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ABSTRACT: 

This paper describes an approach for the modeling of building interiors based on a mobile device, which integrates modules for 

pedestrian navigation and low-cost 3D data collection. For this purpose, personal navigation is realized by a foot mounted low cost 

MEMS IMU, while 3D data capture for subsequent indoor modeling uses a low cost range camera, which was originally developed 

for gaming applications. Both steps, navigation and modeling, are supported by additional information as provided from the 

automatic interpretation of evacuation plans. Such emergency plans are compulsory for public buildings in a number of countries. 

They consist of an approximate floor plan, the current position and escape routes. Additionally, semantic information like stairs, 

elevators or the level number is available. After the user has captured an image of such a floor plan, this information is made explicit 

again by an automatic raster-to-vector-conversion. The resulting coarse indoor model then provides constraints at stairs or building 

walls, which restrict potential movement of the user. This information is then used to support pedestrian navigation by eliminating 

drift effects of the used low-cost sensor system. The approximate indoor building model additionally provides a priori information 

during subsequent indoor modeling. Within this process, the low cost range camera Kinect is used for the collection of multiple 3D 

point clouds, which are aligned by a suitable matching step and then further analyzed to refine the coarse building model. 

 

1. INTRODUCTION 

Mobile Mapping Systems combine high performance 

navigation components usually based on GNSS/inertial 

measurement with mapping sensors like multiple CCD cameras 

and/or laser scanners. By these means georeferenced 3D point 

clouds or video streams are collected, which frequently cover 

street scenes of complete city areas. These data are then further 

evaluated i.e. to provide large scale 3D reconstructions of urban 

areas for planning or navigation purposes. While such high-

performance systems are mainly used in the context of 

commercial geo-data collection, projects like OpenStreetMap 

established so-called Volunteered Geographic Information 

(VGI) as a powerful alternative. There, volunteers use low-cost 

systems to provide geo-data at considerable accuracy and 

amount of detail. Frequently, GPS or GNSS tracks are applied 

to georeference the objects of interest as captured by the user 

based on semi-automatic geo-data collection. In this sense, the 

success of VGI is closely coupled to GNSS as prevalent and 

inexpensive sensor system for the navigation of the user. Thus, 

VGI has become very popular in outdoor areas, while the lack 

of a suitable positioning sensor prevents corresponding 

developments in indoor environments. However, low-cost 

inertial measurement systems can provide user tracks at 

sufficient quality, if the positional accuracy during pedestrian 

navigation is improved using ZUPTs (zero velocity updates). 

This can be realized by using a foot-mounted MEMS as a 

pedometer. 

As it will be discussed in section 2 of the paper, this approach 

can considerably reduce drift errors within the measured 

position. However, especially for longer tracks further 

improvement is still required. For this reason, MEMS IMU 

indoor navigation is further supported by alignment of the user 

tracks. This assumes that most indoor routes will be parallel or 

perpendicular to one of the principal directions of the building. 

These principal directions usually correspond to the building 

outlines. Information on the building contour is frequently 

available from existing maps or is given by 3D outer building 

shells. 

In our system, information on the building structure is provided 

automatically from evacuation or floor plans. Such plans 

usually consist of a generalized floor plan and escape routes and 

are compulsory for public buildings in a number of countries. 

As it will be demonstrated in section 3, the ground plan 

information can be made explicit again by a suitable raster-to-

vector-conversion. Thus, we assume, that the “pedestrian 

mobile mapping platform” as realized by the foot mounted 

MEMS IMU is complemented by a simple camera. Using this 

simple sensor platform, the user captures an image of the 

evacuation plan, which is then interpreted automatically by 

suitable software tools. In addition to different rooms, such a 

floor plan can provide semantic information like stairs, 

elevators or the level number. This information is then used to 

further support and improve pedestrian navigation similar to 

map matching in outdoor environments. Finally, this process 

provides a track of the user related to the coarse indoor model as 

given from the evacuation plan. 

In principle, our pedestrian mobile mapping platform can be 

used by the respective volunteer to manually model indoor 

environments in an OpenStreetMap like process 

(OpenStreetMap Wiki, 2011). As an example, the collected 

tracks of the user can be used to enhance the coarse model as 

provided from the interpretation of the evacuation plan by 

modeling missing features and indoor facilities like corridors, 

rooms, room entrances and stairways. However, efficient 

modeling is especially feasible, if 3D point clouds have been 

measured. For this purpose, our mobile mapping system is 

equipped with a low-cost range camera. As presented in section 

4 of the paper, we realize 3D point cloud collection by 

integration of the Kinect stereo camera to our sensor system. 



