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Abstract— Within the paper the applicability of modern graphic 
cards for SAR simulation is demonstrated. By these means SAR 
simulation, which is frequently used as a key tool for the analysis 
and interpretation of SAR scenes, is feasible in real-time even in 
complex urban environments. This is realised by the 
implementation of SAR geometry within standard graphics 
hardware, which offers 3D hardware acceleration and 
programmable graphics processing units (GPU).  
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I.  INTRODUCTION 
Frequently, the applicability of SAR simulations is 

hindered by the considerable amount of time, which is already 
required to generate a single scene. However, simulations to 
interactively support the interpretation of SAR images are only 
useful, if results are available almost in real-time. The same is 
true for SAR mission planning. Especially in urban areas a 
considerable number of test scenarios have to be checked in 
order to avoid or at least reduce occlusions by almost optimal 
flight and sensor parameters. Because the response time of 
common SAR simulators is too long, databases containing 
simulated objects of interests are created, to support object 
detection and SAR image interpretation. A real-time SAR 
simulation supersedes these databases.  

Such real-time simulation is feasible based on modern 
graphic cards, which offer 3D hardware acceleration and 
programmable graphics processing units (GPU). These graphic 
cards are a standard equipment of almost every new PC and 
offer a boost in computational power. Since these graphic cards 
are mostly used by computer games, the game industry is the 
driving force behind this development. Thanks to the economy 
of scale, these graphic cards are now widely available and 
inexpensive. In addition to gaming, the computational power of 
the GPU can be used for a variety of general computation 
purposes [1]. Realizing a real-time SAR simulation, as aspired 
by our approach, opens new fields of applications. New 
algorithms for SAR image interpretation are applicable if the 
simulator is not the bottleneck anymore. 

II. VISUALISATION TECHNOLOGIES 
Real-time visualization of complex 3D scenes is one of the 

main goals in computer graphics. Visual realism can be e.g. 
achieved by ray-tracing. There the path of each “ray of light” is 
traced from the light source to the virtual eye, while each 
reflection at object surfaces is simulated depending on the 

respective material properties. Ray-tracing applies accurate 
physical models and can be implemented easily. Unfortunately 
it is very time consuming, which prevents this technique from 
being used in real-time environments.  

This type of application is usually based on the so-called 
rasterization approach. There, triangulated 3D vector models, 
which represent the scene to be visualized are mapped from 
world to the screen or image co-ordinate system. Afterwards, 
each triangle is rasterized and depicted at his image position. In 
order to handle occlusions a so called z-buffer is used. In this z-
buffer each depth value of an already rasterized pixel is saved. 
Every new pixel which has to be rasterized, must pass the z-
test, thus must be closer to the virtual camera as the pixels 
already drawn. This technique is simple, efficient and, less 
computational effort is necessary compared to ray-tracing. 
Rasterization is supported by hardware acceleration within 
modern graphic, thus real-time visualization of even complex 
scenes is feasible. However, since the technique does not really 
model the physical light transport, scenes with complex 
reflections can not be simulated accurately. Still, similar to the 
creation of realistic scenes for computer games, it is possible to 
simulate realistic SAR images using rasterization at sufficient 
quality. As it is described in the following section, for this 
purpose the methods originally developed in computer graphics 
have to be modified. 

III. GPU BASED SAR-SIMULATION 
Since hardware accelerated visualization was originally 

designed for visual light scene generation, the differences with 
respect to SAR imaging geometry have to be implemented 
within such a process. This can be realized by means of the 
programmable graphics processing units (GPU) offered by 
modern graphic cards. Our real-time SAR simulator SARViz 
[2] is implemented using Microsoft’s DirectX API [3] and the 
High-Level Shading Language (HLSL) for GPU programming. 
SARViz uses slightly modified DirectX meshes as input 
source, which can be provided by a variety of 3D CAD tools. 
Alternatively, import tools for other data sources like Arc-GIS 
datasets are available. 

A. SAR rasterization 

The GPU is a data-parallel streaming processor working in 
a single-instruction, multiple data (SIMD) fashion. It allows a 
massively parallel computing since each triangle or pixel is 
visualized independent from any other triangle or pixel. The 
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geometric processing of each triangle or vertex point is 
provided by the so-called vertex shader. Vertex shaders are 
highly specialized parts of a graphic card and are optimized for 
matrix calculations. Each point is transformed from the model 
coordinate system to world coordinates and then subsequently 
to screen or image coordinates. 

