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ABSTRACT:

Reconstruction of camera orientations and strudtora images is one of the basic tasks in photogratmmand computer vision. A
fully automated solution of this task from scraigherrestrial applications is still pending in easf large unordered image datasets
especially for close-range and low-cost applicatiddurrent solutions require high computational re$fdor image networks with
high complexity and diversity regarding acquisitipg@ometry. Unlike the methods suitable for landnradonstruction from large-
scale Internet image collections - we focus on sitawhere one cannot reduce the number of imagheut losing geometric
information of the dataset. Within the paper, atomated pipeline for the reconstruction of reliabled precise orientation and
geometry from unordered image sets is presentedast employed for several challenging large-scalagkts from different
applications such as cultural heritage data rengrdr imagery from unmanned aerial vehicles (UAH)wever, results were also
used for the derivation of initial values for cormmaial photogrammetric processing software such @siile Match-AT.
Experimental results are shown to demonstrate #réopnance of the presented pipeline for applicegiovith high accuracy

requirements.

1. INTRODUCTION

In the past few years, low-cost photogrammetry lesome a
focus of research especially since cameras enableffizient
data acquisition at very low prices. For instammegent work
[Wenzel et al., 11] has shown that it is possibleite low-cost
multi-camera systems (figure l1a) for efficient goicloud
recording in close range applications with high umacy
requirements. Such applications lead to very latgmrdered
image networks with high complexity and diversity.

Furthermore, [Haala et al., 11] demonstrated thahdard
mapping products from airborne data acquisitiore ldigital
surface models (DSM) and ortho images could be rgéect
well from low-cost UAV imagery, as can be seenigufe 1b.
However, the imagery from such fixed-wing UAV systehas
largely varying image overlaps due to the highhfligynamics
and the relatively small footprint due to limitai® of the
currently employed consumer cameras.

The aim of this paper is to report a reliable aretise pipeline
for fully automatic derivation of camera orientatidrom
difficult imagery networks without initial orientan values.
The following processing sequence is used: (1) Byngast
image indexing to avoid costly matching of all pbksimage
pairs, which dominates computational complexitynglowith
the multiple bundle adjustment steps. (2) Gendfatpoints by
means of feature extraction and matching wherer¢agired
automatic measurements are realized at maximunramcand
reliability. (3) Identify reliable patches of imag¢éhat have the
mutual compatibility and optimize the geometry drdpr each
patch to ensure that the final tree is guarantedzetoptimal in
minimizing the total edge cost. (4) Merge all pastand then
finally adjust the full model with integrating tlggound control
points (if available).

The Structure and Motion (SaM) reconstruction apphy the
core of this pipeline, was originally developedthg Computer
Vision community to simultaneously estimate struetwand

algorithms used for the derivation of exterior otaions for
unorganized photo collections are used for therdetation of
initial values for the final bundle adjustment stép our
pipeline.

Most SaM methods are starting with a small recosion, i.e.
pair or triplet of images, and then expanding thendbe
incrementally by adding new images and 3D pointsaf@ly et
al., 07]. Here, each pose estimation and poinhguéation is
followed by an outlier rejection and a bundle atipent. Other
approaches increase the bundle hierarchically bygimg
smaller reconstructions [Farenzena et al. 09]. Wuofately,
both approaches require multiple intermediate baindl
adjustment results and rounds of outlier removamiaimize
error propagation as the reconstruction grows duethie
incremental approach. This can be computationaflyaesive
for large datasets. This issue is considered teobed partially
in [Farenzena et al. 09] by the introduction ofoaal bundle
adjustment procedure and in [Snavely et al., 07pptymizing
the system over a graph to order the images andwem
obsolete images from the dataset. However, we fomus
datasets where one cannot reduce the number ofesnag
dramatically without losing a substantial part bé tmodel. A
third solution are so called partitioning metho@sbjson et al.
02] as used in [Nistér, D., 00, Klopschitz et &D], where the
reconstruction problem is reduced to smaller andtebe
conditioned sub-problems, represented by imagéetsipwhich
can be effectively optimized. The main advantagethase
methods is the equalized error distribution onghtre dataset.

