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ABSTRACT: 
 
Reconstruction of camera orientations and structure from images is one of the basic tasks in photogrammetry and computer vision. A 
fully automated solution of this task from scratch in terrestrial applications is still pending in case of large unordered image datasets 
especially for close-range and low-cost applications. Current solutions require high computational efforts for image networks with 
high complexity and diversity regarding acquisition geometry. Unlike the methods suitable for landmark reconstruction from large-
scale Internet image collections - we focus on datasets where one cannot reduce the number of images without losing geometric 
information of the dataset. Within the paper, an automated pipeline for the reconstruction of reliable and precise orientation and 
geometry from unordered image sets is presented. It was employed for several challenging large-scale datasets from different 
applications such as cultural heritage data recording or imagery from unmanned aerial vehicles (UAVs). However, results were also 
used for the derivation of initial values for commercial photogrammetric processing software such as Trimble Match-AT. 
Experimental results are shown to demonstrate the performance of the presented pipeline for applications with high accuracy 
requirements.  
 

1. INTRODUCTION 

In the past few years, low-cost photogrammetry has become a 
focus of research especially since cameras enable an efficient 
data acquisition at very low prices. For instance, recent work 
[Wenzel et al., 11] has shown that it is possible to use low-cost 
multi-camera systems (figure 1a) for efficient point cloud 
recording in close range applications with high accuracy 
requirements. Such applications lead to very large, unordered 
image networks with high complexity and diversity. 
 
Furthermore, [Haala et al., 11] demonstrated that standard 
mapping products from airborne data acquisition like digital 
surface models (DSM) and ortho images could be generated 
well from low-cost UAV imagery, as can be seen in figure 1b. 
However, the imagery from such fixed-wing UAV systems has 
largely varying image overlaps due to the high flight dynamics 
and the relatively small footprint due to limitations of the 
currently employed consumer cameras. 
 
The aim of this paper is to report a reliable and precise pipeline 
for fully automatic derivation of camera orientation from 
difficult imagery networks without initial orientation values. 
The following processing sequence is used: (1) Employ fast 
image indexing to avoid costly matching of all possible image 
pairs, which dominates computational complexity along with 
the multiple bundle adjustment steps. (2) Generate tie points by 
means of feature extraction and matching where the required 
automatic measurements are realized at maximum accuracy and 
reliability. (3) Identify reliable patches of images that have the 
mutual compatibility and optimize the geometry graph for each 
patch to ensure that the final tree is guaranteed to be optimal in 
minimizing the total edge cost. (4) Merge all patches and then 
finally adjust the full model with integrating the ground control 
points (if available). 
 
The Structure and Motion (SaM) reconstruction approach, the 
core of this pipeline, was originally developed by the Computer 
Vision community to simultaneously estimate structure and 
camera motion from multiple images of a scene. SaM 

algorithms used for the derivation of exterior orientations for 
unorganized photo collections are used for the determination of 
initial values for the final bundle adjustment step in our 
pipeline.  
 
Most SaM methods are starting with a small reconstruction, i.e. 
pair or triplet of images, and then expanding the bundle 
incrementally by adding new images and 3D points [Snavely et 
al., 07]. Here, each pose estimation and point triangulation is 
followed by an outlier rejection and a bundle adjustment. Other 
approaches increase the bundle hierarchically by merging 
smaller reconstructions [Farenzena et al. 09]. Unfortunately, 
both approaches require multiple intermediate bundle 
adjustment results and rounds of outlier removal to minimize 
error propagation as the reconstruction grows due to the 
incremental approach. This can be computationally expansive 
for large datasets. This issue is considered to be solved partially 
in [Farenzena et al. 09] by the introduction of a local bundle 
adjustment procedure and in [Snavely et al., 07] by optimizing 
the system over a graph to order the images and remove 
obsolete images from the dataset. However, we focus on 
datasets where one cannot reduce the number of images 
dramatically without losing a substantial part of the model. A 
third solution are so called partitioning methods [Gibson et al. 
02] as used in [Nistér, D., 00, Klopschitz et al., 10], where the 
reconstruction problem is reduced to smaller and better 
conditioned sub-problems, represented by image triplets, which 
can be effectively optimized. The main advantage of these 
methods is the equalized error distribution on the entire dataset. 
 