Since the geometry of a SAR image differs from the visible 
light it has to be implemented appropriately in the vertex 
shader. In SAR images the position in range of each object 
depends on the distance between the object and the sensor, thus 
higher points, i.e. points with larger z-values, are closer to the 
sensor and are therefore mapped closer to near-range. This 
results in a shift in range direction tan( )x z σ∆ = ⋅  depending on 
the height above the ground level z and the incidence angleσ  

After geometric processing each triangle is rasterized. The 
resulting pixels are processed by the fragment shader to 
compute the corresponding radiometry. Calculating the 
reflection intensity for SAR images is a relative complex task. 
Since the first programmable fragment shaders were limited to 
only a few calculations, complex and customized illuminations 
could not be calculated. In contrast, modern fragment shaders 
(version 3.0 or higher) support branching and more than 512 
machine-code commands, which is sufficient even for complex 
tasks like SAR simulation. For each pixel the corresponding 
face normal is available. Reflection strengths can then be 
computed in the fragment shader by additionally taking into 
account the respective material and the sensor properties.  

B. Reflection properties 

According to the Phong reflection model [4], three 
elements (diffuse, specular, and ambient) are combined for the 
resulting illumination. Ambient lightning is negligible for SAR 
simulation. The diffuse illumination element is equivalent to 
the Lambertian reflection element. The SARViz simulator is 
able to handle different reflection properties for each triangle of 
the simulated 3D model. According to the roughness of the 
material surface, the reflection is either more Lambertian or 
more specular and the resulting reflection is calculated 
accordingly. Using rasterization the reflected radar beams are 
not traced. Therefore the influence of specular reflections to 
surrounding objects is not modeled. 

C. SAR illumination 

Unlike the projective geometry used for the visualizations 
of visual light scenes, the SAR image geometry is a distance or 
running-time geometry in range direction. Reflections from 
different object or object parts which are equidistant to the 
sensor in range direction will sum up in the SAR sensor. This 
effect can also be modeled by GPU based SAR simulations, 
e.g. by alpha blending. Alternatively already rendered informa-
tion can be copied back from the render target, thus the 
simulated image, and added to the new calculated reflection 
value.  

D. Speckle effect 

Speckle is important for the realistic visualization of SAR 
images. Both cases of speckling, i.e. with and without 
dominant scatterers, can be simulated in real-time. Because no 

random values, beside Perlin noise, can be generated on the 
GPU, the random values are generated by the CPU and stored 
in a texture. Accessing the random texture, the GPU can 
calculate speckle noise for pixels with and without dominant 
scatterer. For each triangle in the model the value for the 
dominant scatterer can be set, whereas a value of zero 
represents a speckling without any dominant scatterer. The 
integration of different speckle behaviors allows the realistic 
simulation of different material behaviors related to scattering. 
This is very important for a realistic SAR simulation. 

E. SAR shadow 

The computation of shadow areas is an integral part of ray-
tracing. In the rasterization approach, the paths of the rays are 
not traced and every vertex and pixel is processed separately, 
therefore occlusions are not modeled. By using shadow maps 
[5] both shadow and occluded areas can be modeled. For this 
purpose, the scene is rendered twice. First the scene is rendered 
from the position of the light source, in other words from the 
sensor position. Instead of reflection values, the distance of the 
rendered pixel to the sensor is copied to the so-called shadow 
map. SARViz directly simulates ground-range images to avoid 
the computational extensive transformation from slant-range to 
ground-range. Because of this, the scene is, in the final step, 
rendered looking from nadir direction. The distance of each 
pixel rendered in the nadir view is compared to the distance 
from the sensor position. For this purpose the values stored in 
the shadow map are transformed to nadir. If the distance of a 
pixel to the sensor is longer as the value stored in the shadow 
map, the pixel is not visible and therefore it will not be 
rendered.  

IV. CREATING 3D-MODELS FOR SAR-SIMULATION IN 
URBAN AREAS 

SAR simulation within urban areas requires the availability 
of 3D city models as well as digital terrain models (DTM). For 
this purpose frequently dense 3D point clouds from airborne 
laser scanning are applied, which can also be used to estimate 
the roughness of the terrain.  

