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Abstract

In this paper we propose a method to determine the ex-
terior orientation of each frame of an intensity image se-
quence using prior knowledge of the scene stored in a point-
based environment model (PEM). The orientation is per-
formed by tracking landmarks across the image sequence
acquired with a calibrated camera. The landmarks are in-
tensity features, which are automatically extracted from the
PEM. The PEM can easily be acquired by long range 3D
sensors, such as terrestrial laser scanners. The orientation
procedure of the imaging sensor is solely based on spatial
resection.

1. Introduction

The problem of image orientation consists of the deter-
mination of the rotation and translation of the image frame
with respect to some external coordinate frame. Image ori-
entation from image sequences is a classical problem in
photogrammetry and computer vision. Applications are
widespread and can range from pedestrian self-localization,
autonomous robotics and augmented reality to object recog-
nition under camera motion. Many approaches addressing
the problem have been proposed. Some use direct orienta-
tion sensor such as inertial measurement units (IMUs) and
GPS systems to determine orientation and position, others
use a combination of a variety of sensors, such as ranging,
imaging and orientation sensors.

We propose a point-based environment model (PEM) to
represent the absolute coordinate frame and to store the
prior knowledge of the scene. A PEM is a dense point-
wise sampling of the surface of the objects in a scene. Each
sample consists of the three-dimensional coordinate of the
location of the point and an associated intensity value. The
novelty of the approach is the fact that we base the approach
on a PEM that has been acquired from a seperate sensor sys-
tem, than we use for the actual tracking.

The motivation for this approach is the expectation, that
dense point clouds of large building complexes, industrial

facilities and urban areas will become widely available dur-
ing the next few years. The main enabling factor is the re-
cent wide spread availability of reliable sensor systems and
service companies. The main drive behind the acquisition
of such data is from the computer-aided facility manage-
ment (CAFM) industry, preservation authorities and safety
agencies. Once this data has been acquired it can serve
multiple purposes, our proposed application being only one
in many. It is not the intention to acquire the point cloud
specifically for the purpose of intensity image orientation.
Other approaches (see below) would be more practical in
that case.

The PEM provides landmarks which are used for inten-
sity image orientation. The landmarks are feature points
which are tracked across the image sequence. The core of
the orientation procedure is based on ideas from structure
from motion algorithms, tracking algorithms and generally
visual navigation. Therefore we want to briefly introduce
the related work in the following section. Section 3 details
the acquisition and pre-processing of our PEM. The calibra-
tion of the imaging sensor is described in section 4. Section
5 describes our adoption of intensity image feature tracking
and subsequent image orientation.

2. Related Work

Image orientation in intensity image sequences is a
well-studied problem in computer vision. The solution
to the problem is mainly associated with structure from
motion (SfM) combined with feature tracking and SLAM
[1, 2, 3, 4]. SfM assumes no prior knowledge of the scene.
Therefore, no landmarks are available to represent an ab-
solute reference frame. Instead, arbitrary (but well suited)
feature points are tracked across the image sequence. The
orientation procedure is based on relative orientation, also
referred to as essential matrix computation in computer vi-
sion, when the interior orientation of the camera is known,
i.e. the camera is calibrated. For an uncalibrated camera,
the orientation can be performed by fundamental matrix
computation. The SfM approach can also be used to recon-
struct the scene. This can be done by forward intersection of



tracked feature points using the recovered orientation. Ob-
viously, the precision of the scene structure relies on the
precision of the recovered orientation. Since the approach
includes no prior information, the orientation and likewise
the reconstructed scene are computed in an arbitrary coor-
dinate frame, typically relative to the first frame of the se-
quence.

The orientation of single intensity images using a depth
map has been studied for example in [5]. The process is
formulated as a registration process. It is mainly useful for
registering texture images which were acquired from a sep-
arate camera. The approach uses edge features extracted
from both the intensity image and the range data to estab-
lish correspondences.

The case of image orientation of intensity image se-
quences when prior knowledge is available in form of range
data has only recently received attention. In [6] the authors
proposed an approach which basically combines SfM with
the iterative closest point (ICP) algorithm. Initially images
are oriented using normal SfM. Then the point cloud of the
reconstructed scene is matched against the given range data
using ICP. The approach has been demonstrated on a se-
quence of aerial images, where additional orientation sen-
sors were included in the process.

In [7] the authors have demonstrated a different ap-
proach, where the prior knowledge is available in form of a
digital elevation map (DEM). They use the DEM to reduce
the complexity of the orientation computation, basically by
cutting off image rays, where they intersect the DEM. This
avoids explicit reconstruction of the scene. Again the ap-
proach has been demonstrated on an aerial image sequence
where additional sensor information on the camera motion
is available.

