Real-Time Visualisation of Urban Landscapes
Using Open-Sour ce Software

Martin Kada!, Stefan Roettger?, Karsten Weiss?, Thomas Ertl?, Dieter Fritsch!

ifp! / VIS Group?, University of Stuttgart, Germany
martin.kada@ifp.uni-stuttgart.de roettger@cs.fau.de

Abstract

The paper presents the results of the project GISMO, which
aimed on generating and interactively visualising a 3D urban
landscape model of the city of Stuttgart, Germany. With re-
spect to the desired flexibility to support walkthrough and fly-
over applications, a combined approach using continuous level
of detail, the impostor technique and a method for generalizing
3D building models was used to speed up the visualization. To
reduce the costs of the project, the data collection tools and the
visualization environment was built solely with open-source
software.

Keywords: Urban Landscapes, OpenSceneGraph, Impostors,
Terrain Rendering, 3D Generalization.

1 Introduction and Related Work

The advances in automatic data acquisition of urban sceneries
have lead to an increasing amount of data covering large areas.
Better and larger models are important for application areas
like urban planning, emergency response, tourism, entertain-
ment, traffic management, construction of large-scale projects,
and education. In these areas the interactive visualization of
the urban models is of great importance for an in-depth analy-
sis of the data set.

In the recent past, mainly three methods to manage real-time
visualization of entire city models have been described. First
the more traditional systems reduce geometric complexity by
appropriate LOD selection and management [13]. Secondly,
there exist a variety of image based algorithms which improve
rendering performance. Here the impostor [6, 7, 8] based ap-
proaches [9] are very popular due to their simplicity and high
performance. And finally, efficient occlusion culling algo-
rithms [11, 12] have been devised for the special application
area of urban landscapes.

2 Motivation

In public institutions the need for high-performance visualiza-
tion systems at low cost has been growing in the last years.
Many of the larger cities (such as Graz, Vienna, Saarbriicken
and Stuttgart to name only a few in Central Europe) have been
collecting digital urban data, but do not have efficient visual-
ization environments that could ease urban planning for exam-
ple.

In our specific case, the city of Stuttgart has acquired a large
city model and now has the demand for visualizing the city
model at low cost. Optimally, the visualization software should

run on every up-to-date PC equipped with sufficient memory
and a commodity graphics accelerator.

In order to evaluate the applicability of our aims, the project
GISMO was set up for the ”Real-Time Visualization of 3D Ur-
ban Landscapes”. The project was carried out as a cooperation
of the VIS Group and the ifp at the University of Stuttgart. For
the reduction of costs we planned to use open-source software
and commodity graphics hardware. With respect to the desired
flexibility the support for both walkthrough and flyover appli-
cations was an additional goal. Since occlusion algorithms are
efficient for walkthroughs but do not yield high performance
gains for flyovers, we reckoned that the use of impostors would
be the most promising technique for our project as outlined in
Section 6. We also choose to gain performance by using geo-
metrical simplification algorithms for the buildings, but since
our buildings consist of only one to a few dozen of triangles
on the average, it is difficult to gain significantly more per-
formance without altering the buildings’ appearance (see Sec-
tion 8 for more information on this topic).

3 DataAcquisition

The data set that we use contains the visual representation of
the city of Stuttgart and the surrounding area of the size 50x50
km. It includes a 3D city model provided to us by the City Sur-
veying Office of Stuttgart, digital terrain models at a resolution
of 10 meter for the extent of the inner city and 30 meter for the
surroundings. The corresponding aerial and satellite images
have a ground pixel resolution of 0.8 and 5 meter, respectively.
The covered area is chosen so that the visualization stretches
as far as the virtual horizon.

The 3D city model of Stuttgart was photogrammetrically re-
constructed in a semi-automatic process. For data capturing,
the building ground plans from the public Automated Real Es-
tate Map (ALK) and the 3D shapes measured from aerial im-
ages were used [10]. The resulting wireframe model contains
the geometry of 36,000 buildings covering an area of 25 km?2
meaning that almost every building of the city and its suburbs
is included (also compare Figure 1). The overall complexity
of the model amounts to 1.5 million triangles. In addition to
the majority of relatively simple building models, some promi-
nent buildings like the historical New Palace of Stuttgart are
represented by 3,000 (and more) triangles.

