
Real-Time SAR Simulation on Graphics Processing Units

Timo Balz, Institute for Photogrammetry, University of Stuttgart, Germany

Abstract

SAR simulators usually apply the ray-tracing approach. Ray-tracing, which is also used for virtual image genera-

tion, is based on accurate physical models, but is unfortunately rather computational time intensive. Because of

this, real-time applications, like interactive visualisation, in general use the rasterization method. Rasterization is

less complex to calculate and is therefore faster. This paper presents the real-time SAR simulator SARViz, which

uses rasterization and is implemented on programmable graphics processing units, which are nowadays included

in most modern PCs. SARViz is able to visualise even complex scenes in real-time, using the tremendous devel-

opment in computer graphics for the next generation SAR simulator.

1 Introduction

Useful applications of SAR simulations are hindered

if the simulator needs minutes or hours to simulate a

single scene. For image interpretation and object de-

tection, databases containing simulated objects of in-

terests are created in a pre-processing step. This is

necessary because the response time of common SAR

simulators is too long. A real-time SAR simulation su-

persedes these databases. Furthermore, it allows the

modification of models or sensor properties in real-

time. SAR mission planning also would benefit from

real-time SAR simulations. The ability to simulate dif-

ferent sensor properties and immediately see the simu-

lated results is an advantage, especially for the mis-

sion planning in urban areas. The optimal azimuth di-

rection, looking and squint angle can be found easily

by testing all reasonable options and immediately see

the results. Image processing applications based on

SAR simulated images also benefit from fast simula-

tion results, due to the reduction of the overall compu-

tation time.

Modern graphic cards offer 3D hardware acceleration

and programmable graphics processing units (GPU).

These graphic cards are standard equipment for al-

most every new PC and offer a boost in computational

power. Since these graphic cards are mostly used by

computer games, the game industry is the driving

force behind this development. Thanks to the econ-

omy of scale, these graphic cards are now widely

available and inexpensive. In addition to gaming, the

computational power of the GPU can be used for a

variety of general computation purposes [1].

Realising a real-time SAR simulation, as aspired by

our approach, opens new fields of applications. New

algorithms for SAR image interpretation are applica-

ble if the simulator is not the bottleneck anymore.

2 Visualisation Technologies

Real-time visualisation of real-word or artificial

scenes is one of the main goals in computer graphics.

Usually ray-tracing technology is being used to

achieve a realistic visualisation. In ray-tracing the path

of each “ray of light” is followed. Starting from the

light source, each ray is traced until the ray reaches

the eye. Each interaction with the respective object

surfaces is simulated. To reduce the amount of rays to

trace, the ray can also be traced backward, thus from

the eye to the light source. The combination of both

methods is reasonable [2].

The reflection of each ray at any object surfaces is

simulated based on the respective material properties.

This enables a high degree of realism. Ray-tracing is

supposed to be based on accurate physical models and

can be implemented easily. Unfortunately the ray-

tracing approach is rather computational time consum-

ing, because for each pixel of the simulated image one

ray has to be traced. For this reason, this technique is

normally not used for real-time applications.

Real-time visualisations are normally based on the

rasterization approach. Triangulated 3D vector models

are used as input data for the simulation. Each triangle

is then, according to the visualisation properties, like

the position and orientation of the virtual camera,

transformed from the world to the screen or image co-

ordinate system. Each triangle is rasterised and de-

picted at this transformed position. Triangles which

are calculated first can be overwritten by triangles

which are rasterised later, even if the pixel which is

rasterized later is occluded. To avoid this, a so called

z-buffer is used. In this z-buffer each depth value of an

already rasterised pixel is saved. Every new pixel

which has to be rasterised, must pass the z-test, thus

must be closer to the virtual camera as the pixels al-

ready rasterised before. This technique is simple, effi-

cient and, less computational effort compared to ray-

tracing is necessary. Modern graphic cards support the

rasterization and provide hardware acceleration. This

acceleration enables the real-time visualisation of even

very complex scenes.

However, since the technique is not based on the

physical light transport, it is not able to simulate

scenes containing complex reflections. Still, as it is

possible to create realistic scenes for computer games,

it is also possible to simulate realistic SAR images us-

ing rasterization, adopting the methods developed in

computer graphics as it is described and depicted in

section 3 and 4.

3 GPU based SAR Simulation

The hardware accelerated visualisation is designed for

visual light scene generation, but SAR images differ

from such scenes in many ways. To visualise a SAR

image using standard 3D hardware acceleration, these

differences have to be implemented.

Modern graphic cards offer flexible and programma-

ble graphics processing units (GPU). Using program-

mable GPUs allows the implementation of the SAR

geometry and therefore real-time SAR simulation us-

ing standard graphic hardware. The real-time SAR

simulator SARViz, which is described in this paper, is

implemented using Microsoft’s DirectX API [3] and

the High-Level Shading Language (HLSL) for GPU

programming. SARViz uses slightly modified DirectX

meshes as input source. A variety of 3D CAD tools

can export to this format. SARViz also offers import

tools for other data sources, for example Arc-GIS

datasets.

