RGB and the depth image 

obtained from the stereo calibration of the system can be used to 

provide a co-registration of multiple 3D point clouds. For this 

purpose, sparse image features are extracted from the RGB 

images and matched. Subsequently, the camera orientations can 

be estimated and refined within a bundle adjustment. The scale 

information can be derived from the distance information for 

the feature points stored in the depth image, since the relative 

orientation between the RGB and the metric depth image is 

known. 

In addition, the point clouds or range images can be co-

registered directly using the geometrical information. The 

approach we describe here is based on Iterative Closest Point 

(ICP) algorithm (Besl & MacKay, 1992) for the alignment of 

the current Kinect range image with the previous frames. An 

efficient implementation of this approach, so called 

KinectFusion, is developed by Microsoft Research Group, 

which is able to reconstruct the scene and to continuously track 

the Kinect sensor in real-time, based on GPU implementation of 

a coarse-to-fine ICP algorithm (Izadi et al., 2011). Here, we use 

the open source implementation of KinectFusion provided by 

the Point Cloud Library (PCL). 

Within the paper,  the image-based and the object space-based 

method for estimating the sensor pose will be described and 

evaluated. Also, an application will be demonstrated, in which 

highly accurate dense point clouds are computed using two high 

resolution industrial cameras in combination with the Kinect 

system. The dense point clouds are derived using a dense image 

matching implementation by the Institute for Photogrammetry. 

The orientation registration of the point cloud for each shot can 

be provided by KinectFusion. Since both images are exposed at 

the same time, the speckle pattern projected by the Kinect can 

be used as artificial texture. Thus, no object texture is required 

for data acquisition with this sensor.  

 

2. POINT CLOUD ALIGNMENT USING RGB IMAGES 

The Kinect system is a RGB-D sensor that captures RGB 

images along with per-pixel depth information. Similar to the 

work of Henry et al. (2010), the alignment of the Kinect point 

clouds is efficiently realized in this study firstly by automatic 

relative orientation of consecutively captured RGB images.  

In order to make use of the information provided by the RGB 

images for this purpose, it is necessary to find the relative 

orientation between the RGB and disparity image. In other 

words, by stereo calibration of RGB and IR cameras, the 

correspondence information between a pixel in the depth image 

and in the RGB images can be determined, while 

simultaneously compensating the lens distortion effects. 

In this work, the RGB images were relatively oriented using the 

solution presented by Abdel-Wahab et al. (2011). They describe 

the solution by the following main steps:  

(a) Fast image indexing to avoid time consuming matching of 

all possible image pairs.  

(b) Generating tie points by means of automatic feature 

extraction and matching (e.g. SIFT feature points (Lowe, 

2004)). 

(c) Detecting reliable patches of images having mutual 

compatibility, and optimizing the geometry graph for each patch 

to ensure optimization of the final spanning tree.  

(d) Merging all patches and finally adjusting the model.  

The core of this pipeline is the Structure from Motion (SfM) 

approach, which is used for the derivation of exterior 

orientation parameters, which serve as initial values for the final 

bundle adjustment. The scale factor can be estimated, having 

the 3D coordinates of some of the SIFT features in the RGB 

images, using the abovementioned correspondence information 

between a pixel in the depth image and in the RGB images. 



 

  
Figure 1 - Camera poses and triangulated feature points (left), 

co-registered point clouds (right) 

 

Figure 1 shows an exemplary output of this approach for the 

alignment of point clouds collected from 10 viewpoints. The 

adjusted values for the camera poses are directly used for the 

alignment of the point clouds. 

 

3. POINT CLOUD ALIGNMENT IN OBJECT SPACE 

The previous approach for the alignment of the point clouds 

relies on the existence of sufficient visual features in the scene, 

since reliable orientation parameters can only be determined if 

enough feature points are available.  Sparsely textured areas will 

either lead to low accuracy or even to a failure in the orientation 

of images.  

In contrast to the first approach, the following approach 

presented here relies on the geometrical information provided 

by the range images. To align the point clouds in this approach, 

the camera poses are estimated for each new frame using the 

ICP algorithm.   

KinectFusion 

In 2011, Microsoft Research Group developed a new 

application for Kinect, so called KinectFusion. As described by 

Izadi et al. (2011), KinectFusion allows a user holding and 

moving a standard Kinect system, to reconstruct an indoor 

scene in 3D rapidly, while continuously tracking the 3D pose of 

the sensor. The 3D pose of the sensor is estimated in real-time 

by registering the new depth data to the previously extracted 

surface, using a GPU implementation of a coarse-to-fine ICP 

algorithm (Newcomb et al. 2011).  

Moreover, the software integrates the range images using a 

volumetric method, in order to retrieve low noise surfaces using 

the available redundancy from the high number of depth 

images. This step follows the approach presented by Curless 

and Levoy (1996). Therefore, a truncated signed distance field 

is used to fuse the data. Subsequently, the meshed surface is 

extracted from this field and rendered in real-time. Thus, visual 

feedback is provided during the scanning process. Figure 2 

compares a single depth frame from the Kinect  with the output 

of KinectFusion. 