2. 3D RECONSTRUCTION PIPELINE OVERVIEW 

Our 3D reconstruction pipeline is able to automatically process 
unordered sets of images to determine exterior camera 
orientations and a sparse point cloud of tie points without prior 
knowledge of the scene. The system mainly consists of four 
processing steps; starting with the initial network geometry 
analysis, followed by a pairwise matching step. After that, as 
shown in figure 2, the dataset is divided into optimal patches by 
using graphs. The reconstruction step is performed for each of 



 

these patches separately. Finally, the results are stitched 
together and improved by a final common bundle adjustment.  
A detailed description of the individual processing steps is 
given in the following sections. In general, calibrated camera 
settings are not strictly necessary for Euclidean 3D modelling, 
since self-calibration methods exist. However, if a stable camera 
is used with fixed focal length robustness and accuracy are 
usually greatly improved with values for the intrinsic orientation 
determined prior by standard calibration methods. Furthermore, 
also an increase in processing speed is achieved due to the 
lower dimensionality of the problem. Pursuant to that, we prefer 
to use intrinsic calibration parameters for high accuracy 
applications where these values can be considered to be stable.  

 
2.1 Initial Network Geometry Analysis 

This step is designed to accurately and quickly index unordered 
collections of photos. A connectivity matrix is the output of this 
step and is used as a heuristic about  connections between the 
images. In addition, this connectivity matrix reveals singleton 
images and small subsets that should be excluded from the 
dataset. Finally, it is used to guide the process of pairwise 
matching (section 2.2) instead of trying to match every possible 
image pair. 
 
Recent developments regarding this analysis can be 
distinguished into two major categories according to the type of 
image representation [Aly, M. et al. 10]. Local feature based 
approaches use quality measures of matched local descriptors 
while global feature based approaches utilize matching 
histograms of full images visual words. In fact, both categories 
represent the same approach with varying degrees of 
approximation to improve speed and/or storage requirements 
[Aly, M. et al. 10]. Generally, the first category provides 
superior recognition performance and the dimensionality is not 
an issue when only several thousands of images need to be 

processed. Consequently, we utilise a local feature based 
method in the pipeline presented in this paper. The first step is 
the extraction and description of local invariant features from 
each image by using the SIFT [Lo4we, 04] or SURF [Bay, H. 
et al., 05] operator on a downsampled image, e.g. using images 
with 2 Megapixels resolution. 
 
For indexing, we follow an approach very close to the one 
presented in [Brown and Lowe 2003; Farenzena et al. 2009], 
where all the descriptors are stored in a randomized forest of 
kd-trees to improve the effectiveness of the representation in 
high dimensions. Then, each descriptor is matched to its k 
nearest neighbours in feature space. Therefore, we used the Fast 
Library for Approximate Nearest Neighbours FLANN [Muja, 
M. and Lowe, D., 09] and the kd-tree implementation in the 
VLFeat [Vedaldi, A., & Fulkerson, B., 08] library to find and 
analyse the 10 nearest neighbours. Afterwards, the weighted 
number of matches between each pair is stored in a 2D 
histogram where all matched features with a distance more than 
a certain threshold are deleted. We use 2� as threshold where � 
represents the standard deviation of the closest neighbours for 
each image. The inverse of the distances are used as weights. 
Furthermore, we introduce additional quality measures for 
possible connections between images such as the approximate 
image overlap derived from the convex hull of the matched 
feature points. The quality measures are normalized and 
summarized to one single quality value, which is stored in the 
index matrix (as shown in figure 3a). Finally, this index matrix 
is binarized using three thresholds to determine initial probable 
connections and disconnections (as shown in figure 3b). 
 
