
VISUALISATION USING GAME ENGINES

Dieter Fritsch, Martin Kada

Institute for Photogrammetry (ifp), University of Stuttgart, Germany
Geschwister-Scholl-Strasse 24D, D-70174 Stuttgart

firstname.lastname@ifp.uni-stuttgart.de

Commission V, WG 6

KEY WORDS: Visualisation, Virtual Reality, Real-Time, GIS, Modelling

ABSTRACT:

Geographic Information Systems (GIS) and Computer Aided Facility Management-Systems (CAFM) are currently undergoing the
transition to storing and processing real 3D geospatial data. Applications for this type of data are, among others, location based
services, navigation systems and the planning of large-scale construction projects. For presentation purposes and especially when
working in the field, powerful visualisation systems are needed that are also capable of running on mobile devices like notebooks,
personal digital assistants (PDA) or even cell phones. In such application areas, the free movement of the viewer’s position and the
interaction with the data are of great importance. Real-time visualisation of 3D geospatial data is already well established and also
commercially successful in the entertainment industry, namely in the market of 3D video games. The development of software in this
field is very cost-intensive, so that the packages are often used for several game products and are therefore universally applicable to a
certain extend. These so-called game engines include not only visualisation functionality, but also offer physics, sound, network,
artificial intelligence and graphical user interfaces to handle user in- and output. As certain portions or sometimes even the whole
engine are released as open source software, these engines can be extended to build more serious applications at very little costs. The
paper shows how these game engines can be used to create interactive 3D applications that present texture-mapped geospatial data.
The integration of 3D data into such systems is discussed. Functionality like thematic queries can be implemented by extending the
internal data structures and by modification of the game’s accompanying dynamic link libraries.

1. INTRODUCTION

Since the time computer graphics has been introduced, the
demands for visualisation techniques have grown
continuously. Today, the visualisation of three-dimensional
worlds seems to be a demanding task requested by many geo-
related disciplines. This has led to Scientific Visualisation,
which is associated with solving visualisation problems of all
kind (McCormick, DeFanti and Brown, 1987). It offers
algorithms, software packages and advanced interactive tools
(such as data gloves and other haptic interfaces) for graphics
workstations, high end rendering machines and CAVE
environments (see also Fritsch, 2003).
Complementary are the developments in the computer game
industry that has been developing game engines with
amazing 3D computer graphics capabilities since the early
1990s. Due to the increasing interest in the consumer market,
tremendous progress can be observed in the hardware and
software. Game engines are powerful software packages that
efficiently use rendering pipelines, special data-structures and
speed-up techniques to visualise texture mapped 3D objects,
scenes and 3D worlds in real-time (see e.g. Harrison, 2003).
These software packages run nowadays on every commodity
PC and 3D games already make their way on PDAs and even
cell phones. The overall question is how to make best use of
available technology to make the right application.
Only few large projects use sophisticated hardware and
software. For many 3D mapping applications, only
commodity hardware and software is available. But even the
daily user of computer graphics still aims at high quality
visualisation at low costs. Game engines might be the missing
part for realising visualisation software for geo-related

applications. The rendering performance and quality
continuously increases as the game industry develops and
implements new visualisation technologies. And many of the
last generation engines or game-related libraries are now
available for little or even no cost in the form of open-source
software. The following sections will focus on both indoor
and outdoor visualisation, will introduce some assorted game
engines and show prototypical applications that have been
built upon them (see e.g. Figure 1). Another aspect will be

Figure 1. Indoor visualisation showing a workspace at the

Institute for Photogrammetry (ifp) rendered in
real-time by the Quake 3 Arena game engine.

the real visualisation of vegetation as this has been of special
interest in game engines in the last years and big progress has
been achieved.

2. INDOOR VISUALISATION WITH
GAME ENGINES

Today, 3D computer games are highly complex systems that
consist of a universal game engine and the specific game
elements like the game rules and game data (e.g. geometry,
textures and sound files). Main emphasis is put here in the
game engine. This module is the heart of the computer game
and represents the basic framework independent of the game.
This general purpose feature allows the use of the engine for
other applications, e.g. the indoor visualisation of building
elements. Game engines incorporates all sorts of elements
that are vital to a game like physics, graphical user interface
(GUI), artificial intelligence, network functionality, sound
and event engine. Some game engines even contain scripting
languages which makes it very easy to adapt the engines to
one’s own needs.
The computer games Quake III Arena (developed by id
Software) and Max Payne (developed by Remedy
Entertainment Ltd.) are action games, also called 3D Shooter
or First Person Shooter. The player moves around in an ego-
perspective and fights by means of several weapons within
the 3D world. This can be done either alone in single player
mode or with multiple players in a network environment like
e.g. a LAN or the internet. Both games have in common that
the visualisation engine is what’s generally called an indoor
engine. These engines are optimised by the use of specialised
indoor speed-up techniques like portal culling, a very popular
technique first introduced by (Airey, Rohlf and Brooks Jr.,
1990). Based on the idea that walls are often large occluders,
a viewer can only see into adjacent rooms through portals,
which can be e.g. a door or a window. A potentially visible
set (PVS) is pre-computed for all sets of viewpoints, a sort of
database from which the rooms that are visible to the viewer
are identified. For densely occluded architectural scenes, the
algorithm is able to cull away the better part of the scene.
Unfortunately, because the engines support very detailed
environments, the virtual worlds are rather small and
delimited.