A. Automated 3D building reconstruction 
The development of tools for the efficient and area covering 
collection of 3D city models has been a topic of intense 
research for the past years. A good overview on the current 
state-of the-art is for example given in [6]. Frequently, these 
3D models are used to generate photorealistic visualisations of 
the urban environment. Typically, this type of application is 
required in the context of urban planning, tourism or 
entertainment, like games based on real locations.  Meanwhile, 
a number of algorithms are available, which are usually based 
on 3D measurements from airborne stereo imagery or LIDAR. 
Airborne photogrammetric data collection is suitable to 
efficiently provide a complete set of 3D building models, 
mainly representing the footprints and the roof shapes of all 
buildings at sufficient detail and accuracy. For this reason, the 
production of virtual city models is more and more becoming 
a standard task of photogrammetric data collection, resulting 
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in a growing availability of data sets, which include 3D 
representations of buildings.  

B. GPU based LIDAR point triangulation 
Alternatively to the explicit generation of 3D CAD models, 

point clouds from laser scanning can be directly used for 
geometric surface representation at least for some applications. 
However, in this scenario the construction of polygonal meshes 
from the LIDAR points is still required, which can be a 
relatively time consuming process. Usually the required surface 
meshing is based on Delaunay triangulation. According to 
Rong and Tan [7], the required Voronoi diagram can be 
approximated on the GPU, thus providing a basis for the GPU 
based Delaunay triangulation. 

Another, simpler approach uses the ability of GPUs to 
visualize large amounts of triangles and provides hardware 
accelerated z-tests. This can be used for hardware supported 
triangulation of LIDAR point data, as depicted in Figure 1. The 
triangulated surface is iteratively compared to the rendered 
points. Differences between the point heights and the triangle 
surface heights which exceed a certain threshold, force the 
triangles to iteratively segment themselves. This triangulation 
can be calculated fast, especially if a considerable gener-
alization of the surface is aspired. However, the resulting 
triangles are not shaped optimal, because no optimization 
criterion is used.  

 

Figure 1.  Triangulated LIDAR surface points 

C. Estimating the roughness of surfaces using LIDAR 
Surface roughness is an important parameter representing 

material properties as required for SAR simulation. In this 
context roughness is defined as height variation of the surface 
compared to the wavelength of the SAR sensor. In principle, 
this parameter can be derived from LIDAR measurement. 
Since available point density and accuracy from airborne data 
collection is limited, such a determination surface roughness 
should be supported by existing GIS-data. By these means, 
homogenous areas are already defined, which then are used for 
the estimation of one common roughness parameter. To allow 
for stable parameter estimation, the size of the respective areas 
should be large enough. Alternatively, to GIS-data, 
homogenous areas for the roughness analysis could be defined 

by an unsupervised or supervised classification of remote 
sensing data. 

In order to determine the roughness, the LIDAR points 
should be normalized with respect to a Digital Terrain Model 
in order to avoid an influence of surface topography during 
computation of their standard deviation. For plane surfaces, 
like streets or sports fields, the computed standard deviation of 
LIDAR points is around 0.1m, in forest areas the value is 
considerable larger than 1m. Grassland, fields or bush areas can 
be found in between 0.2m – 1m. Since the LIDAR data 
contains a lot of noise, this approach is only useful for large 
wavelength systems like L-band (20 cm) or P-band (1m) 
systems. Another way to determine the roughness is the 
comparison between first and last pulse data. Differences 
between first and last pulse is an indication for vegetation in 
the area, the absolute difference between first and last pulse 
indicates, depending on the vegetation and the season, the 
respective height above ground. Depending on the type of the 
vegetation, different values for the roughness of the simulated 
area can be assumed, which can be used to further improve the 
realism of SAR simulations. 

V. EXAMPLES 
SAR simulation in urban areas requires high-quality 

ground-truth data. In principle, this information can be 
provided with sufficient accuracy from dense point data as they 
are collected by airborne LIDAR. However, best simulation 
results are expected using 3D city models as provided from 3D 
building reconstruction processes. 

 
Figure 2.   SARViz simulation of the Stuttgart city model around the “Neues 

Schloss” 

In Figure 2 a SAR simulation by SARViz is depicted, which is 
based on a 3D city model for the city of Stuttgart, Germany. 
This model consists of 9950 buildings containing 548,729 
triangles. The simulation was generated in about 100 
milliseconds, not including the time needed to copy the data to 

0-7803-9510-7/06/$20.00 (c) 2006 IEEE



the video memory.  Thus, the real-time capability of SARViz 
could be demonstrated. 