Izadi et al. (2011) describe the main system pipeline by the 

following four main stages. These steps are executed in parallel 

on the GPU for the real-time capability of the system. 

a) Depth Map Conversion: The range image is converted to a 

3D point cloud and the normal vector is estimated for each 

point. 

b) Camera Tracking: In this phase, the current point cloud is 

aligned to the previous data, using a GPU implementation of the 

ICP algorithm. In fact, the scene motion computed by the ICP 

algorithm is equivalent to the camera motion. 

c) Volumetric Integration: The registered range image is 

integrated into a volumetric voxel space, following the approach 

of Curless and Levoy (1996). Thus, all measurements can be 

subsequently considered to extract an optimal surface from the 

redundant observation.  

  

Figure 2 - Single depth frame (meshed point cloud, left) versus 

the output of KinectFusion (right). The holes in the point clouds 

are filled and the noise is removed 

 

d) Raycasting: Finally, the views of the implicit surface are 

generated using a GPU-based raycaster, for the rendering and 

tracking purpose. 

In this study we used an open source implementation of 

KinectFusion provided within the Point Cloud Library (PCL). 

 

4. EVALUATION: ACCURACY OF POSE 

ESTIMATION USING THE DESCRIBED METHODS 

In order to evaluate the performance of the image-based and the 

object space-based method in indoor applications, the accuracy 

of the pose estimation was determined using accurate reference 

data. This reference pose was acquired using a calibration 

pattern in combination with a bundle adjustment within the 

software Australis. 

To evaluate the sensitivity of the two methods for registration 

regarding the existence of visual and 3D features, two scenarios 

were acquired. The first scenario has more texture and less 3D 

features, whereas the second one has less texture and more 3D 

features (figure 3). 

The image-based registration method based on SfM does not 

provide scale information. In order to avoid the introduction of 

an error resulting from the estimation of the scale factor using 

the Kinect depth image in this analysis, the camera positions 

were fitted to the reference positions using a 7 parameters 

similarity transformation.  

Table 1 indicates that in the first scenario, the SfM method 

delivers relatively better results for the pose estimation, whereas 

in the second scenario, the accuracy delivered by KinectFusion 

is considerably higher. Having considered the table, we can 

deduce that firstly, the amount and distribution of visual 

features in the scene plays an important role for the SfM 

method. Scenario 1 depicts an example of an indoor scene with 

plentiful visual features; however, the accuracy of the estimated 

camera pose is not considerably high. The situation gets even 

more critical in the second scenario, which is still a typical 

indoor scene. Consequently, this method can easily fail in 

scenes with less texture like corridors and most of the public 

buildings’ interiors.  

Secondly, we can deduce from the table that the amount of 3D 

features in the scene is very important for the KinectFusion 

software. The table shows that in the first scenario, compared to 

the second one, the camera pose cannot be estimated with a 

high accuracy, as that the ICP algorithm cannot accurately fix 

the camera pose 6 DOF in this scene. Adding some 3D features 

to the scene (second scenario), results in significantly higher 

accuracy in the camera pose estimation by this method.  

This shows that the choice between the two methods highly 

depends on the existence of enough visual and 3D features. Of 

course, to achieve a more reliable and more accurate solution, 

one should take the advantages of both methods. 



 

  

  

Figure 3 - Scenario 1: more texture, less 3D features (top) 

Scenario 2: less texture, more 3D features (bottom) 

 

RMS 

[mm] 

SfM KinectFusion 

Scenario 1 Scenario 2 Scenario 1 Scenario 2 

DX 4.4 9.8 13.2 1.8 

DY 8.7 6.1 21.9 2.6 

DZ 4.3 10.0 13.7 2.2 

Dist. 10.6 15.3 29.0 3.9 

Table 1 - Accuracy of camera pose estimation 

 

5. APPLICATION: GENERATING HIGH ACCURACY 

DENSE POINT CLOUDS 

The KinectFusion is able to acquire surface information in real-

time due to the GPU implementation of the main pipeline. The 

quality and density of the point cloud generated by 

KinectFusion is dramatically higher than other SLAM systems, 

as they just focus on dense tracking, and use sparse maps for the 

localization purpose (Izadi et al., 2011). However, this quality is 

not as high as the state-of-the-art offline registration and surface 

reconstruction algorithms (e.g. dense image matching) using 

high resolution cameras.  

Fritsch et al. (2011) present an image-based approach, where 

dense image matching techniques are used with a compact and 

affordable rig of 5 off-the-shelf industrial cameras. This enables 

a one-shot solution for high accuracy and dense data 

acquisition. As the image matching technique might fail for the 

reconstruction of surfaces with low texture, an additional 

structured light pattern generated by the Kinect is used. 

Therefore, it enables data acquisition and image matching in 

low light conditions or for featureless objects. 

Similar to that work, in this study a stereo high resolution 

camera rig was integrated to the Kinect system to enable image 

matching and dense surface reconstruction. Although in this 

work, instead of the SfM approach for the camera rig pose 

estimation, the KinectFusion implementation of the PCL was 

employed for the determination of the camera rig pose. Thus, 

dense data acquisition is possible for environments without 

texture. 