It is interesting to observe that [6] attempts to reconstruct
the scene from the image sequence even though the three-
dimensional information is already available. The corre-
spondence of range data to image data is performed in three-
dimensional space after or during reconstruction. Conse-
quently the orientation procedure relies on some form of
relative orientation. In contrast to this our proposed method
does not attempt to reconstruct the scene. It solely relies on
the PEM to represent the scene. Also we do not use any
form of relative orientation procedure, but solely rely on
absolute orientation. In addition to reduced complexity, this
has the advantage that the image is directly oriented within
the absolute coordinate frame and there is no propagation
of errors along a chain of relative orientations.

3. Point-based Environment Model

The PEM and the landmarks extracted from it, serve as
a navigational frame for subsequent image orientation. The
PEM mainly consists of a dense point cloud with associ-

Figure 1. The sensors utilized for this study
are a laser scanner and a machine vision
camera. The laser scanner to the left is a Le-
ica HDS 3000. The camera to the right is a
Basler A302f. Both devices were mounted on
a tripod during data acquisition.

ated intensity values. Many approaches for the acquisition
of dense point clouds are known. Some are triangulation-
based, either active or passive. Others are based on the time-
of-flight (TOF) principle. The advantage of using a proven
TOF scanner is that the points can be determined with great
accuracy and reliability. The rigid geometry of the point
cloud is the key to providing accurate control information
for camera orientation.

3.1. Data acquisition

A Leica HDS 3000 was used to perform the laser scan-
ner measurements. The scanner is shown in figure 1 on the
left. The HDS 3000 is a pulsed laser scanner operating at a
wavelength of 532 nm. Distance is measured by TOF mea-
surement along a laser beam. The beam is deflected using a
mirror about two axes. The resulting polar coordinates are
converted to Cartesian coordinates centered at intersection
point of the scanners horizontal and vertical axis. The scan-
ner is able to acquire a scene with a field of view of up to
360◦ horizontal and 270◦ vertical in a single scan. The typi-
cal standoff distance is 50 to 100 meters, but measurements
from as close as 1 meter are also possible. The manufac-
turer specifies the accuracy of a single point measurement
with 6 mm. But when averaging over surfaces, the accuracy
on modeled surfaces is about 2 mm.

For testing purposes the experiments were set up in an
office environment. The scanner is placed in the middle of
the room. A single scan captures the full room, with little
occlusions. The resolution on the surfaces was chosen to 5



Figure 2. The point cloud data acquired by
our laser scanner. The figure shows an
overview of the full scan of an office.

mm on average. The point cloud consists of over 1.5 million
points, which were acquired in about 15 minutes. In addi-
tion to the x, y and z coordinates, the scanner also records
the intensity of the reflected laser pulse. An overview of the
collected point cloud can be seen in figure 2.

Since the scanner acquires the points in an almost regular
raster in the two angles of deflection, the recorded intensity
values can be interpreted as an intensity image. However we
shall note that the acquisition of this intensity image is fun-
damentally different from an image acquired by a camera.
The intensity values are recorded as the intensity of the re-
flected beam, which locally illuminates the surface at a very
narrow bandwidth of the laser beam around 532 nm. In con-
trast a camera depends on an external light source which is
usually placed at an offset to the camera, e.g. natural sun
light or room light. Therefore shadowing frequently occurs
in camera images, which can lead to unstable feature points.
It is advantageous that this can not occur for the PEM data.
However we might miss some good feature points, which
are not visible at the narrow bandwidth of the light source.

3.2. Feature extraction

If we disregard these differences we can use any stan-
dard image processing algorithm on the intensity values
recorded by the laser scanner. In order to detect prominent
points in the scene we use the well known Harris-Stephens
corner response function [8]. The function is given by
R = det M − k(traceM)2, where the matrix M(a, b) for
an image I is given in table 1 using

w(u, v) = e
−(u2+v2)/(2σ2)

The experimentally derived value for k of 0.04 is also
adopted.

Figure 3. The processed point cloud. The left
figure shows a part of the scan with auto-
matically extracted feature points. The right
figure shows a reduction of the point cloud
which contains only edge points.

To extract individual points, which can be sufficiently
differentiated from their neighbors, we use a non-maximum
suppression scheme, where only points are selected which
have a corner response value larger than any of their neigh-
bors. For the points selected by their intensity values the
corresponding x, y and z values are extracted as well and
thus full three-dimensional feature points are obtained. The
results of this processing is shown in figure 3 on the left,
where the extracted three-dimensional feature points are
highlighted by crosses in the point cloud.

For display purposes we need to compute a reduced point
cloud which still sufficiently represents the scene. We use a
simple differentiation filter on the intensity values and per-
form local thresholding to detect edge points in a fashion
similar to that for feature points. The results are shown
in figure 3 on the right. A simple three-dimensional edge
model is obtained. However, it shall be noted that the edges
extracted only consist of a collection of points, similar to
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Table 1. Matrix for Harris-Stephens corner response function.

edge pixels in an image and are not edges in a CAD sense.