 

 

Originally, the Kinect was developed as a user interface for the 

Xbox 360 gaming platform. For our purpose of data collection 

in the context of indoor modeling it is ideally suited since it 

combines a RGB camera with a depth sensor. This sensor 

consists of an infrared projector combined with a monochrome 

CMOS sensor for stereo measurement. As discussed in section 

4, this allows for the collection of coregistered image and point 

cloud data in indoor environments as it can be used for the 

refined modeling of the building interior.  

2. INDOOR NAVIGATION USING MEMS IMU 

In order to provide the path of a user moving through a 

building, a wide range of experimental and commercial 

positioning systems are available. However, they either require 

infrastructure like WLAN-Networks or RFID beacons, or are 

based on high quality indoor models. Therefore, they do not 

allow for an inexpensive and generally available indoor 

navigation at sufficient accuracy.  

In contrast, inexpensive and generally available indoor 

navigation is feasible by low-cost MEMS IMUs, which in 

principle allow for position determination by integration of 

inertial measurements. However, since such naive integration 

suffers from large drifts after short time periods, positional 

accuracy from such MEMS IMU measurements can be 

improved for pedestrian navigation by zero velocity updates 

(ZUPTs). Thus, the IMU is attached to the user’s foot and is in 

principle used as a pedometer (Godha & Lachapelle 2008). For 

this purpose, within the IMU measurements, the two phases of 

the movement of a walking user’s foot (swing and stance phase) 

may be found using the gyro measurements. After integrating 

the accelerometer measurements once, the resulting velocities 

are supposed to be zero during a detected stance phase in order 

to detect and eliminate measurement errors.  

 

Figure 1: Indoor track from foot mounted MEMS IMU 

Figure 1 exemplarily depicts the result of MEMS IMU indoor 

navigation for a user moving through the building of our 

institute. This building has seven floors and a size of 

approximately 60x25m. Even though the use of ZUPTs 

significantly reduced the drift errors from IMU measurements, 

considerable errors are still available for such a long track. For 

this reason, the accuracy of the measured trajectory is further 

improved by assuming that most parts of such indoor routes 

will be parallel or perpendicular to the main direction of the 

respective building. Thus, the IMU track is aligned to this 

principal direction. For this purpose, straight lines are detected 

by searching for at least six consecutive steps within the IMU 

tracks, which feature changes in moving direction below a 

selected threshold. The angular difference between the 

direction of this straight trajectory and the principal building 

direction is then eliminated by a rotation around the z-axis. 

Remaining effects in the vertical component of the trajectory 

are eliminated by strictly limiting vertical movement to stairs 

and elevators. The actual detection of stair steps is 

straightforward: all steps with height differences greater than 

15cm are annotated as stair candidates. This corresponds to the 

common step height for public buildings (Neufert et al. 2002). 

The resulting indoor track can be seen in Figure 2. 

 

Figure 2: Improved indoor track by alignment to principal 

building directions and height correction. 

Despite the considerable quality of this trajectory, it still 

provides only coordinates relative to an initial position. Thus, 

final geocoding requires the availability of the starting point in 

the reference coordinate frame. One option is to use the 

entrance into a building, to which the user has been guided by 

GNSS. However, limited GNSS accuracies of 5-10 meters or 

worse in urban canyons prevent the measurement of an initial 

position with sufficient accuracy for the navigation in building 

interiors. Alternatively, the building entrance can be provided 

from a detailed semantic façade model as e.g. generated by 

(Becker & Haala, 2009).  

In our application the initial position is deduced from a 

photographed evacuation plan. This interpretation, which is 

realized by a suitable raster-to-vector conversion, additionally 

provides ground plan information and thus a coarse map of the 

respective indoor environment.  

3. INTERPRETATION OF EVACUATION PLANS 

Indoor positioning and navigation is mainly required for large 

public buildings like shopping centers and administrative office 

buildings. In many countries, evacuation plans are compulsory 

for such buildings. An example of such a plan is given in figure 

3. As it is visible, in addition to evacuation routes, these plans 

contain a large amount of information needed and usable for the 

modeling of building interiors like inner walls, stairs, elevators 

and some of them even doors and windows. This information 

can be made explicit again by a suitable interpretation of the 

collected raster image.  