To improve the visual appearance, we captured the facade tex-
tures of 500 buildings that are located in the main pedestrian
area. Approximately 5,000 ground based close-up photographs
of the building facades were taken using a standard digital
camera. The textures were extracted from the images, per-
spectively corrected, rectified, and manually mapped to the

Figure 1: Overview of the Stuttgart city model. A total
of 36,000 building models are available for the densely
populated area bordered by the woods at the top and
bottom of the image.

corresponding planar facade segments. To simplify the task
of texture placement, we decided to extend our visualization
environment with a specialized component. The user selects
the facade and the corresponding texture, which is then ini-
tially snapped to the bounding box of the geometry. A user
controlled affine transformation precisely adjusts the final tex-
ture coordinates. Using this approach, we managed to process
the aforementioned 500 buildings in roughly 20 man-months.
Because of the large size of the original texture dataset, we
down-sampled the textures to a resolution of approximately 15
centimeters per pixel. Buildings with no real captured facade
textures were finally colored randomly with different colors for
the facade and the roof.

4 Visualization Techniques

Due to the large amount of geometry and texture data, a
brute force rendering approach is not suited even for current
high performance 3D graphics accelerators. It is therefore in-
evitable to use acceleration techniques like visibility culling,
level-of-detail (LOD) representations and image based render-
ing in order to speed up the visualization process.

Occlusion culling is a very popular technique for urban walk-
throughs. It is especially efficient in situations where large ar-
eas are occluded by close-by buildings. Since this is not our
main application scenario, this technique was, however, not
realized. Instead we decided to use an image-based render-
ing approach for the visualization of the building objects. By
the use of impostors, both the geometry and the amount of the
highly detailed facade textures that are visible in the scene are
reduced during rendering.

5 Open Scene Graph

The Open Scene Graph (OSG), which recently has become
a powerful alternative to traditional tools like Performer, in-
tegrates the impostor concept as a specialized level-of-detail
node which is usable right out of the box. The Open Scene
Graph is a cross-platform C++ / OpenGL library for real-
time visualization. It is developed and maintained mainly by
Robert Osfield and is freely available under the GNU LGPL

at [3]. We use OSG because the library not only features high-
performance rendering capabilities and excellent support for
PC graphics accelerators, but also offers a variety of utility
classes like GUI support, camera manipulators, picking func-
tionality and loaders for many common data formats.

The most important reason for choosing OSG however was its
clean design, the extensibility and also the OSG source code
which was available right from the start of our project. Hav-
ing the code on-hand we were able to develop a first impos-
tor implementation for OSG based on the original paper of G.
Schaufler [6]. Our prototype performed well enough so that the
impostors were later integrated into the official OSG release.

6 Impostors

Impostors are an image-based rendering technique. Like a bill-
board, an impostor replaces a complex object by an image that
is projected on a transparent quadrilateral. A common example
for the use of billboards is the visualization of trees. Provided
that the viewer stays close to the ground level, the image of a
tree is a good approximation of the real geometry for all view
points. As the viewer moves around the scene, the quadrilat-
eral is rotated so that the image always faces forward. Because
billboard images are created a priori and are therefore static,
this technique can only be used for objects that look similar
under rotation. In contrast to that, the images of impostors are
dynamically generated by rendering the objects themselves for
the current point of view. If consecutive viewpoints are close
together, the impostor images of slowly moving objects that
are located far from the viewer do not change notably with
every frame. From this it follows that those impostor images
can be reused for several frames and therefore speed up the
overall rendering process. In OSG the impostor technique is
implemented as a discrete LOD node class. Depending on a
user-defined distance threshold, the object is either rendered
traditionally or as an impostor image. The recomputation of
the impostor image is performed automatically by OSG using
a very similar error ciriterion as the one proposed by Schau-
fler. Texture management is also done automatically by OSG,
so that the user basically only has to add an impostor node
above the appropriate objects in the scene graph.

A 3D city model consists of vast amounts of building objects.
In an urban scene, these innately static objects extend over a
large area so that only a fraction of the objects is actually close
to the viewer. It can be assumed that in this context the ma-
jority of the building objects is located far enough from the
viewer to cause few image updates and can therefore be visu-
alized efficiently by impostors. The use of impostors results
in a texture memory overhead, however, because the impos-
tor images additionally occupy valuable texture space on the
graphics hardware. To limit the additional memory usage, im-
postors must consequently not replace single building objects,
but rather several buildings that are located close together.

We used a very simple approach to arrange the building data in
our scene graph. The test area is divided into a regular 2D grid
and building objects whose centroids are located in the same
cells are grouped together. We also did some testing with hi-
erarchically organized impostors, but did not find them to be
superior in our context. The additional hierarchy levels notice-
ably reduced the image quality due to multiple filtering and the
texture memory overhead increased even further.