2.1 Data Acquisition and Integration

The aforementioned game engines are of notable interest as
both offer very good support for modifications. The game
related parts are available as source code and there exist free
editors for the creation of virtual 3D environment, which are
in the context of game engines usually called maps. These
maps are modelled via Constructive Solid Geometry (CSG)
by logically combining simple forms like cuboids, pyramids
and spheres. It is well-advised to create a coarse model before
modelling the finer elements of the map. The resulting
geometry can then be texture mapped with images that can
either be artificial or be generated from photographs. All
necessary steps are demonstrated in Figure 2 (Beck 2002).
Once the map is complete, it can not yet be used by the game
engine, because the engine itself does not understand the data
that comes from the editors. So the map must first be
compiled with designated tools that transform the CSG data
into a boundary representation (B-Rep). In order to improve
the performance of the scene rendering, the visibility
database is generated and the lighting and shading are pre-

Figure 2. Workflow for generating 3D textured maps in

Quake III Arena (Beck, 2002).

computed (Abrash, 1997). The whole compilation process is
also depicted in Figure 3 (Beck 2002).
A serious problem is, however, that existing datasets are
unlikely stored in a format that the game engine’s map
compilers do understand or support. But fortunately, the
game tools are often available as source code so that the
compilers can be modified to one’s own needs.

Figure 3. Compilation process in Quake III that transforms

a CSG model into a boundary representation and
pre-computes a potential visibility set and light
maps (Beck, 2002).

2.2 Analysis Functionality and Interactivity

The analysis of data is a very important aspect of GIS. Even
though game engines do not offer a great variety of that kind
of functionality, they at least feature some interesting
possibilities. By means of adding new entities to the Quake 3
Arena engine, it is possible in the Q3Radiant editor to define
new data that can be bound to every object in the map. (Beck,
2002) e.g. realises a thematic query in this way where the
objects are prompted by “shooting” at them. By removing the
weapons from the game, the result is a simple point and click
mechanism. The underlying object data, which is textual
information about rooms and workspaces, is then displayed
on the screen (Figure 4).
Another engine element of great use is the path finding
algorithm that is utilised by the artificial intelligence unit to
control the non-player characters in the game. This
functionality can be turned into an indoor navigation system
that guides the user through the virtual building. (Pfeiffer,
2002) implements a virtual museum guide that walks the
visitor through the exhibitions using the routing and trigger
functionality of the Max Payne game engine (see Figure 5).

Coarse
Geometric
Modelling

3D Map
Compilation

3D Map
Compilation

Texture
Collection

Texture
Mapping

Texture
Processing

3D Map

Fine Geometric
Modelling

Q3Radiant Editor Quake III Arena

Compilation

 Lighting
VIS

BSP

BRep

Figure 4. The result of a thematic query shows that this

door leads to the room of the GIS group.

Figure 5. A virtual guide leads the user through the

different fields of science in the exhibition room
of the information system of the Institute for
Photogrammetry (ifp).

3. UNREAL ENGINE 2

The Unreal Engine 2 (developed by Epic Games) is one of
the most widely used game engines to date. Because it is a
cross-platform solution, a broad range of products from PC
and video games to architectural visualisations have been
already developed with it. Being optimized for both indoor
and outdoor environments, it is one of the most modern and
versatile engines (see Unreal, 2004). Like most other game
engines, the technology is encapsulated in a binary runtime
library, while the game related parts of the Unreal games are
available as source code in a scripting language called
UnrealScript. The novel approach of Epic Games is that they
released the Unreal Engine 2 Runtime free for non-
commercial and educational use. This means that there is no
need to buy the game itself to run modifications and
applications that have been developed by the community.
The runtime even includes the map editor UnrealEd and
header files for C++ programmers. Beginners do find lots of
technical documents and even video tutorial that teach level
design, script programming and much more.

Figure 6. The Unreal Engine 2 is equally suited for indoor

and outdoor environments and produces stunning
landscape images in real-time.