Within our approach described in more detail in (Peter et al., 

2010) the image of the evacuation plan is binarized as a first 

step. Since evacuation plans are optimized to be legible also in 

emergency situations, their content is limited to the most 

necessary information like ground plan and symbols, which 

have to be clearly distinguishable from a white background. 

Thus, a simple threshold can be used. As it is also visible in 

figure 3, specific symbols provide additional information on the 

floor (a) north direction (b), the legend (c) and the address (d). 



 

 

 

Figure 3: Photographed evacuation plan with available infor-

mation (left)  

The binarized image is then segmented to distinct regions by a 

boundary tracing algorithm. In order to detect the building 

boundary, which is symbolized by a bold line, binary erosion is 

used. This step eliminates thin lines representing the inner walls 

not required in this step. A contour finding algorithm (Suzuki et 

al., 1985) is then applied on the remaining bold lines to detect 

the corner points of the building boundary. Usually, one can 

assume a rectangular shaped boundary polygon from the ground 

plan. This information is used to rectify the ground plan image 

to generalize and thus simplify further processing.  

Within the next step, evacuation symbols are detected. Thus, 

image parts occluded by these symbols can be cleaned before 

further digitization. In order to identify candidates for symbol 

regions a connected components analysis is realized. Symbol 

templates, which can be extracted from the plan’s legend are 

then detected using cross correlation. Since such symbols are 

standardized, high quality templates taken from standardization 

documents can be used for this step, alternatively.  

 

Figure 4: Result of vectorization with extracted room outline. 

After cleaning the binary image a skeleton is computed similar 

to the approach described by (Zhang & Suen, 1984). Figure 4 

shows the result of this process with the implemented cleaning 

for symbol regions. To further use this ground plan skeleton 

during navigation and modelling, a transformation to a 

geocoded reference coordinate system is required. For this 

purpose, again the contour of the building outline as represented 

by the bold line in figure 3 is used.  

This building contour is also available within the 3D model of 

the corresponding building, which is available in the virtual city 

model of Stuttgart (Bauer & Mohl, 2005). This model is 

available for free and was used in our investigations. 

Corresponding nodes between the building outline in the 

evacuation plan and the virtual city model can then be used to 

define the transformation between image coordinates of the 

interpreted evacuation plan and the global reference system of 

the city model. Afterwards, the vectorized ground plan in Figure 

4 is available in real world coordinates. This information can 

e.g. be used to compute dimensional properties like width and 

area of different features and thus allows to distinguish between 

rooms using e.g. a minimum area threshold and stairs e.g. using 

a maximum width threshold.  

 

Figure 5: Reconstructed indoor model using evacuation plan in 

Google Earth; IMU track using ZUPTs, alignment and height 

correction 

This georeferencing step is also used to provide world 

coordinates for the “you are here” symbol, which was detected 

previously in the evacuation plan. This information then can be 

used as initial position for the IMU navigation, thus, the 

measured trajectory of the user is also available in the reference 

coordinate system of the virtual city model. This result is 

demonstrated in figure 5. It visualizes the final 3D indoor model 

from the interpretation of the evacuation plan within Google 

Earth with an overlaid user track, which was measured and 

processed by our system. 

4. POINT CLOUD COLLECTION FROM LOW-COST 

RANGE CAMERA 

In order to refine or update such a coarse indoor model e.g. by 

extracting features like doors or to detect missing walls 3D 

point clouds are especially suitable. Within Mobile Mapping 

Systems this is frequently realized by laser scanning, however, 

these systems are usually too large and expensive for pedestrian 

applications. One suitable alternative are range cameras also 

known as Time-of-Flight (TOF) cameras using a Photonic 

Mixer Device (PMD) sensor for point cloud measurement at 

video rate. An example is the CamCube operating at a 

resolution of 204 by 204 pixels with a 40 degree viewing angle 

at a maximum distance (ambiguity interval) of 7.5 meters. 

Within our low-cost system the Kinect range camera, offered by 

Microsoft as a user interface for the Xbox 360 video game 

platform is used. 



 

 

 

Figure 6: Disassembled Kinect system 

This system, depicted disassembled in Figure 6, consists of an 

infrared laser (IR) projector and a monochrome, IR CMOS 

sensor. Stereo measurement is realized by projecting a fixed 

pattern of light and dark speckles on the respective object 

surfaces. The IR camera then collects a video stream of the 

continuously-projected infrared structured light in 30 Hz at 

VGA resolution (640 × 480 pixels) with 11-bit radiometric 

depth. By analysis of the IR speckle pattern automatic stereo 

measurement is realized in order to compute a range image from 

spatial intersection in the following step. When used with the 

Xbox software, the Kinect has a practical ranging limit of 1.2-

3.5m, the angular field of view is 57° horizontally and 43° 

vertically. The area required to play Kinect is roughly 6m², 

although the sensor can maintain tracking through an extended 

range of approximately 0.7-6 m. 