2.2 Pairwise Feature Matching 

Matching each connected image pair is accomplished using the 
connectivity matrix obtained during the previous step. Thus, 
corresponding 2D pixel measurements are determined between 
all connected image pairs. Afterwards, a weighted undirected 
geometry graph, �� � ��, 	
 where V is a set of vertices and E 
is a set of edges is constructed. Thus, two view relations are 
encoded such that each vertex refers to an image while each 
weighted edge presents the overlap between the corresponding 
image pair. The edges weights are stored according to the 

number of their shared matching points,	���

�
, and the overlap 

area,		���
� , between view i &  j. For the computation we follow 

the approach of [Farenzena et al. 09], where a set of candidate 
features are matched using a kd-tree procedure based on the 
approximate nearest neighbour algorithm. This step is followed 
by a refinement of correspondences using an outlier rejection 
procedure based on the noise statistics of correct/incorrect 

Figure 1: Low-cost sensors and its imagery. a) Five cameras rigidly mounted and protected by an aluminium frame. b) Fixed-wing UAV 
platform in flight, used consumer camera and mounting position on UAV belly. Right: Sparse point cloud and camera stations. 
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matches. The results are then filtered by a standard RANSAC 
based geometric verification step, which robustly computes 
pairwise relations. Homography, H, and fundamental, F, 
matrices are used with an efficient outlier rejection rule called 
X84 [Hampel, F., et al. 1986] to increase reliability and 
accuracy. Finally, the best-fit (H or F) model is selected 
according to the Geometric Robust Information Criterion 
(GRIC) as initial model for the reconstruction. For an in-depth 
discussion see [Farenzena et al. 09; Snavely et al., 07] and 
references therein. 
 
2.3 Graph of patches 

In order to speed up the computation of the incremental 
reconstruction we address a fast local optimization instead of a 
global optimization approach. Therefore, we divide the dataset 
into 
	overlapping patches where each patch contains a 
manageable size of images. Thus, a parallelizable process 
replaces the process of reconstructing the whole scene at once 
where the large number of iterations with the growing number 
of unknowns can lead to very high computation times for 
complex datasets. The idea is to start from the most reliable part 
and use three images as the basic entity to extend each patch 
until a predefined size. In practice, we use the workflow as 
presented in algorithm 1 to identify reliable patches with the 
highest mutual compatibility. 

3. PATCHWISE RECONSTRUCTION  

Once the sub-graphs (patches) are calculated as described in the 
previous section, we can start the reconstruction process, as 
shown in figure 5. 

 
3.1 Optimize patch graph 

For each patch we track the keypoints over all images in this 
patch and store the results in a visibility matrix, which depicts 
the appearance of points in the images. The results of this step 
will be the keypoints which have been correctly tracked in at 
least three images after rejecting those tracks as inconsistent in 
which more than one keypoint converges.  
 
For more efficiency, we apply a homogeneous and dynamical 
filtering (see figure 4) approach for the tracked points to keep 
only the points with the highest connectivity. For each image 
we sort the keypoints in descending order according to their 
number of projections in other images. Then, the point with the 
greatest number of projections is visited, followed by an 
identification and rejection of all nearest neighbour points with 
a distance less than a certain threshold (e.g. 20 pixels). This step 
is repeated until the end of the points list. In order to maintain 
continuity, all points selected in an image must be considered as 
filtered (fixed) in the following filtering of other images. 
Filtering is done before the actual reconstruction step (section 
3.1) in order to increase the accuracy but also to reduce the 
number of obsolete observations. Consequently, the geometric 
distribution of keypoints is improved, which reduces 
computational costs significantly without losing geometric 
stability. 
 
Once correspondences have been tracked and filtered, we 
optimize the patch graph such that we construct a weighted 
undirected epipolar graph for each patch �

�	
containing common 

tracks. The weight ��� of an edge represents the number of 
common points between the corresponding image pair. Then we 

build �
�
,	 the edge dual graph of	��, where every node in 

�
�
	corresponds to an edge in �

�
. Two nodes in �

�
	are connected 

by an edge if and only if the corresponding image pairs share a 
camera and 3D points in common. Thus, each edge represents 
an image pair with sufficient overlap.  Note that even when 
�
�
	is fully connected any spanning tree of �

�
	may be 

disconnected. This can happen if a particular pairwise 
reconstruction did not have 3D points in common with another 
pair. Thus, we use three images as basic geometric entity by 
using only points that were tracked in at least three images.  
 