The simulation of complex terrain models is also possible 
using SARViz, as can be seen in Figure 3. These terrain 
models are also produced from triangulated LIDAR point 
clouds. 

 
Figure 3.  DTM of the valley of Stuttgart simulated using SARViz (10m 
resolution, 60° off-nadir angle, 4 looks) 

All the SAR simulations depicted above always assume the 
same material properties. The differences in the reflected 
energy are caused by the topography, not by differences of the 
surface roughness or the dielectric constant of the materials. 
But these differences are important for a realistic simulation of 
SAR images. In Figure 4. a model of the E-3 sentry is 
simulated assuming different material properties. 

  

Figure 4.  SARViz simulation of a E-3 sentry model with Lambertian 
reflection (left) and more specular reflection properties (right) 

The simulation of the model assuming Lambertian 
reflection properties on the left side is less realistic as the 
simulation assuming more specular reflection properties. The 
reflection is still assumed not to be totally specular, otherwise 
most parts of the wings would not reflect any energy back. 
Beside the reflection properties, the speckling also differs. The 
simulation on the left side is simulating the plane model 

assuming no dominant scatterer behavior, whereas reflection of 
the model on the right side is assumed to be dominated by one 
scatterer per resolution cell. 

VI. CONCLUSIONS 
Real-time SAR simulation using techniques originally 

developed for computer games is a promising technology. In 
addition to consumer type graphic cards, no expensive 
hardware is required, i.e. real-time visualization of SAR images 
is possible on standard PC hardware. The ease of use and the 
real-time capability opens up new fields of applications of the 
SAR simulation. 

On the other hand the simulation results are not based on as 
exact physical models as ray-tracing simulators. Especially the 
missing multi-bounce effect is a drawback. The result of the 
simulation always depends on the quality and amount of 
information provided by the input data. Usually, the available 
data is not perfect and SAR simulations suffer from the lack of 
information about the material properties as well as from 
erroneous or unavailable city models. 

Using information acquired from LIDAR systems is a way 
to gather the required information. LIDAR data can be used for 
the reconstruction of city models, DTM generation and even 
for analyzing the surface roughness, regarding the reservations 
mentioned above. 

SAR simulations in urban areas can be based on data 
acquired by LIDAR systems. The real-time SAR simulation is 
not only able to deliver fast results, furthermore the ability to 
simulate and visualize huge amounts of 3D data, makes it the 
best choice for simulating city models. Cities are huge, 
complex and their models consist of hundreds of thousands of 
triangles. Slow SAR simulators are therefore unusable in this 
complex environment, whereas the drawbacks of the 
rasterization based SAR simulations are acceptable for most 
real-world applications.  

REFERENCES 
  

[1] I. Buck and T. Purcell: "A Toolkit for Computation on GPU", in: GPU 
Gems. Programming Techniques, Tips, and Tricks for Real-Time 
Graphics, R. Fernando, Eds. Boston: Addison-Wesley, 2004 

[2] T. Balz: "Real Time SAR-Simulation on Graphics Processing Units", in: 
Proceedings of EUSAR 2006, Dresden, 2006 

[3] Microsoft: "DirectX 9.0c Software Development Kit". 2005 
[4] B.T. Phong: " Illumination for computer generated pictures". 

Communications of the ACM 18, No. 6, pp. 311-317, 1975 
[5] L. Williams: "Casting curved shadows on curved surfaces", in: ACM 

SIGGRAPH Computer Graphics, Proceedings of the 5th annual 
conference on Computer graphics and interactive techniques 
SIGGRAPH '78, Atlanta, Georgia, 1978 

[6] Baltsavias, E., Grün, A. & van Gool, L.: Automatic Extraction of Man-
Made Objects From Aerial and Space Images (III). A.A. Balkema 
Publishers:, 2001  

[7] G. Rong and T.-S. Tan: "Jump Flooding in GPU with Applications to 
Voronoi Diagram and Distance Transform", in: Symposium on 
Interactive 3D Graphics and Games (i3D 2006), Electronic Arts 
Campus, Redwood City, CA, 2006 

0-7803-9510-7/06/$20.00 (c) 2006 IEEE


	Select a link below
	Return to Proceedings