4. OUTDOOR VISUALISATION USING
OPEN SOURCE LIBRARIES

So far, the focus of this article was on the visualisation of
indoor environments. Most geo-spatial data are, however,
rather outdoor data like e.g. digital height models or 3D city
models. There also exist powerful game engines that feature
outdoor rendering capabilities. The game engine Torque
(developed by GarageGames) combines both indoor and
outdoor visualisation modules into one software package
(Torque, 2004). But there also are powerful open source
game-like libraries available that make stunning outdoor
visualisation applications possible with very little effort.
These libraries have matured so that very little programming
effort is needed to create one’s own visualisation application.

4.1 Open Scene Graph

The Open Scene Graph (OSG) is a cross-platform C++ /
OpenGL library for real-time visualisation. It has become a
powerful alternative to traditional tools like Performer and is
freely available under the GNU LGPL at (Osfield, 2004). The
library not only features high performance rendering
capabilities and excellent support for PC graphics
accelerators, but also offers stereo mode and a broad variety
of loaders for many common data formats. Several people
from the open source community already contributed plug-
ins and exporter for a number of popular modellers like 3D
Studio Max or Blender. For the purpose of moving through
the datasets, there exist camera manipulators that simulate
movement in a car or in an airplane. The drive camera
manipulator even uses collision detection so that the virtual
vehicle stays on the ground. OSG has been successfully used
in non-commercial games and virtual reality applications.

4.2 libMini

For the real-time visualisation of digital terrain models, a
continuous level-of-detail (C-LOD (Lindstrom et al., 1996))
approach is generally used. The C-LOD terrain rendering
library libMini recursively generates triangle fans during the
view-dependent generation of the quad-tree structured
triangulation (Roettger et al., 1998). The library is licensed

under the terms of the GNU LGPL and can be downloaded
from the home page of the author (Roettger, 2004). The API
is simple and can be easily integrated in software packages
like e.g. OSG by calling the terrain rendering functions right
before the main render action. To suppress popping artefacts
that can be otherwise experienced because of changes in
geometry, a technique called geomorphing is applied which
slowly moves newly introduced vertices from a position on
the terrain to its final position.

4.3 GISMO

Within the scope of the project GISMO, an application for
the real-time visualisation of large-scale urban landscape
models has been realised that is based on Open Scene Graph
and libMini libraries (Kada et al., 2003). The aim of the
project was to generate and interactively visualise the city of
Stuttgart, Germany. With respect to the desired flexibility to
support walkthrough and flyover applications, a combined
approach using continuous level-of-detail and the impostor
technique was used to speed up the visualisation. The
software proved to be able to render a 50*50 km area with
36.000 building models at interactive frame rates (Figure 7
and Figure 8).

Figure 7. Overview of a visualisation of the city of Stuttgart

using Open Scene Graph and libMini.

Figure 8. To improve the visual appearance, the façade

textures of 500 buildings that are located in the
main pedestrian area were captured.

5. VEGETATION

The visualisation of landscape models that only feature
terrain and building data tend to look dull and lifeless.
Strikingly is particularly the absence of trees and other
vegetation. Because of the complexity of these types of
objects, image-based rendering techniques are generally used
for their visualisation. So called Billboards, e.g., replace
complex objects by an image that is projected on a
transparent quadrilateral. Provided that the viewer stays close
to the ground level, the image of a tree is a good
approximation of the real geometry for all view points. As the
viewer moves around the scene, the quadrilateral is rotated so
that the image always faces forward. If only one single image
is used, however, the tree looks bogus when looked at from
above or from close distance. A good overview on real-time
tree visualisation is given in (Remolar et al., 2002).
The commercial software package SpeedTree (developed by
Interactive Data Visualization, Inc.) visualises trees by using
real geometry for the trunk and branches and billboards only
for the leaves (SpeedTree, 2004). It is becoming very popular

Figure 9. The CAD application of SpeedTree.

in game engines as it features realistic tree models and proves
to be able to visualise literally thousands of trees in real-time.
Included in the software package is a three dimensional CAD
application, where tree models can be created and modified
in an interactive environment (see Figure 9). The finished
tree models can then be imported into standard modelling
and rendering software like Discreet’s 3D Studio Max or
Alias | Wavefront’s Maya via the use of plug-ins. For real-
time applications, a C++ library called SpeedTreeRT is also
available which efficiently renders the tree models.
Integrating SpeedTree models into existing game engines is
straightforward and involves only a few calls to the easy to
use SpeedTreeRT API (Figure 10).
In order to increase the visual impression, SpeedTree features
wind effects that are based on vertex shaders. Shaders are
small programs that run on the 3D graphics card and make all
kinds of special effects possible in real-time. For the real-
time rendering of grass and grass-like vegetation, the
developers of SpeedTree currently work on a library called
SpeedGrass. This library will further improve the visual
appearance of real-time landscape visualisations.

