
Improved Real-Time SAR Simulation in Urban Areas

Timo Balz, Norbert Haala
Institute for Photogrammetry

Universität Stuttgart
Stuttgart, Germany

{firstname.lastname}@ifp.uni-stuttgart.de

Abstract— Within the paper the applicability of modern graphic
cards for SAR simulation is demonstrated. By these means SAR
simulation, which is frequently used as a key tool for the analysis
and interpretation of SAR scenes, is feasible in real-time even in
complex urban environments. This is realised by the
implementation of SAR geometry within standard graphics
hardware, which offers 3D hardware acceleration and
programmable graphics processing units (GPU).

SAR;Simulation;Real-Time;Urban Area

I. INTRODUCTION
Frequently, the applicability of SAR simulations is

hindered by the considerable amount of time, which is already
required to generate a single scene. However, simulations to
interactively support the interpretation of SAR images are only
useful, if results are available almost in real-time. The same is
true for SAR mission planning. Especially in urban areas a
considerable number of test scenarios have to be checked in
order to avoid or at least reduce occlusions by almost optimal
flight and sensor parameters. Because the response time of
common SAR simulators is too long, databases containing
simulated objects of interests are created, to support object
detection and SAR image interpretation. A real-time SAR
simulation supersedes these databases.

Such real-time simulation is feasible based on modern
graphic cards, which offer 3D hardware acceleration and
programmable graphics processing units (GPU). These graphic
cards are a standard equipment of almost every new PC and
offer a boost in computational power. Since these graphic cards
are mostly used by computer games, the game industry is the
driving force behind this development. Thanks to the economy
of scale, these graphic cards are now widely available and
inexpensive. In addition to gaming, the computational power of
the GPU can be used for a variety of general computation
purposes [1]. Realizing a real-time SAR simulation, as aspired
by our approach, opens new fields of applications. New
algorithms for SAR image interpretation are applicable if the
simulator is not the bottleneck anymore.

II. VISUALISATION TECHNOLOGIES
Real-time visualization of complex 3D scenes is one of the

main goals in computer graphics. Visual realism can be e.g.
achieved by ray-tracing. There the path of each “ray of light” is
traced from the light source to the virtual eye, while each
reflection at object surfaces is simulated depending on the

respective material properties. Ray-tracing applies accurate
physical models and can be implemented easily. Unfortunately
it is very time consuming, which prevents this technique from
being used in real-time environments.

This type of application is usually based on the so-called
rasterization approach. There, triangulated 3D vector models,
which represent the scene to be visualized are mapped from
world to the screen or image co-ordinate system. Afterwards,
each triangle is rasterized and depicted at his image position. In
order to handle occlusions a so called z-buffer is used. In this z-
buffer each depth value of an already rasterized pixel is saved.
Every new pixel which has to be rasterized, must pass the z-
test, thus must be closer to the virtual camera as the pixels
already drawn. This technique is simple, efficient and, less
computational effort is necessary compared to ray-tracing.
Rasterization is supported by hardware acceleration within
modern graphic, thus real-time visualization of even complex
scenes is feasible. However, since the technique does not really
model the physical light transport, scenes with complex
reflections can not be simulated accurately. Still, similar to the
creation of realistic scenes for computer games, it is possible to
simulate realistic SAR images using rasterization at sufficient
quality. As it is described in the following section, for this
purpose the methods originally developed in computer graphics
have to be modified.

III. GPU BASED SAR-SIMULATION
Since hardware accelerated visualization was originally

designed for visual light scene generation, the differences with
respect to SAR imaging geometry have to be implemented
within such a process. This can be realized by means of the
programmable graphics processing units (GPU) offered by
modern graphic cards. Our real-time SAR simulator SARViz
[2] is implemented using Microsoft’s DirectX API [3] and the
High-Level Shading Language (HLSL) for GPU programming.
SARViz uses slightly modified DirectX meshes as input
source, which can be provided by a variety of 3D CAD tools.
Alternatively, import tools for other data sources like Arc-GIS
datasets are available.