2. 3D RECONSTRUCTION PIPELINE OVERVIEW

Our 3D reconstruction pipeline is able to autonadlycprocess
unordered sets of images to determine exterior @me
orientations and a sparse point cloud of tie powiteout prior
knowledge of the scene. The system mainly consitour
processing steps; starting with the initial netwargometry
analysis, followed by a pairwise matching step.eAfthat, as
shown in figure 2, the dataset is divided into imati patches by

camera motion from multiple images of a scene. SaMising graphs. The reconstruction step is perforfoecach of



Figure 1: Low-cost sensors and its imagery. a) Eameras rigidly mounted and protected by an aliwmrframe. b) Fixed-wing UAV
platform in flight, used consumer camera and magnpiosition on UAV belly. Right: Sparse point cloaiid camera stations.

these patches separately. Finally, the results siitehed

together and improved by a final common bundle stdjent.

A detailed description of the individual processiatgps is
given in the following sections. In general, cadited camera
settings are not strictly necessary for EuclideBnn3odelling,

since self-calibration methods exist. However, sta@ble camera
is used with fixed focal length robustness and emnu are
usually greatly improved with values for the insimorientation
determined prior by standard calibration methodstHermore,
also an increase in processing speed is achievedtauihe
lower dimensionality of the problem. Pursuant tatthve prefer
to use intrinsic calibration parameters for highcuaacy

applications where these values can be consideried stable.
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Figure 2: Flowchart of 3D reconstruction pipeline

2.1 Initial Network Geometry Analysis

This step is designed to accurately and quicklgxndnordered
collections of photos. A connectivity matrix is thetput of this
step and is used as a heuristic about connedtetvgeen the
images. In addition, this connectivity matrix relgeaingleton
images and small subsets that should be excluded fhe
dataset. Finally, it is used to guide the proceksgpairwise
matching (section 2.2) instead of trying to matebrg possible
image pair.

Recent developments regarding this analysis can
distinguished into two major categories accordmg¢he type of
image representation [Aly, M. et al. 10]. Local tfe@ based
approaches use quality measures of matched locariptrs
while global feature based approaches utilize niadgch
histograms of full images visual words. In factttbocategories

processed. Consequently, we utlise a local featomeed
method in the pipeline presented in this paper. filse step is
the extraction and description of local invariaeatiires from
each image by using tH&#FT [Lo4we, 04] orSURF [Bay, H.
et al., 05] operator on a downsampled image, siggumages
with 2 Megapixels resolution.

For indexing, we follow an approach very close be tone
presented in [Brown and Lowe 2003; Farenzena e2CG9],

where all the descriptors are stored in a randainfoeest of

kd-trees to improve the effectiveness of the regrgion in

high dimensions. Then, each descriptor is matchedtst k

nearest neighbours in feature space. Therefore,see the Fast
Library for Approximate Nearest Neighbours FLANN (4,

M. and Lowe, D., 09] and the kd-tree implementationthe

VLFeat [Vedaldi, A., & Fulkerson, B., 08] library tiind and

analyse the 10 nearest neighbours. Afterwards,wéighted

number of matches between each pair is stored iBDa
histogram where all matched features with a distanore than
a certain threshold are deleted. We 28es threshold wher&

represents the standard deviation of the closeghbeurs for
each image. The inverse of the distances are usedkemhts.
Furthermore, we introduce additional quality measurfor

possible connections between images such as thexapate

image overlap derived from the convex hull of thatched

feature points. The quality measures are normalized

summarized to one single quality value, which @ed in the
index matrix (as shown in figure 3a). Finally, timglex matrix

is binarized using three thresholds to determiitélirprobable
connections and disconnections (as shown in figbje