These points are used to build the graph in order to guarantee 
full connection for any sub sequential image. The maximum 
spanning tree (MST), which minimizes the total edge cost of the 
final graph is then computed. The image relation retrieved as 

��
��	 graph is used for the bundle adjustment. For example, 

figure 7 presents the results of the top patch of east tympanum 
where the previous process reduced the pairwise connection 
from 600 edges (see figure 3) to 396 to orient 150 images. 
 

Figure 3: Top Patch of east tympanum dataset. Index matrix 
according to probabilistic model of relevance with 1457 
edges, and adjacency connectivity matrix where the 
numbers of edges are reduced to 600. 

Figure 4: Point distribution in the image space before and after 
filtering (3395, 2007 and 819 points according to a filtering 
distance of 0, 20 and 40 pixels). 

Algorithm 1: Building graph for patches  

Input: geometry graph �� 
Output: collection of patches graph 
 
1. Set new empty graph (patch) G� ≔ �	� 
2. Determine most reliable edge E�� in Gε which has max w��

� 

3. Add  V�, V�, and	E�� into G� & set E�� ≔ 0 in Gε 
4. ∀	V� in Gε connected with two vertices (V�, V�, �	in G� 

If 		w��

� 	&		w��

� � max �	�
�
w��

�	,100� & w��
� 	&		w��

� � 	�
�
w��

� 

• Add  V�, E��	&	E�� into G�  

• Set E��	&	E�� ≔ 0 in Gε 
5. Add edges in between inliers vertices in G� & set all 

these edges ≔ 0 in Gε 
6. Repeat steps 4,5 until V� � 0 in step 4 
7. Store G� and repeat steps 1:6 until all edges in Gε � 0 



 

3.2 Patchwise Reconstruction 

As shown in figure 5, each patch is processed individually. 
Therefore an initial reconstruction is performed for the two, 
most suitable images of the patch. After this step orientations   
and tie points in object space are available for these two images 
where one image defines the local coordinate system. Within 
the incremental approach images are added to the existing 
bundle by triangulating new points, rejecting outliers and 
performing another iteration of the bundle adjustment. This 
incremental process is repeated until the maximum of stable 
imagery can be oriented.  

Reconstruction of the initial pair 

The incremental reconstruction step begins with the 
reconstruction of orientation and 3D points for an initial image 
pair.   The choice of this initial pair is very important for the 
following reconstruction of the scene. The initial pair 
reconstruction can only be robustly estimated if the image pair 
has at the same time a reasonable large baseline for high 
geometric stability and a high number of common feature 
points. Furthermore, the matching feature points should be 
distributed well in the images in order to reconstruct a 
maximum of initial 3D structure of the scene and to be able to 
determine a strong relative orientation between the images.  

Therefore, suitable image pairs should be selected according to 
the following conditions: the number of matching points is 
acceptable and the fundamental matrix must explain the 
matching points far better than homography models. In order to 
guarantee that GRIC scores are employed as used in [Pollefeys 
et al. 02 and Farenzena et al. 09).   

After that, extrinsic orientation values are determined for this 
initial pair by factorizing the essential matrix and the tracks 
visible in the two images.  A two-frame bundle adjustment 
starting from this initialization is performed to improve the 
reconstruction.  

Adding new images and points 

After reconstructing the initial pair additional images are added 
incrementally to the bundle. The most suitable image to be 
added is selected according to the maximum number of tracks 
from 3D points already being reconstructed. Within this step not 
only this image is added but also neighbouring images that have 
a sufficient number of tracks as mentioned in [Snavely et al., 
07]. Adding multiple images at once reduces the number of 
required bundle adjustments and thus improves efficiency.  

Next, the points observed by the new images are added into the 
optimization. A point is added if it is observed by at least two 
images, and if the triangulation gives a well-conditioned 
estimate of its location. This procedure follows the approach of 
[Snavely et al., 07]. 