3.1 SAR rasterization

SARViz uses the programmable programming pipeline

of a graphic card. Each triangle is visualised inde-

pendent from the other triangles, which allows a mas-

sively parallel computing as it is realised by today’s

graphic cards. The vertex of each triangle is processed

by so-called vertex shaders. The vertex processing

treats the geometry, while the radiometry is calculated

in the subsequent pixel processing.

3.1.1 Vertex processing

Each vertex or triangle point respectively, is processed

in the vertex shader. Vertex shaders are highly special-

ized parts of a graphic card and are optimized for ma-

trix calculations. Each point is transformed from the

model coordinate system to world coordinates and

then subsequently to screen or image coordinates. The

position in range of each object in the SAR image de-

pends on the distance of the object to the sensor, thus

higher points, i.e. points with larger z-values, are

closer to the sensor and are therefore mapped closer to

near-range. The shift in range x△ depends on the

height above the ground-level z and the incidence an-

gleσ :

 tan()x z σ= ⋅△

3.1.2 Pixel processing

Each triangle processed by the vertex shader is raster-

ized and the resulting pixels are processed by the pixel

shader to compute the corresponding radiometry. Cal-

culating the reflection intensity for SAR images is a

relative complex task. Since the first programmable

pixel shaders were limited to only a few calculations,

complex illuminations could not be calculated. In con-

trast, modern pixel shaders (pixel shader version 3.0

or higher) support more than 512 machine-code com-

mands, which is sufficient even for complex tasks.

For each pixel the corresponding face normal and the

sensor position is known. Taking material properties,

like the dielectric constant, and sensor properties into

account, reflection strengths can be calculated in the

pixel shader. Reflections from different object or ob-

ject parts which are equidistant to the sensor in range

direction will sum up in the SAR sensor. This effect

can also be modelled by GPU based SAR simulations,

e.g. by alpha blending. Alternatively already rendered

information can be copied back from the render target,

thus the simulated image, and added to the new calcu-

lated reflection value. Both methods have advantages

and disadvantages. Accessing the render target during

the rendering is not optimal, because of the heavily

parallelized rendering process of the graphic card.

Two pixel shaders accessing the same pixel at the

same time can overwrite the result of each other. Al-

pha blending has at the moment no hardware support

for 32-bit floating point textures. Furthermore it is

disadvantageous, because in SAR processing the dif-

ferent reflections sum up, which is not as accurately

simulated by alpha blending.

SAR images cover a high data range which cannot be

represented by 8-bit images. To cover the complete

dynamic range, 32-bit data is adequate. Modern

graphic cards support high-dynamic range lighting

with 32-bit floating point accuracy, which is sufficient

for the simulation of SAR images. To use this ability,

the pixel shader first renders to a 32-bit floating point

texture. In the next step this texture is enhanced for 8-

bit display and rendered to the screen, enabling the

SARViz simulator to deliver both 8-bit data for visu-

alisation, but also 32-bit floating point images for fur-

ther processing.

3.2 Reflection properties

Usually surface reflections are a mix between the two

basic reflection models, the Lambertian and the specu-

lar reflection. These reflections for example sum up in

the Phong shading model. The SARViz simulator is

able to handle different reflection properties for each

triangle of the simulated 3D model. According to the

roughness of the material surface, the reflection is ei-

ther more Lambertian or more specular and the result-

ing reflection is calculated accordingly. Using rasteri-

zation the reflected radar beams are not traced. There-

fore the influence of specular reflections to sur-

rounding objects is not modelled.

3.3 Speckle effect

Speckle is important for the realistic visualisation of

SAR images. Both cases of speckling, i.e. with and

without dominant scatterers, can be simulated. For

each triangle in the model the value for the dominant

scatterer can be set, whereas a value of zero stands for

a speckling without any dominant scatterer. The final

speckle value is calculated by the GPU, based on ran-

dom values generated by the CPU.

3.4 SAR shadows

The computation of shadow areas is an integral part of

ray-tracing. In the rasterization approach, the paths of

the rays are not traced and every vertex and pixel is

processed separately, therefore occlusions are not

modelled.

By using shadow maps [6] both shadow and occluded

areas can be modelled. For this purpose, the scene is

rendered twice. First the scene is rendered from the

position of the light source, in other words from the

sensor position. Instead of reflection values, the dis-

tance of the rendered pixel to the sensor is copied to

the so-called shadow map. SARViz directly simulates

ground-range images to avoid the computational ex-

tensive transformation from slant-range to ground-

range. Because of this, the scene is, in the final step,

rendered looking from nadir direction. The distance of

each pixel rendered in the nadir view is compared to

the distance from the senor position. For this purpose

the values stored in the shadow map are transformed

to nadir. If the distance of a pixel to the sensor is

longer as the value stored in the shadow map, the

pixel is not visible and therefore it will not be ren-

dered.