4. Camera Calibration

We use the collinearity equations, well known from pho-
togrammetry, to describe the relation of object point coor-
dinates to image coordinates. Let c be the principal dis-
tance of the camera, (X0, Y0, Z0) the coordinates of the
projection center in object space, (X, Y, Z) the coordinates
of the object point, (x0, y0) the principal point and (x, y)
the coordinates of the corresponding image point. Then the
collinearity equations [9] are

x = x0 − c (X−Xc)r11+(Y −Yc)r12+(Y −Yc)r13
(X−Xc)r31+(Y −Yc)r32+(Y −Yc)r33

y = y0 − c (X−Xc)r21+(Y −Yc)r22+(Y −Yc)r23
(X−Xc)r31+(Y −Yc)r32+(Y −Yc)r33

(1)

where rij are the elements of a rotation matrix.
While this basic pin-hole camera describes the geomet-

ric relations in an ideal case, additional parameters are used
for a more complete description of the imaging device. The
following parameters follow the physically motivated ap-
proach of D. C. Brown [10] in a variation for digital cameras
presented by C. S. Fraser [11]. Three parameters Ko,K1

and K1 are used to describe the radial distortion, also known
as pin cushion distortion. Two parameters P1 and P2 de-
scribe the descentering distortions. Two parameters b1 and
b2 describe a difference in scale in-between the x- and y-
axis of the sensor and shearing. To obtain the corrected im-
age coordinates x, y the parameters are applied to the dis-
torted image coordinates x′, y′ using the formulas in table
2. The variable r =

√
x2 + y2 denotes the radial distance

from the principal point.
The camera’s parameters are determined in a bundle ad-

justment using a planar test field. The camera is calibrated
beforehand and the resulting parameters are stored. The
corrections are then directly applied to the images resulting
in distortion-free images. The advantage of this procedure
is that we can use the simpler pinhole camera model for the
remaining computations and we can directly superimpose
edge points. Figure 4 shows the initial frame of a sequence
acquired with a Basler A302f. The camera is able to ac-
quire up to 30 frames at a resolution of 780x582 pixels. It
is equipped with a 4.8 mm wide-angle lens. The result of
camera calibration is shown on the left.

Figure 4. The lens distortion parameters and
the coordinates of the principal point ob-
tained during photogrammetric calibration
are directly applied to the images. The left
image shows an original frame from the se-
quence. The effects of lens distortions are
particularly visible on the straight edges of
the wall unit. The right image shows the pro-
cessed image free of lens distortions.



x = x′ − x0

y = y′ − y0

4x = xr2K1 + xr4K2 + xr6K3 + (2x2 + r2)P1 + 2P2xy + b1x + b2y
4y = yr2K1 + yr4K2 + yr6K3 + 2P1xy + (2y2 + r2)P2

x = x +4x
y = y +4y

Table 2. Formulas for lens distortions.

5. Feature Tracking and Image Orientation

As we have stated in the introduction the image orienta-
tion is based on the tracking of intensity features. For the
design of a tracking algorithm several key components can
be identified [12]. Among them are the feature extraction
algorithm, the motion model, the image matching algorithm
and a template similarity measurement.

5.1. Tracking Strategy

Within the proposed framework we do not select fea-
ture points from the intensity information given in the im-
age. Rather we rely on the landmarks projected into the
image. The algorithm randomly selects a given number of
key points from all landmarks whose projection falls within
the current frame. The number of points is a trade-off in-
between reliability and processing speed. For the experi-
ments presented within this paper we chose the number of
key points to be tracked to ten.

We use a simple sum of absolute differences operator to
perform the matching of local templates across a sequence
of images. This is a very fast operation and worked suffi-
ciently well in our tests. We use a linear motion model to
detect outliers in the matching process. We adopt the ran-
dom sample consensus (RANSAC) [13] strategy for out-
lier detection. We randomly select single key points and
check on the consensus of their planar motion to that of
all other key points. When outliers are detected these key
points have to be replaced to guarantee that the number of
key points will not degenerate. The same is true when a key
point moves outside the image boundaries. A key point is
replaced by randomly selecting any other landmark whose
projection falls within the image boundaries. For any land-
mark that has been tracked the image template is stored for
later re-use, shall the point be tracked again. This adds ad-
ditional stability to feature tracking.

Figure 5 shows the initial frame introduced above with
the projected landmarks marked by squared boxes. To the
bottom we see the template patches extracted at these loca-
tions.