 

Figure 7: User interface of Kinect RGB Demo 

Alternatively, drivers and open source libraries like ROS Kinect 

(kinect - ROS Wiki, 2011) provide suitable interfaces to use the 

Kinect as low-cost range camera. Figure 7 provides a snapshot 

of the open source software “Kinect RGB Demo” (Burrus, 

2010), which was used during our measurements. The snapshot 

shows the range image from stereo matching on the left. On the 

right the synchronized video streams from the RGB and the IR 

camera are available on top and bottom, respectively. As it is 

visible in Figure 6 the RGB camera is mounted between the IR 

camera and projector within the Kinect system.  

4.1 System Calibration 

  

Figure 8: RGB (left) and IR (right) calibration images. 

In order to allow for the generation of textured point clouds, the 

Kinect camera system was calibrated at a suitable calibration 

field. Image blocks from the RGB and the IR camera were 

collected and used for stereo camera calibration in a 

photogrammetric bundle block adjustment using the Australis 

software system. By these means lens distortions could be 

eliminated based on the Brown parameter set. The test field is 

depicted in Figure 8, which shows an example of a RGB image 

on the left and an IR image on the right. Within the IR image 

the projected speckle is visible in addition to the 

photogrammetric target points.  

4.2 Errors of Captured Point Clouds 

After matching the projected IR patterns within the images 

collected by the CMOS camera, disparity measurements are 

available. These disparities or parallaxes are then used to 

compute 3D coordinates for the depicted object surfaces by 

spatial intersection. These are then represented by range images 

or 3D point clouds, respectively. If a suitable calibration of the 

stereo system as realized by the IR camera and the projector is 

available, the geometric quality of this point cloud is mainly 

influenced by the accuracy and reliability of the pattern 

matching as implemented within the Kinect. This pattern 

matching can be disturbed e.g. by ambient light in the IR 

spectrum, if the projected pattern is superimposed. Additional 

errors can occur depending on geometric and radiometric 

properties of the depicted object surfaces. Problems are to be 

expected at object boundaries and sharp edges due to 

occlusions. Moreover the object surface may absorb or reflect a 

major part of the projected IR pattern, which again prevents a 

reliable matching. Geometric errors also result from imperfect 

calibration of the stereo system, e.g. the relative orientation 

between IR projector and camera, as well as imperfect modeled 

distortions of the optical systems. Finally, simplifications to 

speed up the matching step by the Kinect software can 

potentially result in systematic errors. 

 

Figure 9: Noise of the data at a distance of 2.6m for a single 

image (left) and an average of 30 frames (right). 

Figure 9 shows the noise of the data at a distance of 2.6m for a 

single frame on the left and an average of 30 frames on the 

right. The RMS of the noise is 12mm, and its maximum is 

90mm in both cases. This example demonstrates that deviations 

to the reference plane mainly result from systematic errors. 

Repeating the experiment for different planar objects at 

different ambient conditions showed that the systematic effects 

regarding the stereo system manufacturing and calibration is 

dominating the ambient or object disturbing effects. Also some 

systematic errors in radial and vertical directions can be seen. A 

next step to get a higher accuracy from the Kinect data can be 

fitting a surface to the noise (for bulk error compensation), if the 

systematic effects cannot be analyzed and compensated 

separately. It should also be noted here, that increasing the 

distance to the object, the noise is increasing, as proven by 

experiments. 

4.3 Alignment of Point Clouds 

During camera calibration, also the relative orientation between 

the RGB and IR cameras has to be determined. Thus, the pixels 

of the range image can be matched against the RGB images 



 

 

while simultaneously compensating the lens distortion effects. 

By these means, textured 3D point clouds can be generated as 

depicted in Figure 10 for the scene already shown in Figure 7. 

 

Figure 10: A textured point cloud 

The transformation between the RGB and the disparity image 

can be used to provide a co-registration of multiple 3D point 

clouds, which is even more important for our application. Such 

a combination of range images from multiple viewing directions 

and viewpoints is essential in order to cover a complete room.  

 

Figure 11: Tie point matching for two RGB camera images. 

 

Figure 12: Alignment of two point clouds corresponding to 

images in Figure 11. 