2.2 Pairwise Feature Matching

Matching each connected image pair is accomplistsing the
connectivity matrix obtained during the previougpst Thus,
corresponding 2D pixel measurements are deterntetdeen
all connected image pairs. Afterwards, a weightedinected
geometry graphge = (V,E) whereV is a set of vertices arfdl

bi a set of edges is constructed. Thus, two vidatioms are

encoded such that each vertex refers to an imadle whach
weighted edge presents the overlap between thespmnding
image pair. The edges weights are stored accortbnthe
number of their shared matching poim?%, and the overlap

area,w/}, between view & j. For the computation we follow

represent the same approach with varying degrees @he approach of [Farenzena et al. 09], where afseandidate

approximation to improve speed and/or storage rements
[Aly, M. et al. 10]. Generally, the first categonyrovides
superior recognition performance and the dimengignia not
an issue when only several thousands of images tedue

features are matched using a kd-tree procedured basethe
approximate nearest neighbour algorithm. This &epllowed
by a refinement of correspondences using an outligction
procedure based on the noise statistics of coimeottect
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Figure 3: Top Patch of east tympanum dataset. Inoetrix
according to probabilistic model of relevance with57i
edges, and adgency connectivity matrix where -
numbers of edges are reduced to 600.

matches. The results are then filtered by a stahB&NSAC

based geometric verification step, which robustymputes
pairwise relations. HomographyH, and fundamentalF,

matrices are used with an efficient outlier rejactrule called
X84 [Hampel, F., et al. 1986] to increase relidpiliand

accuracy. Finally, the best-fitH( or F) model is selected
according to the Geometric Robust Information Criteri
(GRIC) as initial model for the reconstruction. Foria-depth
discussion see [Farenzena et al. 09; Snavely et0@]. and
references therein.

2.3 Graph of patches

In order to speed up the computation of the increaie
reconstruction we address a fast local optimizatistead of a
global optimization approach. Therefore, we divile dataset
into n overlapping patches where each patch contains
manageable size of images. Thus, a parallelizabteeps
replaces the process of reconstructing the whaeeat once
where the large number of iterations with the grmwhumber
of unknowns can lead to very high computation tinfes
complex datasets. The idea is to start from thet medisble part
and use three images as the basic entity to ex@éanll patch
until a predefined size. In practice, we use thekflow as
presented imalgorithm 1 to identify reliable patches with the
highest mutual compatibility.

Algorithm 1: Building graph for patches

Input: geometry graplte
Output: collection of patches graph

Set new empty graph (patdhy := { }
Determine most reliable edgg in Ge which has maxzvﬁ
Add V;,V;,and Ey;, into G, & setEq, = 0in Ge

V Vi in Ge connected with two vertice®;(V;,) in G,
P100) & Wi & Wi >

ij *
e Add V, Ejx & Ejy into G,
*  SetEj &Ejx == 01inGe
5. Add edges in between inliers verticesdp & set all
these edges= 0 in Ge
6. Repeat steps 4,5 untfl = 0 in step 4
7. StoreGy, and repeat steps 1:6 until all edge&in= 0

> ® P F

p P i 1.2
If wiy & wy = max(zw > Wij

3. PATCHWISE RECONSTRUCTION

Once the sub-graphs (patches) are calculated aslbin the
previous section, we can start the reconstructimtgss, as
shown in figure 5.

Figure 4: Point distribution in the image spabefore and aft
filtering (3395, 2007 and 819 pointsaarding to a filterin
distance of 0, 20 and 40 pixels).

3.1 Optimize patch graph

For each patch we track the keypoints over all esai this
patch and store the results in a visibility matmwhich depicts
the appearance of points in the images. The restilfsis step
will be the keypoints which have been correctlycked in at
least three images after rejecting those tracks@msistent in
which more than one keypoint converges.