As described above, using rasterization for real-time

SAR simulation is feasible and delivers promising re-

sults, which will be discussed in section 4.

4 Examples

The SARViz simulator is designed to simulate com-

plex and extensive 3D models. In Figure 1, the simu-

lation result of an E-3 Sentry (Awacs) model is de-

picted. The off-nadir angle of the sensor is 60° and the

model surface is set to Lambertian reflection proper-

ties.

Figure 1. SARViz simulation of the E-3 Sentry

(Lambertian reflection)

The simulation of the same model, but assuming me-

tallic surface properties and a different azimuth angle,

is depicted in Figure 2. The specular reflection is

strong on edges, but the wings of the airplane reflect

fewer amount of energy back to the sensor. The reflec-

tion from the material surface of the model in Figure 2

is not totally specular. Otherwise most parts of the

wings would not reflect any energy back to the sensor.

Figure 2. SARViz simulation of the E-3 Sentry (less

Lambertian more specular reflection)

Simulations of complex urban environments are de-

picted in Figure 3 and Figure 4. The city model, simu-

lated in Figure 3 and Figure 4, includes 9950 build-

ings containing 548729 triangles and can be simulated

in about 100 milliseconds, not including the time

needed to copy the data to the video memory.

Figure 3. SARViz simulation of the 3D city model

of Stuttgart (5m pixel resolution)

The simulation is not simplifying the models, i.e. all

vertices are rendered. The use of simplified models

could allow even higher frame rates during the low-

resolution simulation of complex models.

In Figure 4, a subset of the model is simulated with

1m pixel resolution. SARViz is able to simulate and

visualise complex urban areas in different resolutions.

All buildings are assumed to have Lambertian reflec-

tion and to have the same material properties.

These results are feasible for real-time applications

like SAR mission planning or object detection based

on SAR simulation.

Figure 4. SARViz simulation of area surrounding

the “Marktplatz” in Stuttgart (1m pixel resolution)

5 Conclusions

In our opinion hardware accelerated SAR simulation

using techniques originally developed for computer

games is a promising technology. The real-time simu-

lation capability is amazing and applications based on

SAR simulation profit from tremendous increase in

simulation speed. In addition to consumer type

graphic cards, no expensive hardware is required, i.e.

real-time visualisation of SAR images is possible on

standard PC hardware. On the other hand the simula-

tion results are not based on as exact physical models

as ray-tracing simulators. Especially the missing

multi-bounce effect is a drawback. Double-bounce ef-

fects are realisable using environmental mapping,

whereas multi-bounce requires ray-tracing. Ray-

tracing on the GPU as proposed by [4] could be an

alternative, as well as ray-tracing hardware accelera-

tion [5].

However, for many applications fast results are more

desirable than the exact physical modelling of multi-

bouncing. For these applications the next generation

SAR simulator SARViz provides high-quality results

in real-time.

References

[1] Buck, I. and Purcell, T.: A Toolkit for Computa-

tion on GPU. In: Fernando, R.: GPU Gems. Pro-

gramming Techniques, Tips, and Tricks for Real-

Time Graphics. Boston: Addison-Wesley, 2004

[2] Heckbert, P.S.: Adaptive Radiosity Textures for

Bidirectional Ray Tracing. Computer Graphics 24

(1990), No. 4, pp. 145-154

[3] Microsoft: DirectX 9.0c SDK, 2005

http://msdn.microsoft.com/directx

[4] Purcell, T.J., Buck, I., Mark, W.R., and Hanrahan,

P.: Ray tracing on programmable graphics hard-

ware. In: Proceedings of the 29th annual confer-

ence on Computer graphics and interactive tech-

niques, San Antonio, Texas, 2002

[5] Schmittler, J., Wald, I., and Slusallek, P.: Saar-

COR - A Hardware Architecture for Ray Tracing.

In: Ertl, T., Heidrich, W., and Doggett, M.:

Graphics Hardware, 2002

[6] Williams, L.: Casting curved shadows on curved

surfaces. In: ACM SIGGRAPH Computer

Graphics, Proceedings of the 5th annual confer-

ence on Computer graphics and interactive tech-

niques SIGGRAPH '78, Atlanta Georgia, 1978

	Back to Contents
	Real-Time SAR Simulation on Graphics Processing Units
	Abstract
	1 Introduction
	2 Visualisation Technologies
	3 GPU based SAR Simulation
	3.1 SAR rasterization
	3.2 Reflection properties
	3.3 Speckle effect
	3.4 SAR shadows

	4 Examples
	5 Conclusions
	References