7 Terrain Rendering

For the visualization of the digital terrain model on which the
buildings are placed, a continuous level-of-detail (C-LOD [2])
approach is used. We developed a terrain rendering library us-
ing C-LOD in a previous project, which was named libMini.
In the meantime the library has become open source and in-
tegrates easily with OSG (by calling the terrain render right
before the main OSG render action).

The library is licensed under the terms of the GNU LGPL and
can be downloaded from the home page of the author [5]. The
library implements the C-LOD approach as described in [4].
It also allows suppressing the popping effect which is due to
the view-dependent simplification of the C-LOD scheme. The
suppression of the popping effect is achieved by a technique
called geomorphing. This is important since the rendering of
the buildings consumes most of the time slice and there is lit-
tle time left to render the terrain. As a consequence, the error
threshold of the view-dependent simplification has to be set to
high values to produce as few triangles as possible. Without
geomorphing the rather coarse triangulation would lead to ex-
cessive popping.

The main advantage of the use of the mentioned terrain render-
ing library is that the original terrain data, that is high resolu-
tion height fields, can be used without a conversion to triangle
meshes. Due to the availability of terrain data for a large area
(2,500 km?) the viewer is able to see the real horizon beyond
the city model.

Because of the ultra high resolution of the original data we or-
ganized the terrain as a 12 by 12 regular grid. Each tile of
the grid has a resolution of 10, 20, 40, or 80 meter depend-
ing on the distance to the city center. The texture resolution
is approximately 1 meter for the city center, and is decreasing
gradually to 2, 5, and 10 meters in the perimeter. The C-LOD
library supports tiled terrains with different grid resolutions in
an efficient way and takes care of cracks that might appear at
the tile borders. The corresponding textures of each tile were
down-sampled in a similar fashion to a maximal resolution of
approximately 1 meter. With S3TC texture compression the
textures accounted for approximately 52 MB of graphics mem-
ory (208 MB uncompressed).

8 Generalization

As noted previously the simplification of the 3D building mod-
els is difficult to yield better rendering performance. Since the
vast majority of the buildings consist of only a few quadri-
laterals, the buildings cannot be simplified any further with-
out altering the appearance noticeably. However, some of the
most prominent buildings in the city center of Stuttgart consist
of a substantial number of triangles. For those buildings we
have devised an automatic generalization process [1] which
eliminates data acquisition artifacts, groups elements that lie
in nearly the same plane, and throws away small protrusions
while keeping the building symmetries (see paper for more
details). As an example, we reduced the 2930 triangles for
the historical New Palace to 1837 triangles after generalization
(see also Figure 2).

Figure 2: Before and after generalization of a 3D building
model. Removed protrusions of the facade of the histori-
cal New Palace of Stuttgart.

9 Results

The experimental results have been measured on a standard
PC equipped with a 2.0 GHz Intel Pentium P4 processor, 512
MB of memory and an NVIDIA GeForce4 Ti 4200 graphics
accelerator with 64 MB of graphics memory.

Without impostors (frustum culling alone) we achieved 2 fps
brute force rendering performance for the entire data set in-
cluding terrain rendering. Enabling OSG impostors led to a
speed up that depends on the size of the regular impostor grid,
and thus the number of used impostors. In principle, the per-
formance increases with the number of used impostors, but one
should not use too many impostors, since OSG has a com-
putational overhead for each. One also has to keep in mind
that each impostor consumes additional texture memory, which
may have to be paged in and out of the dedicated graphics
memory. On the other hand, decreasing the number of im-
postors by increasing the tile size of the regular impostor grid
has the effects that too many objects are grouped into a sin-
gle large impostor. In such a setup the recomputation of the
impostors is triggered too frequently, so that the performance
drops significantly.

The best results were achieved with a regular layout of 60x 60
impostors (see Table 3). Enabling OSG impostors with a dis-
tance threshold of 1 km boosted the performance to 11 fps on
the average, but the recomputation load for the impostors was
still quite high in some cases which led to occasional frame
drops. Increasing the impostor distance threshold to 1.5 km re-
moved most of the frame drops, but since fewer buildings were
replaced by impostors the frame rate dropped to approximately
9 fps. With a distance threshold of 2 km the occasional frame
drops were eliminated completely, but the frame rate was only
7 fps. But even in the last case we experienced a speed up of
350% which is quite notable for the seemingly simple strategy.

grid layout | impostor distance threshold | frame rate
1x1 brute force 2 fps
60x60 brute force 2-3 fps
60x60 1,000m 11 fps
60x60 1,500m 9 fps
60x60 2,000m 7 fps

Figure 3: Rendering performance with and without impos-
tors.