Figure 10. The GISMO client uses SpeedTreeRT to visualise

realistic looking trees in real-time.

6. CONCLUSION

The article gave an introduction to 3D game engines and how
these software packages can be used to develop serious
visualisation applications. A problem is still, however, to get
existing spatial data into a format that the game or the
accompanying editors and tools understand. Once this
obstacle has been overcome, the powerful rendering modules
create beautiful indoor and outdoor scenes in real-time. If
desired, the other modules of the game engine enable
physically correct walkthroughs or fly-over even in a multi-
user world. Such applications are far more desirable then pre-
generated movies that are still commonly used for
presentation purposes and the demand for real-time systems
steadily increases. Especially in application areas like urban
planning, emergency response, tourism and traffic
management, the freedom of movement that game engines
offer are of great interest.
Game engines aim for PC environments, so that the
visualisation of photo-realistic, textured landscapes is now
available for almost everyone. With the introduction of
mobile 3D graphics chipsets that will soon make their way
into cell phones, handheld video consoles and portable
multimedia stations, 3D games and visualisation will be at
everyone’s hand at all times. There are many game engines
available as source code or as binary runtime library that are
free for non-commercial applications. Other sources for
powerful visualisation software are the many game-like
libraries available in the internet. Two such libraries, namely
OpenSceneGraph and libMini have been successfully used in
the real-time visualisation of large-scale urban landscapes.
The project GISMO has demonstrated that these libraries are
capable of rendering huge data sets at interactive frame rates
and are thus a good alternative to commercial products. They
are also very easy to use and can be easily integrated into
other software products.
A big improvement to the realism of virtual environments is
the inclusion of vegetation. Tree libraries are now available
that are successfully used in commercial game products.
Other libraries will soon follow that will be able to render all
kinds of vegetation like grass and bushes.

7. REFERENCES

Abrash, M., 1997. Graphics Programming Black Book,
Special Edition. Coriolis Group Books. Scottsdale, AZ, USA.

Airey, J., Rohlf, J., Brooks Jr., F., 1990. Towards Image
Realism with Interactive Update Rates in Complex Virtual
Building Environments. In: Proceedings of the 1990
Symposium on Interactive 3D Graphics, pp. 41-50.

Beck, M., 2002. Realisierung eines Geoinformationssystems
– Visualisierung und Analysefunktionalität mit einer 3D-
Engine. Master Thesis, Stuttgart University, Institute for
Photogrammetry (ifp), (not published)

Fritsch, D., 2003. 3D Building Visualisation – Outdoor and
Indoor Applications. In: Photogrammetric Week ’03,
Wichmann Verlag, Heidelberg, pp. 281-290.

Harrison, L.T., 2003. Introduction to 3D Game Engine
Design Using DirectX 9 and C#. Apress, Berkeley, CA,
USA.

Kada, M., Roettger, S., Weiss, K., Ertl, T. and Fritsch, D.,
2003. Real-Time Visualisation of Urban Landscapes Using
Open-Source Software In: Proceedings of the ACRS 2003
ISRS, 24th Asian Conference on Remote Sensing & 2003
International Symposium on Remote Sensing, Busan, Korea.
(On CD-ROM)

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L.F., Faust,
N. and Turner, G., 1996. Real-Time, Continous Level of
Detail Rendering of Height Fields. In: Proceedings of
SIGGRAPH ’96, pp. 109-118.

Osfield, R., 2004. Open Scene Graph.
http://openscenegraph.sourceforge.net/downloads/index.html.

Pfeiffer, R., 2002. Untersuchung der Realisierbarkeit von
Geoinformationssystemen mittels des Game-Editors MaxED.
Student Thesis, Stuttgart University, Institute for
Photogrammetry (ifp), (not published)

Remolar, I., Chover, M., Belmonte, O., Ribelles, J., Rebollo,
C., 2002. Real-Time Tree Rendering. Departamento de
Lenguajes y Sistemas Informaticos, Universitat Jaume I,
Technical Report DLSI 01/03/2002, Castellon, Spain.

Roettger, S., Heidrich, W. Slusallek, Ph and Seidel, H.-P.,
1998. Real-Time Generation of Continuous Levels of Detail
for Height Fields. In: Proceedings WSCG ’98, pp. 315-322.

Roettger, S., 2004. libMini Terrain Rendering Library.
http://wwwvis.informatik.uni-stuttgart.de/~roettger, 2004.

SpeedTree, 2004. SpeedTree. http://www.idvinc.com, 2004.

Torque, 2004. Torque Game Engine SDK.
http://www.garagegames.com/pg/product/view.php?id=1,
2004.

Unreal, 2004. Unreal Engine 2 Runtime.
http://udn.epicgames.com/Main/WebHome