Similar to the work of (Henry et.al., 2010), this is efficiently 

realized in our application by automatic relative orientation of 

consecutively captured RGB images. Figure 11 gives an 

example for two images collected by the RGB camera at two 

viewpoints during data collection. Within these images 

corresponding points are then determined by a SIFT feature 

extraction and matching. These matches are represented by the 

green lines in Figure 11. The relative orientation between the 

RGB and IR images was already determined during system 

calibration as discussed in section 4.1. Each pixel in the IR 

image corresponds to a pixel in the range image and thus a 3D 

object point coordinate. Thus, the matched image points in 

Figure 11 can be directly used to generate correspondences 

between 3D points from the two consecutive views. This 

information allows for an approximate alignment of the two 

point clouds which is further improved using an iterative closest 

point (ICP) algorithm (Besl & MacKay, 1992).  

 

Figure 13: Co-registration of multiple point clouds from align-

ment of RGB image sequence. 

Figure 12 depicts the point clouds corresponding to the images 

in Figure 11 after alignment. This co-registration process is then 

performed for a complete sequence of the range and RGB 

images. The result of this process is given exemplarily in Figure 

13, which shows an aligned sequence of 40 point clouds 

covering a complete room. Of course, the accuracy of this point 

cloud alignment depends on the existence of enough well 

distributed SIFT features in each pair of RGB images as well as 

on the noise of the corresponding features in the range data. For 

this reason weak connections have to be avoided by using a 

relatively large overlap between captured data sets to provide 

suitable alignment accuracy for the respective point clouds.  

4.4 Matching of Point Cloud and Indoor Model 

Since the result of an indoor navigation using MEMS IMU is 

available during acquisition of the range images, the respective 

user positions can be used to transform the collected point 

clouds to the reference coordinate frame. However, the accuracy 

and reliability of this georeferencing is improved considerably, 

if the point cloud is matched against the coarse indoor model as 

generated by the interpretation of the evacuation plan. 

 

Figure 14: Point cloud collected in a room fitted to the available 

indoor model. 

The fit of the point cloud from Figure 13 to the indoor model 

depicted in figure 5 is given in Figure 14. This fitting was 

realized by the ICP algorithms already used for point cloud 

alignment. In order to use this algorithm, first a point cloud was 

sampled from the faces of the 3D indoor model. Then the 

measured Kinect point cloud was matched against this reference 

by the ICP approach while the required initial approximation of 

that transformation was derived from the user position as 

captured during range data measurement by the methods 

discussed in section 2 and 3. 



 

 

5. CONCLUSION 

Within the paper, a “pedestrian mobile mapping system” is 

presented, which aims at the collection of georeferenced 3D 

point clouds using a foot mounted MEMS IMU and a low-cost 

range camera. Similar to our approach, the measurement of area 

covering 3D point clouds for indoor environments from 

sequences of range scans or images has been an important task 

within mobile robotics and computer vision. There, the 

Simultaneous Localisation and Mapping (SLAM) problem aims 

at placing a mobile robot at an unknown location in an unknown 

environment. The robot then incrementally builds a consistent 

map of this environment while simultaneously determining its 

location within this map (Fietz et al., 2010). For this purpose, 

these approaches usually align consecutive data frames, while 

the detection and global alignment of loop closures additionally 

improves the consistency of the complete data sequence. These 

systems generate a representation of the scene by collection of 

dense 3D point clouds, while the actual localization is more of a 

by-product. Our approach additionally integrates coarse models 

of the indoor environment. Potentially much more semantic 

information like room number, position of stairs, elevators can 

be made available by the interpretation of ground or evacuation 

plans. Since the integration of this information for navigation 

and route planning within pedestrian indoor applications is very 

reasonable, these issues will be tackled in our future work. 

Within the paper, a coarse 3D model for the building interior 

was successfully generated. However, the implemented 

automatic image interpretation is still highly adapted to the 

visual appearance of the captured evacuation plan. Similar 

problems have also been reported during the use of architectural 

drawings for the reconstruction and 3D modeling of building 

interiors (Yin et al., 2009). Even though a number of 

researchers and CAD developers aim on the automatic 

conversion of 2D drawings into 3D models, the lack of 

generality still remains the most important shortcoming. This 

problem is facilitated for evacuation plans since they do not 

contain too much and complex information. Thus, additional 

work to allow for an interpretation on a more abstract and thus 

general level is still required. Furthermore, the collected 3D 

point clouds will be used for update and refinement of the 

coarse indoor model as available from the evacuation plan. 
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