Looking at the templates we see, that they are not neces-

Figure 5. From the available feature points a
fixed number of points are randomly selected
for tracking, in this case ten are selected. The
top figure shows the selected areas. The bot-
tom figure is a composition of the image tem-
plates cut out in these areas.



sarily optimal in the sense of Shi and Tomasi [12]. This
is a penalty we pay for the fact that our approach does
not extract feature points based on the information of the
given image. Rather we rely on the assumption that a
three-dimensional landmark identified based on the inten-
sity information of the laser scanner also is a suitable two-
dimensional feature point in the image. This assumption is
not always valid. For one this is due to the principal dif-
ferences in the image formation process already discussed
above. A further reason is the perspective discrepancy cre-
ated by the offset in-between the laser scanner station and
the camera station, which is unavoidable for a freely mov-
ing camera. Nevertheless figure 6 in the left column shows
the successful tracking of the key points over a sequence of
images with arbitrary motion, mostly traverse to the left.

In order to initialize the tracking process the user has to
identify three landmarks in the first frame of the sequence.
These correspondences are used to compute the orientation
of the first frame via spatial resection. This allows for the
projection of all other features into the image, which can
then be tracked across the next frames.

5.2. Spatial Resection

For the orientation of each frame in the absolute coor-
dinate system we use a photogrammetric technique known
as spatial resection. Spatial resection involves the determi-
nation of the six parameters of the exterior orientation of
a camera station. Several solutions both closed-form and
iterative have been proposed in the literature [14].

Since we are working on image sequences where lit-
tle change in the exterior orientation is to be expected in-
between frames, we use an over-determined iterative solu-
tion, where the results of the previous epoch serve as ini-
tial values for the current computation. For an iterative
solution, the collinearity equations have to be linearized.
This is standard in photogrammetry. The partial derivatives
∂x
∂X , ∂y

∂X , ∂x
∂Y , ∂y

∂Y , ∂x
∂Z , ∂y

∂Z , ∂x
∂ω , ∂y

∂ω , ∂x
∂φ , ∂y

∂φ , ∂x
∂κ , ∂y

∂κ need to
be formed from equation 1, where ω, φ and κ are three Euler
angles parameterizing the rotation matrix. This procedure is
well known in photogrammetry.

From at least three points known in three-dimensional
space and observed by the camera, we can determine the
unknowns X, Y, Z, ω, φ and κ. Up to four solutions ex-
ist in theory, but since we initiate the iterative estimation
process close to its final solution, this ambiguity is irrele-
vant. One condition for the success of the computation is,
that the points selected do not lie on a straight line in three-
dimensional space. Furthermore the process will be more
reliable when the points are well distributed in image space.

After the orientation has been performed successfully all
three-dimensional features can be projected into the image
plane. Figure 6 in the right column shows the projection of

Figure 7. Recovered trajectory over a se-
quence of 400 frames with arbitrary camera
motion.

the extracted edges onto the image. Currently we can not
provide reference measurements for direct checking the ac-
curacy of the recovered orientations. We can only estimate
accuracy by observing image residuals at the control points,
which is the quantity minimized by spatal resection. Visu-
ally the good alignment of extracted edge points projected
onto the edges in the image indicate successful orientation
of the camera.

In figure 7 we finally show the trajectory recovered with
our approach in the example office environment. The se-
quence consist of 400 frames with the camera mentioned
above. Three of the frames were already shown in figure 6,
including the tracked key points. The camera motion is un-
constrained. The landmarks used for the orientation process
are also shown.

6. Summary

We have presented a method for the orientation of im-
ages in a sequence within the absolute coordinate frame
given by a point-based environment model. The method ef-
fectively aligns the image stream with a three-dimensional
point cloud. A contribution of this work is the observation,
that intensity features extracted from laser scanner point
clouds provide sufficient landmarks for the orientation of in-
tensity images. This enables the use of separately acquired
point cloud data (possibly collected for completely differ-
ent purposes) for self-localization and navigation tasks. The
benefit of this approach is that no artificial landmarks, bea-
cons, etc. have to be place in the environment. Still the
mobile agent needs to be equipped with only an intensity
camera.

Currently a shortcoming of the method is the fact that



Figure 6. Three frames of a sequence each 100 frames apart showing the successful tracking of
landmarks. They are part of a sequence of 400 frames taken from an office environment. The order
of the sequence is from top to bottom. The left column shows the features selected for tracking
which are marked with a box. The right column shows the projection of the edge points extracted
from the laser data onto the images to verify the computed camera orientation.



we need to manually initialize the tracking process by iden-
tifying a minimal number of landmarks in the first frame.
In the future this could be replaced by providing a collec-
tion of more descriptive landmarks, for example using the
SIFT operator [15], which provides a local feature descrip-
tion. This can possibly automate the initial identification of
landmarks and could also serve as a recovery strategy, when
tracking is interrupted.
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