Sparse bundle adjustment 

Once the new points have been added, a bundle adjustment is 
performed on the entire model. This procedure of initializing a 
camera orientation, triangulating points, and running bundle 
adjustment is repeated, until no images observing a reasonable 
number of points remain.  For the optimization we employ the 
sparse bundle adjustment implementation “SBA” [Lourakis, A., 
& Argyros, A., 09]. SBA is a non-linear optimization package 
that takes advantage of the special sparse structure of the 
Jacobian matrix used during the optimization step in order to 
provide a computation with reduced time and memory 
requirements.   

 
4. STITCHING OF PATCHES AND GLOBAL 

ADJUSTMENT 

After the reconstruction of points and orientations for the 
overlapping patches the results are merged. Since outlier 
rejection was performed within the previous processing the 
available 3D feature points are considered to be reliable and 
accurate. Due to the overlap the patches have a certain number 
of points and camera orientations in common which enable the 
determination of a seven-parameter transformation to align the 
patches into a common coordinate system. The transformed 
orientations and points are introduced into a common global 
bundle adjustment of the whole block. If ground control point 
measurements are available they can be used for the 
improvement of the bundle and to enable georeferencing. 
 

5. EXPERIMENTAL RESULTS 

During a cultural heritage data recording project 10k images 
were acquired using a multi-camera rig. The objective was the 
derivation of a point cloud with the resolution of 1mm and sub-
mm accuracy of two large reliefs covering an area of about 
125m² (see figure 6). Therefore, a rig with 5 industry cameras 
was used to record an image collection with high overlap 
efficiently. For the derivation of the point cloud the exterior 
orientations were derived using the presented method, followed 
by an additional dense image matching step relying on these 
orientations with very high accuracy requirements. Ground 
control point measurements provided the georeference. The 
interior orientation parameters were determined prior by a 
standard calibration method employing a calibration pattern and 
a free network adjustment. 
 
The Structure and Motion reconstruction with such large 
number of images and high accuracy requirements is a 
computationally expensive step due to the high number of 
points and possible connections. Therefore, we used the 
proposed approach of splitting the dataset into patches. If all 
patches are reconstructed the dataset can be merged and 
adjusted at once. Furthermore, the initial network analysis is 
important to speed up the matching process of the feature 

Figure 5: Block diagram of the optimized SaM pipeline. 
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Figure 6: East tympanum at the palace from distance and the 
sensor stabilized by an arm during the data acquisition. 



 

points. The point reduction technique employed within the 
pipeline was used to derive a homogeneous point distribution 
while saving overhead due to obsolete information. 
 
By the presented pipeline the accurate orientations could be 
determined in a reasonable processing time (see figure 8). 
Finally, about 2 billion points were derived by the dense image 
matching step as shown in figure 8. A detailed report about this 
project and the applied methods is given by [Fritsch et al., 11 & 
Wenzel et al., 11]. 

 
6. CONCLUSION 

The presented pipeline for the reconstruction of orientations and 
surface information is specifically designed for the efficient 
processing of large datasets with high accuracy requirements. 
An initial network analysis is used along other techniques to 
realize a reasonable processing time while adjusting a stable 
bundle containing information from a maximum number of 
images. Thus, it is specifically suitable for large scale 
photogrammetric applications at low costs. 
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Figure 7: Adjacency ��
��� matrix for top part (Patch) of east tympanum with 396 edges and the reconstructed model 

– only the registration camera (150 images with 2 mega pixels resolution) used. 



 

 

 

 
 
 

 
 
 

 
 
 

Figure 8: The reconstructed point clouds of the west tympanum. About 4� images from four different cameras of a rig - three for dense matching 
(5 mega pixels) and the fourth with larger field of view (2 mega pixels) for registration only. The first row shows the reconstructed 6 patches in a 
local coordinate system defined by the initial pair during the reconstruction step (mean reprojection errors around 1 pixel). The second row show 
the full sparse cloud of � 1.1 ��	�
� feature points in an object coordinates for all stitched patches after the final bundle adjustment step (mean 
reprojection errors reduced to 0.5 pixel). Finally, the dense point cloud derived by a subsequential dense image matching step with about 1.1 
billion points. 