A. SAR rasterization

The GPU is a data-parallel streaming processor working in
a single-instruction, multiple data (SIMD) fashion. It allows a
massively parallel computing since each triangle or pixel is
visualized independent from any other triangle or pixel. The

0-7803-9510-7/06/$20.00 (c) 2006 IEEE

geometric processing of each triangle or vertex point is
provided by the so-called vertex shader. Vertex shaders are
highly specialized parts of a graphic card and are optimized for
matrix calculations. Each point is transformed from the model
coordinate system to world coordinates and then subsequently
to screen or image coordinates.

Since the geometry of a SAR image differs from the visible
light it has to be implemented appropriately in the vertex
shader. In SAR images the position in range of each object
depends on the distance between the object and the sensor, thus
higher points, i.e. points with larger z-values, are closer to the
sensor and are therefore mapped closer to near-range. This
results in a shift in range direction tan()x z σ∆ = ⋅ depending on
the height above the ground level z and the incidence angleσ

After geometric processing each triangle is rasterized. The
resulting pixels are processed by the fragment shader to
compute the corresponding radiometry. Calculating the
reflection intensity for SAR images is a relative complex task.
Since the first programmable fragment shaders were limited to
only a few calculations, complex and customized illuminations
could not be calculated. In contrast, modern fragment shaders
(version 3.0 or higher) support branching and more than 512
machine-code commands, which is sufficient even for complex
tasks like SAR simulation. For each pixel the corresponding
face normal is available. Reflection strengths can then be
computed in the fragment shader by additionally taking into
account the respective material and the sensor properties.

B. Reflection properties

According to the Phong reflection model [4], three
elements (diffuse, specular, and ambient) are combined for the
resulting illumination. Ambient lightning is negligible for SAR
simulation. The diffuse illumination element is equivalent to
the Lambertian reflection element. The SARViz simulator is
able to handle different reflection properties for each triangle of
the simulated 3D model. According to the roughness of the
material surface, the reflection is either more Lambertian or
more specular and the resulting reflection is calculated
accordingly. Using rasterization the reflected radar beams are
not traced. Therefore the influence of specular reflections to
surrounding objects is not modeled.

C. SAR illumination

Unlike the projective geometry used for the visualizations
of visual light scenes, the SAR image geometry is a distance or
running-time geometry in range direction. Reflections from
different object or object parts which are equidistant to the
sensor in range direction will sum up in the SAR sensor. This
effect can also be modeled by GPU based SAR simulations,
e.g. by alpha blending. Alternatively already rendered informa-
tion can be copied back from the render target, thus the
simulated image, and added to the new calculated reflection
value.

D. Speckle effect

Speckle is important for the realistic visualization of SAR
images. Both cases of speckling, i.e. with and without
dominant scatterers, can be simulated in real-time. Because no

random values, beside Perlin noise, can be generated on the
GPU, the random values are generated by the CPU and stored
in a texture. Accessing the random texture, the GPU can
calculate speckle noise for pixels with and without dominant
scatterer. For each triangle in the model the value for the
dominant scatterer can be set, whereas a value of zero
represents a speckling without any dominant scatterer. The
integration of different speckle behaviors allows the realistic
simulation of different material behaviors related to scattering.
This is very important for a realistic SAR simulation.

E. SAR shadow

The computation of shadow areas is an integral part of ray-
tracing. In the rasterization approach, the paths of the rays are
not traced and every vertex and pixel is processed separately,
therefore occlusions are not modeled. By using shadow maps
[5] both shadow and occluded areas can be modeled. For this
purpose, the scene is rendered twice. First the scene is rendered
from the position of the light source, in other words from the
sensor position. Instead of reflection values, the distance of the
rendered pixel to the sensor is copied to the so-called shadow
map. SARViz directly simulates ground-range images to avoid
the computational extensive transformation from slant-range to
ground-range. Because of this, the scene is, in the final step,
rendered looking from nadir direction. The distance of each
pixel rendered in the nadir view is compared to the distance
from the sensor position. For this purpose the values stored in
the shadow map are transformed to nadir. If the distance of a
pixel to the sensor is longer as the value stored in the shadow
map, the pixel is not visible and therefore it will not be
rendered.

IV. CREATING 3D-MODELS FOR SAR-SIMULATION IN
URBAN AREAS

SAR simulation within urban areas requires the availability
of 3D city models as well as digital terrain models (DTM). For
this purpose frequently dense 3D point clouds from airborne
laser scanning are applied, which can also be used to estimate
the roughness of the terrain.