Figures 4 and 5 show screen shots of the city center of Stuttgart
rendered with the described impostor technique. The visibility
of an impostor update is very low since the update happens
quite far away (> 1 km). In many cases the updated impostors
are occluded by non-impostor buildings, so that the update is

Figure 4: View southwards from the Old Castle of
Stuttgart.

Figure 5: View from the city center toward the virtual hori-
zon.

hardly noticeable. For the same reasons the z-fighting of the
impostors with the underlying terrain is hardly visible as well.

10 Conclusion and Future Work

The GISMO project has demonstrated that real-time visualiza-
tion of large urban scenes is possible using merely open source
software. The libMini and OSG libraries are both capable of
rendering huge data sets at interactive frame rates and are thus
good alternatives for commercial products. In combination
with commodity PC hardware, cheap but powerful visualiza-
tion systems can be built. Due to the increasing availability
of spatial 3D data, a detailed urban landscape model was re-
alized in GISMO that covers a very large area. The user can
experience the virtual scene that stretches as far as the virtual
horizon both in flyover and walkthrough mode. In order to ac-
complish this task, we combined the C-LOD terrain rendering
approach with the impostor technique to improve the rendering
performance.

In future work we strive to optimize the impostor implementa-
tion of OSG to circumvent the mentioned problems. We also
plan to include vegetation and dynamic objects (cars, pedestri-
ans). Another goal is to apply the automatic generalization of
the building models to the entire data set and not only a few
prominent buildings.

11 Acknowledgements

We thank Robert Osfield for his help on our first implementa-
tion of the impostors and their final integration into OSG. We
acknowledge Mathias Jahnke, Katharina Schmid, Laurentin
Blaga, Emese Farkas, Cosmin Dragomir and Philipp Oswald
who captured the numerous facade textures that are used in
our 3D city model.

References

[1] Martin Kada. Automatic Generalisation of 3D Building
Models. Joint International Symposium on Geospatial
Theory, Processing and Applications *02, 2002.

[2] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges,
N. Faust, and G. Turner. Real-Time, Continuous Level of
Detail Rendering of Height Fields. In Proc. SIGGRAPH
’96, pages 109-118. ACM, 1996.

[3] Rabert Osfield.
www.openscenegraph.org, 2003.

OpenSceneGraph.

[4] S. Roettger, W. Heidrich, Ph. Slusallek, and H.-P. Sei-
del. Real-Time Generation of Continuous Levels of De-
tail for Height Fields. In Proc. WSCG 98, pages 315-
322. EG/IFIP, 1998.

[5] Stefan Roettger. libMini Terrain Rendering Library.
wwwyvis.informatik.uni-stuttgart.de/"roettger, 2003.

[6] G. Schaufler. Dynamically Generated Impostors. In
Proc. GI Workshop on Modeling, Virtual Worlds, and
Distributed Graphics ’95, pages 129-136, 1995.

[7] G. Schaufler. Per-Object Image Warping with Layered
Impostors. In Proc. 9th Workshop on Rendering ’98,
pages 145-156. Eurographics, 1998.

[8] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered
Depth Images. In Proc. SIGGRAPH ’98, pages 231-242.
ACM, 1998.

[9] F. Sillion, G. Drettakis, and B. Bodelet. Efficient Im-
postor Manipulation for Real-Time Visualization of Ur-
ban Scenery. Computer Graphics Forum (Proc. of Euro-
graphics ’97), 16(3):207-218, 1997.

[10] Manfred Wolf. Photogrammetric Data Capture and Cal-
culation for 3D City Models. Photogrammetric Week ’99,
pages 305-312, 1999.

[11] Peter Wonka and Dieter Schmalstieg. Occluder Shadows
for Fast Walkthroughs of Urban Environments. In Proc.
Eurographics 99, pages 51-60, 1999.

[12] Wonka, P. and Wimmer, M. and Sillion, F. Instant Visi-
bility. In Proc. Eurographics 01, pages 411-421, 2001.

[13] Christopher Zach. Integration of Geomorphing into
Level of Detail Management for Realtime Rendering.
Technical Report, VRVis Research Center, University of
Graz, 2002.