For more efficiency, we apply a homogeneous andanhycal
filtering (see figure 4) approach for the trackemings to keep
only the points with the highest connectivity. Feach image
we sort the keypoints in descending order accordingheir
number of projections in other images. Then, thietpwith the
greatest number of projections is visited, followegt an
identification and rejection of all nearest neighbpoints with
a distance less than a certain threshold (e.gix&0sp. This step
is repeated until the end of the points list. Idesrto maintain
eontinuity, all points selected in an image mustbesidered as
filtered (fixed) inthe following filtering of othre images.
Filtering is done before the actual reconstructtep (section
3.1) in order to increase the accuracy but alsoethuce the
number of obsolete observations. Consequently, guengtric
distribution of keypoints is improved, which redsce
computational costs significantly without losing ogeetric
stability.

Once correspondences have been tracked and filteved
optimize the patch graph such that we constructegived

undirected epipolar graph for each patgitontaining common

tracks. The weightv; of an edge represents the number of
common points between the corresponding image Ppaén we
build G,, the edge dual graph Gf, where every node in

G, corresponds to an edgedp. Two nodes irG, are connected
by an edge if and only if the corresponding imagespshare a
camera and 3D points in common. Thus, each edgesents
an image pair with sufficient overlap. Note thatre when
G,is fully connected any spanning tree af may be
disconnected. This can happen if a particular pagw
reconstruction did not have 3D points in commorhvéihother
pair. Thus, we use three images as basic georettity by
using only points that were tracked in at leastéhimages.

These points are used to build the graph in ordeguarantee
full connection for any sub sequential image. Thaximum
spanning tree (MST), which minimizes the total edge cost of the
final graph is then computed. The image relatiomieeed as

G, graph is used for the bundle adjustment. For el@mp

figure 7 presents the results of the top patchast &gmpanum
where the previous process reduced the pairwis@emion
from 600 edges (see figure 3) to 396 to orientibfyes.
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Figure 5: Block diagram of the optimized SaM pipeli

3.2 Patchwise Reconstruction

As shown in figure 5, each patch is processed iddally.

Therefore an initial reconstruction is performed fbe two,

most suitable images of the patch. After this stépntations
and tie points in object space are available fes¢htwo images
where one image defines the local coordinate sysWithin

the incremental approach images are added to trsingx
bundle by triangulating new points, rejecting cmii and
performing another iteration of the bundle adjustmeThis

incremental process is repeated until the maximdinstable
imagery can be oriented.

Reconstruction of theinitial pair

The incremental reconstruction step begins with
reconstruction of orientation and 3D points forimitial image
pair. The choice of this initial pair is very iogant for the
following reconstruction of the scene. The initigair
reconstruction can only be robustly estimated € ittnage pair
has at the same time a reasonable large baselndidh
geometric stability and a high number of commontuiea
points. Furthermore, the matching feature pointeukh be
distributed well in the images in order to reconstr a
maximum of initial 3D structure of the scene andé&able to
determine a strong relative orientation betweerirttages.

Therefore, suitable image pairs should be selemtedrding to
the following conditions: the number of matchingins is
acceptable and the fundamental matrix must explhia
matching points far better than homography modelsrder to
guarantee that GRIC scores are employed as usealieffys
et al. 02 and Farenzena et al. 09).

After that, extrinsic orientation values are deteed for this
initial pair by factorizing the essential matrixdamhe tracks
visible in the two images. A two-frame bundle atjoent
starting from this initialization is performed tonprove the
reconstruction.

Adding new images and points

After reconstructing the initial pair additional ages are added
incrementally to the bundle. The most suitable ienag be
added is selected according to the maximum numbé&acks
from 3D points already being reconstructed. Withiis step not
only this image is added but also neighbouring iesatpat have
a sufficient number of tracks as mentioned in [®hawet al.,
07]. Adding multiple images at once reduces the lemof
required bundle adjustments and thus improvesiefiay.