A. Automated 3D building reconstruction
The development of tools for the efficient and area covering
collection of 3D city models has been a topic of intense
research for the past years. A good overview on the current
state-of the-art is for example given in [6]. Frequently, these
3D models are used to generate photorealistic visualisations of
the urban environment. Typically, this type of application is
required in the context of urban planning, tourism or
entertainment, like games based on real locations. Meanwhile,
a number of algorithms are available, which are usually based
on 3D measurements from airborne stereo imagery or LIDAR.
Airborne photogrammetric data collection is suitable to
efficiently provide a complete set of 3D building models,
mainly representing the footprints and the roof shapes of all
buildings at sufficient detail and accuracy. For this reason, the
production of virtual city models is more and more becoming
a standard task of photogrammetric data collection, resulting

0-7803-9510-7/06/$20.00 (c) 2006 IEEE

in a growing availability of data sets, which include 3D
representations of buildings.

B. GPU based LIDAR point triangulation
Alternatively to the explicit generation of 3D CAD models,

point clouds from laser scanning can be directly used for
geometric surface representation at least for some applications.
However, in this scenario the construction of polygonal meshes
from the LIDAR points is still required, which can be a
relatively time consuming process. Usually the required surface
meshing is based on Delaunay triangulation. According to
Rong and Tan [7], the required Voronoi diagram can be
approximated on the GPU, thus providing a basis for the GPU
based Delaunay triangulation.

Another, simpler approach uses the ability of GPUs to
visualize large amounts of triangles and provides hardware
accelerated z-tests. This can be used for hardware supported
triangulation of LIDAR point data, as depicted in Figure 1. The
triangulated surface is iteratively compared to the rendered
points. Differences between the point heights and the triangle
surface heights which exceed a certain threshold, force the
triangles to iteratively segment themselves. This triangulation
can be calculated fast, especially if a considerable gener-
alization of the surface is aspired. However, the resulting
triangles are not shaped optimal, because no optimization
criterion is used.

Figure 1. Triangulated LIDAR surface points

C. Estimating the roughness of surfaces using LIDAR
Surface roughness is an important parameter representing

material properties as required for SAR simulation. In this
context roughness is defined as height variation of the surface
compared to the wavelength of the SAR sensor. In principle,
this parameter can be derived from LIDAR measurement.
Since available point density and accuracy from airborne data
collection is limited, such a determination surface roughness
should be supported by existing GIS-data. By these means,
homogenous areas are already defined, which then are used for
the estimation of one common roughness parameter. To allow
for stable parameter estimation, the size of the respective areas
should be large enough. Alternatively, to GIS-data,
homogenous areas for the roughness analysis could be defined

by an unsupervised or supervised classification of remote
sensing data.

In order to determine the roughness, the LIDAR points
should be normalized with respect to a Digital Terrain Model
in order to avoid an influence of surface topography during
computation of their standard deviation. For plane surfaces,
like streets or sports fields, the computed standard deviation of
LIDAR points is around 0.1m, in forest areas the value is
considerable larger than 1m. Grassland, fields or bush areas can
be found in between 0.2m – 1m. Since the LIDAR data
contains a lot of noise, this approach is only useful for large
wavelength systems like L-band (20 cm) or P-band (1m)
systems. Another way to determine the roughness is the
comparison between first and last pulse data. Differences
between first and last pulse is an indication for vegetation in
the area, the absolute difference between first and last pulse
indicates, depending on the vegetation and the season, the
respective height above ground. Depending on the type of the
vegetation, different values for the roughness of the simulated
area can be assumed, which can be used to further improve the
realism of SAR simulations.

V. EXAMPLES
SAR simulation in urban areas requires high-quality

ground-truth data. In principle, this information can be
provided with sufficient accuracy from dense point data as they
are collected by airborne LIDAR. However, best simulation
results are expected using 3D city models as provided from 3D
building reconstruction processes.

Figure 2. SARViz simulation of the Stuttgart city model around the “Neues

Schloss”

In Figure 2 a SAR simulation by SARViz is depicted, which is
based on a 3D city model for the city of Stuttgart, Germany.
This model consists of 9950 buildings containing 548,729
triangles. The simulation was generated in about 100
milliseconds, not including the time needed to copy the data to

0-7803-9510-7/06/$20.00 (c) 2006 IEEE

the video memory. Thus, the real-time capability of SARViz
could be demonstrated.

