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In video based driver assistance systems, cameras with high-dynamic range
CMOS sensors are highly susceptible to glaring illumination and thus, stray light
artefacts might occur. In this paper we present an approach for an automated
stray light analysis based on digital image processing and supervised statistical
learning. Cross-validation results show an artefact detection rate of about 93 %

1 Introduction

Video based driver assistance systems are gain-
ing increased importance in the domain of night
vision improvement or object and lane measure-
ments. The active infrared night vision system of
Bosch (see Fig. 1 left) provides a three times more
extended visibility at night compared to conventional
low-beam headlights without blinding oncoming traf-
fic. The road scene illuminated by infrared light is
recorded by a high-dynamic-range CMOS (HDR)
camera (Fig. 1 right) and presented as a black-
and-white image on a display. The HDR camera is
able to capture the outperforming wide luminance
range of night sceneries using a nonlinear con-
version (for a more detailed description see [1]).

Fig. 1 Night Vision system of Bosch (leff) and HDR cam-
era (right)

During serial production, these cameras are tested
for various optical parameters such as focus,
contrast, resolution and sensitivity to stray light.
Thereby, the performance of HDR cameras is espe-
cially critical if being exposed to glaring situations
in typical street sceneries with uncontrollable illumi-
nation, for example by oncoming traffic or reflection
at traffic signs. Due to mechanical defects or con-
tamination of the imager or lens, different stray light
artefacts might be amplified by the HDR CMOS sen-
sor and occur as beams and fans of varying lengths
or different halo sizes as well as sidelight structures
in the images (Fig. 2). So far, cameras were tested
by visual inspection by means of a failure catalogue.
In order to ensure the reproducibility and repeata-

bility of test results, enhance the test coverage and
at the same time reduce test duration, an objective
and automated stray light analysis was developed.
While moving the camera under test by means of
a motor unit in dark surroundings, images are ac-
quired which show an external light source mapped
as bright spot on dark background at different posi-
tions. In the following, a machine learning algorithm
will be presented which provides reliable results in
detecting stray light artefacts.

Fig. 2 Various stray light artefacts; left: fan, middle: beam,
right: side light

2 Algorithm for objective stray light analysis

The aim of the introduced machine learning algo-
rithm is the classification of the cameras into a defect
or non-defect class by evaluating statistical features
of image intensities. As stray light artefacts are, how-
ever, characterized by blurred intensity differences
and show a large range in appearance, an approach
based on supervised statistical learning in combina-
tion with image processing is applied as opposed to
a simple analysis of intensity measures. The classi-
fication can be subdivided into two steps: (a) training
of the classifier and (b) actual prediction of the class
in each image by application of the classifier. First
of all, training data with different artefacts as well as
images without artefacts are collected. By means of
visual inspection, every image gets the label n.i.O. if
it contains an artefact and i.O. if it does not. After im-
age pre-processing like noise reduction for example,
the next step is to extract generic statistical features
from the intensity pattern such as maximum, mean,
standard deviation and more [2]. These features are
merged to a row vector for each camera under test.
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The composition of all row vectors together with their
labels result in a matrix which provides the input for
the training of the statistical learning model. After be-
ing trained, this model can be used for the detection
of artefacts in test images not seen during the train-
ing on basis of the same feature extraction.

The performance of the model is evaluated by a
k-fold cross-validation (CV) procedure which sub-
sequently splits up the training dataset with a-prior
known labels into k blocks. Each run of the CV, k-1
blocks are used for the training of the model. After-
wards, the class of each image in the left out block
is predicted by the trained model. These steps are
repeated k times. The comparison between the pre-
dicted and a-prior known class labels provides the
prediction accuracy of the model on different but
overlapping training sets. Apart from the predicted
artefact probability in each image (see Fig. 3 left),
the results of the CV are presented by a receiver
operating characteristic (ROC) analysis (see Fig. 3
right). For this purpose, a threshold is incrementally
increased from 0 to 100 %. All images with an arte-
fact probability above that threshold are assumed
to contain an artefact, while all other images are
assumed to be non-defect. The ROC curve shows
the true-positive rate (tpr) over the false-positive rate
(fpr) with respect to each threshold, i.e. the prob-
abilty that an existing artefact is actually detected
over the probabilty that an artefact is acidentally pre-
dicted. A summarizing measure is the area under
the ROC curve (AUC) in percent (see Fig. 4). Thus,
an optimal ROC curve with an AUC of 100% has
a tpr of 100% while the fpr is zero. This means
that an appropriate threshold exists which leads to
a good classification result. For more details in sta-
tistical learning methods and the evaluation please
refer to [3].

3 Discussion of results

To assess the performance of the proposed
stray light analysis, we have acquired images
with fans, sidelight and beams as well as im-
ages without any artefacts, extracted the features

and deployed a cross-validation with & = 5.
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Fig. 3 Results of stray light analysis on the example of
side light; left: predicted artefact probability of each image
in test data; right: ROC curve

As an example, Fig. 3 depicts the prediction results
and ROC curve of one CV run for the sidelight arte-

fact. For each image on the x-axis, its position on
the y-axis shows the predicted probabilty containing
an artefact. An image with a red cross actually con-
tains an artefact, green means that it does not. Sup-
pose we take a threshold of 50 %, all images with an
artefact are classified properly, while three images
not containing any artefact have a predicted arte-
fact probabilty of more than 50 % and thus, will be
misleadingly assumed to contain an artefact. Fig. 3
shows the corresponding ROC curve which leads to
an area under curve of 98.2 %.

A comparison of AUC values of each CV run be-
tween fans, sidelight and beams is depicted in Fig. 4.
In the case of fan artefacts, only one CV run leads to
an AUC slightly lower than 90 %, while all other CV
runs have higher AUC measures, even up to 100 %.
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Fig. 4 AUC results from cross-validation; top left: fan, top
right: beam, bottom: side light

4 Conclusion and outlook

The results of the stray light analysis conceal an av-
erage AUC value of about 93 % for different arte-
fact types. In conclusion, this paper presents an ap-
proach of statistical learning based on digital image
processing for automatic detection of stray light arte-
facts of high-dynamic range cameras.

The extraction of more robust features as well as an
accompanying sensitivity analysis is expected to im-
prove results in future. Additionally, images with a
vague artefact probability will be analysed. Finally,
the approach will be optimized for the application in
test engineering during the production process.
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