 

5.1 Multi-Sensor System 

The sensor system consists of two high resolution monochrome 

CCD cameras (5 Megapixels) for the dense image matching and 

a Kinect for providing artificial texture by the speckle pattern 

and tracking the sensor pose by the KinectFusion. 

 

Figure 4 - Configuration of the sensor system 

 

The two high resolution cameras are firmly mounted on top of 

the Kinect to maintain a stable configuration. To make the 

Kinect IR pattern visible to the two high resolution cameras, a 

670nm daylight blocking filter was installed in front of each 

camera lens. The base-line of the matching cameras is set to 

16cm, which leads to the estimated precision described in table 

2, assuming the precision of the dense matching algorithm 

being around 0.3 pixels. 

 

Distance 

[cm] 

Predicted 

Accuracy [mm] 

Resolution 

[pix/mm²] 

Footprint 

[cm] 

80 0.5 8.4 68 x 71 

100 0.8 5.4 90 x 88 

120 1.2 3.7 111 x 106 

150 1.8 2.4 142 x 132 

200 3.2 1.3 195 x 177 

Table 2 - Approximated precision of camera pose estimation 

 

5.2 Software System Overview 

The data acquisition is done by holding and moving the sensor 

system around the object and taking suitable amount of images 

by the stereo cameras. The collected dataset contains stereo 

image pairs, together with the corresponding exterior 

orientations. The exterior orientations are derived by 

KinectFusion, using the pose estimated for the depth camera 

and the relative orientation between the Kinect IR camera and 

the matching cameras. This relative orientation as well as the 

interior orientation of the cameras is determined using standard 

calibration methods employing a calibration pattern. 

The collected data then could be directly used by the software 

system implemented by Wenzel et al. (2011), to derive a dense 

and accurate point cloud. The main software pipeline consists of 

the following steps: 

a) Dense image matching: In this step, correspondences 

between each stereo image pair are determined using a modified 

version of Semi Global Matching (Hirschmüller, 2008). 

b) Triangulation: The output of the last step is a disparity map 

describing the pixel-to-pixel correspondences between stereo 

image pairs. In this step, the 3D point coordinates for each of 

these correspondences are retrieved by reconstructing the rays, 

having known the exterior orientation of the images. 

c) Post processing: Filtering methods are applied on the resulted 

point cloud to remove remaining outliers.  

Figure 5 shows an exemplary point cloud determined by this 

software, which is a collection of 3.6 million points captured 

from 7 sensor positions, at the distance of about 1m. However, 

outliers can occur for the stereo camera since each point has 

only 2 measurements and thus cannot be verified. An 

improvement is possible by refining the registration, e.g. using 



 

the ICP algorithm on the high resolution point clouds, and 

applying filters using the resulting redundancy in object space. 

 

  

Figure 5 - High accuracy dense point cloud captured from 7 

sensor positions using the described application 

 

The acquisition with KinectFusion fails in scenes with 

insufficient amount of 3D features, since the ICP fails to fix the 

sensor pose 6 DOF. Figure 6 shows an example, in which a 

chessboard is captured from two different sensor positions with 

the distance of 10cm. As expected, a shift along the plane is 

visible. Such ambiguities could be resolved by integrating the 

image-based method of registration. 

 

 

Figure 6 - The point clouds generated by this method show a 

misalignment in the 2D plane space 

 

6. CONCLUSIONS AND FUTURE WORKS 

Within the paper, two approaches for the alignment of Kinect 

point clouds, based on image and object space observations 

were described and compared in two different scenarios. 

The results show, that the image-based registration method is 

particularly suitable for scenes with texture, while the object 

space-based method can be used on scenes without texture. 

Furthermore, the object space-based method requires a 

sufficient amount of geometric information in the scene, while 

the image-based method is not dependent on that. This 

complementary behavior leads to the conclusion, that both 

methods should be combined in future work, in order to provide 

a highly reliable method for a variety of applications. 

Furthermore, feature points from both methods could be used 

within one bundle adjustment, which provides additional 

quality information and enables loop-closure for the reduction 

of drift.  

However, there are cases in which none of the described 

methods work properly, e.g. in corridors or along planar 

features with insufficient texture. In such cases, the ICP 

algorithm cannot align the point clouds accurately, and also the 

point-features based SfM approach fails to orient the 

corresponding RGB images. Therefore, future work is required 

to support the pose estimation by extraction and matching of 

line features in both image and object spaces.  

We also presented an application in which dense point clouds 

were acquired using additional cameras in combination with a 

sensor pose determined in object space. This enables the 

extraction of high resolution point clouds using dense image 

matching without relying on surface texture, but using the 

speckle texture projected by the Kinect. An extension to this 

work may support the pose estimation task by tracking the 

extracted image features, similar to most of the SLAM 

approaches, in order to use the information from the texture, if 

available. Furthermore, refinements for the pose estimation are 

possible by using the dense point clouds within an accurate 

alignment. An additional volumetric integration of the point 

clouds could eliminate remaining outliers and reduce noise at 

the surface.  
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