The simulation of complex terrain models is also possible
using SARViz, as can be seen in Figure 3. These terrain
models are also produced from triangulated LIDAR point
clouds.

Figure 3. DTM of the valley of Stuttgart simulated using SARViz (10m
resolution, 60° off-nadir angle, 4 looks)

All the SAR simulations depicted above always assume the
same material properties. The differences in the reflected
energy are caused by the topography, not by differences of the
surface roughness or the dielectric constant of the materials.
But these differences are important for a realistic simulation of
SAR images. In Figure 4. a model of the E-3 sentry is
simulated assuming different material properties.

Figure 4. SARViz simulation of a E-3 sentry model with Lambertian
reflection (left) and more specular reflection properties (right)

The simulation of the model assuming Lambertian
reflection properties on the left side is less realistic as the
simulation assuming more specular reflection properties. The
reflection is still assumed not to be totally specular, otherwise
most parts of the wings would not reflect any energy back.
Beside the reflection properties, the speckling also differs. The
simulation on the left side is simulating the plane model

assuming no dominant scatterer behavior, whereas reflection of
the model on the right side is assumed to be dominated by one
scatterer per resolution cell.

VI. CONCLUSIONS
Real-time SAR simulation using techniques originally

developed for computer games is a promising technology. In
addition to consumer type graphic cards, no expensive
hardware is required, i.e. real-time visualization of SAR images
is possible on standard PC hardware. The ease of use and the
real-time capability opens up new fields of applications of the
SAR simulation.

On the other hand the simulation results are not based on as
exact physical models as ray-tracing simulators. Especially the
missing multi-bounce effect is a drawback. The result of the
simulation always depends on the quality and amount of
information provided by the input data. Usually, the available
data is not perfect and SAR simulations suffer from the lack of
information about the material properties as well as from
erroneous or unavailable city models.

Using information acquired from LIDAR systems is a way
to gather the required information. LIDAR data can be used for
the reconstruction of city models, DTM generation and even
for analyzing the surface roughness, regarding the reservations
mentioned above.

SAR simulations in urban areas can be based on data
acquired by LIDAR systems. The real-time SAR simulation is
not only able to deliver fast results, furthermore the ability to
simulate and visualize huge amounts of 3D data, makes it the
best choice for simulating city models. Cities are huge,
complex and their models consist of hundreds of thousands of
triangles. Slow SAR simulators are therefore unusable in this
complex environment, whereas the drawbacks of the
rasterization based SAR simulations are acceptable for most
real-world applications.

REFERENCES

[1] I. Buck and T. Purcell: "A Toolkit for Computation on GPU", in: GPU
Gems. Programming Techniques, Tips, and Tricks for Real-Time
Graphics, R. Fernando, Eds. Boston: Addison-Wesley, 2004

[2] T. Balz: "Real Time SAR-Simulation on Graphics Processing Units", in:
Proceedings of EUSAR 2006, Dresden, 2006

[3] Microsoft: "DirectX 9.0c Software Development Kit". 2005
[4] B.T. Phong: " Illumination for computer generated pictures".

Communications of the ACM 18, No. 6, pp. 311-317, 1975
[5] L. Williams: "Casting curved shadows on curved surfaces", in: ACM

SIGGRAPH Computer Graphics, Proceedings of the 5th annual
conference on Computer graphics and interactive techniques
SIGGRAPH '78, Atlanta, Georgia, 1978

[6] Baltsavias, E., Grün, A. & van Gool, L.: Automatic Extraction of Man-
Made Objects From Aerial and Space Images (III). A.A. Balkema
Publishers:, 2001

[7] G. Rong and T.-S. Tan: "Jump Flooding in GPU with Applications to
Voronoi Diagram and Distance Transform", in: Symposium on
Interactive 3D Graphics and Games (i3D 2006), Electronic Arts
Campus, Redwood City, CA, 2006

0-7803-9510-7/06/$20.00 (c) 2006 IEEE

	Select a link below
	Return to Proceedings