Next, the points observed by the new images aredddo the
optimization. A point is added if it is observed alyleast two
images, and if the triangulation gives a well-ctiodied

estimate of its location. This procedure followe #pproach of
[Snavely et al., 07].

the
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Figure 6: East tympanum at the palace from distaar the
sensor stabilized by an arm during the data adeprisi

Spar se bundle adjustment

Once the new points have been added, a bundletiadjussis
performed on the entire model. This procedure iializing a
camera orientation, triangulating points, and rangnbundle
adjustment is repeated, until no images observingaaonable
number of points remain. For the optimization wepty the
sparse bundle adjustment implementation “SBA” [L&igaA.,
& Argyros, A., 09]. SBA is a non-linear optimizatigpackage
that takes advantage of the special sparse steudaifirthe
Jacobian matrix used during the optimization stemrder to
provide a computation with reduced time and memory
requirements.

4. STITCHING OF PATCHESAND GLOBAL
ADJUSTMENT

After the reconstruction of points and orientatiofts the
overlapping patches the results are merged. Sindéien
rejection was performed within the previous protesshe
available 3D feature points are considered to tiable and
accurate. Due to the overlap the patches havetaircerumber
of points and camera orientations in common whichbée the
determination of a seven-parameter transformatioalign the
patches into a common coordinate system. The tensfl
orientations and points are introduced into a comrgmbal
bundle adjustment of the whole block. If ground teoihpoint
measurements are available they can be used for
improvement of the bundle and to enable georef@mgnc

the

5. EXPERIMENTAL RESULTS

During a cultural heritage data recording proje@k Images
were acquired using a multi-camera rig. The objectiias the
derivation of a point cloud with the resolutionlohm and sub-
mm accuracy of two large reliefs covering an aréatmout
125m?2 (see figure 6). Therefore, a rig with 5 indusameras
was used to record an image collection with higtertap
efficiently. For the derivation of the point cloutle exterior
orientations were derived using the presented ndetfatlowed
by an additional dense image matching step relgingthese
orientations with very high accuracy requiremen@&ound
control point measurements provided the georeferefite
interior orientation parameters were determinecrpby a
standard calibration method employing a calibrapattern and
a free network adjustment.

The Structure and Motion reconstruction with suchgé
number of images and high accuracy requirementsa is
computationally expensive step due to the high rermisf
points and possible connections. Therefore, we uted
proposed approach of splitting the dataset intehest If all
patches are reconstructed the dataset can be menged
adjusted at once. Furthermore, the initial netwanalysis is
important to speed up the matching process of #wufe



Figure 7: Adjacency'* matrix for top part (Patch) of east tympanum v@é6 edges and the reconstructed model
— only the registration camera (150 images withegyanpixels resolution) used.

points. The point reduction technique employed iwitthe
pipeline was used to derive a homogeneous pointilditon
while saving overhead due to obsolete information.

By the presented pipeline the accurate orientatimmdd be
determined in a reasonable processing time (segefi@).

Finally, about 2 billion points were derived by ttiense image
matching step as shown in figure 8. A detailed repbout this
project and the applied methods is given by [Fhitstal., 11 &
Wenzel et al., 11].

6. CONCLUSION

The presented pipeline for the reconstruction @rdations and
surface information is specifically designed foe tefficient
processing of large datasets with high accuracyirements.
An initial network analysis is used along otherht@ques to
realize a reasonable processing time while adjgssinstable
bundle containing information from a maximum numbodr
images. Thus, it is specifically suitable for largeale
photogrammetric applications at low costs.
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Figure 8: The reconstructed point clouds of thetweapanum. Abouttk images from four different cameras of a rig - ¢hfer dense matching
(5 mega pixels) and the fourth with larger fieldvagw (2 mega pixels) for registration only. Thesfirow shows the reconstructed 6 patches i
local coordinate system defined by the initial ghiring the reconstruction step (mean reprojectiwars around 1 pixel). The second row sh
the full sparse cloud o 1.1 milion feature points in an object coordinates for aitised patches after the final bundle adjustmesp étnean
reprojection errors reduced to 0.5 pixel). Finatlye dense point cloud derived by a subsequentiatelimage matching step with about
billion points.




