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ABSTRACT

We address the problem of automating the processing of dense range data, specifically the automated inter-
pretation of such data containing curved surfaces. This is a crucial step in the automated processing of range
data for applications in object recognition, measurement, re-engineering and modeling. We propose a two stage
process using model-based curvature classification as the first step. Features based on differential geometry,
mainly curvature features, are ideally suited for processing objects of arbitrary shape including of course curved
surfaces. The second stage uses a modified region growing algorithm to perform the final segmentation. The
results of the proposed approach are demonstrated on different range data sets.

1. INTRODUCTION

During the pat few years we have witnessed the widespread adoption of optical 3D measurement techniques in
industry. The acceptance of the technology has increased with the automation and the reliability of the available
systems. Today data acquisition is fully automated and sensor hardware has matured. While sensor positioning
and best-view planning often times still require user interaction and manual labor, a number of systems have
been developed recently to address these issues.1 In the processing chain of optical 3D measurement the next
step for automation is the interpretation of the measured data. This includes object recognition, modeling,
re-engineering and others.

Oftentimes hundreds of thousands or even millions of points are obtained from only a single scan. Usually
the result of a single scan is represented as an ordered point cloud. Most of the times the topology is based on a
grid either given by a frame sensor or by the scan movement. While this type of data is easily triangulated and
directly suited for visualization purposes, most applications require data of another quality. Often it is necessary
to give an interpretation to the point cloud, that is to group individual points into meaningful entities. This
grouping is called a segmentation. Just what ’meaningful’ really is, is determined by the application. In the
context of range data, usually a segmentation into individual surfaces is desired.

Several possibilities exist for the segmentation of dense range data. Among the first and most prominent
are region growing approaches. The crucial point in region growing is the selection of seed regions. When
seed regions are selected to close to the rim of a surface, the resulting region is usually meaningless. Today we
see the first implementations of region growing approaches in commercial applications. The problem of seed
region selection is left to the operator, who selects regions manually. This manual operation can be quite time
consuming considering the size of the point cloud and is generally a tedious task. Thus it is evidently desirable
to automate the process.

The work by J.P. Besl2 has been among the first to present automated region growing for range image
segmentation containing curved surfaces. By initially grouping the pixels of a range image according to the sign
of the Gaussian and Mean curvature an over segmentation is achieved. By successively applying morphological
operators the region are shrunk to minimal size. These minimal regions are then used as seed regions for region
growing. While the algorithms were shown to produce good results, the complexity of the approach and the
large number of user-supplied parameters have prevented the wide-spread adoption of the approach in practice.

In the course of our work on industrial inspection using range imaging, we have developed methods for range
image processing and feature extraction. We have earlier reported on our developments of a range image classifi-
cation framework using differential geometry.3 Features based on differential geometry, mainly curvature features,
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are ideally suited for processing objects of arbitrary shape including of course curved surfaces. Furthermore these
features are suited for object recognition purposes as they are invariant to rotation and translation.

While the curvature-based classification approach gives an interpretation to each individual pixel and by
performing a cluster analysis in curvature space effectively gives a grouping of the pixels, this grouping does not
take into account the topology of the point cloud. This is a major shortcoming when comparing the classification
result to a segmentation. Using the classification result as an initial grouping we now present our work on
extending the classification to a segmentation of the point cloud. This two-stage process uses a modified region
growing algorithm to perform the segmentation based on the topology. While our approach shares some concepts
with the one mentioned above, it extends the idea in several ways. First the absolute value of curvature is used
for initial classification, not only the sign of curvature. Secondly model knowledge of the object is incorporated
into the process and thus greatly enhances reliability. When the type of surface can already be derived from
model knowledge, this information can be used to check for the homogeneity of a group of points during the
growing process.

While the proposed framework in principle is general to range data, we show its application in the context
of industrial measurement purposes. Several test data sets for this project have been acquired with a stripe
projection system developed at the Institute for Photogrammetry. The scanner system itself is described in
detail in the next chapter including a test of the sensor’s performance. Chapter 3 describes the fundamental
quantities characterizing the local behavior of a surface and gives the mathematical formulas to compute these
quantities. In chapter 4 the actual classification and segmentation process is presented detailing our approach
to curvature approximation from range data. The proposed approach is demonstrated on an external test data
set and a test scenario acquired with our own sensor.

2. DENSE RANGE ACQUISITION

For dense surface measurement several alternative measurement techniques are available. If the object’s surface
shows sufficient radiometric detail, image matching techniques can be employed to recover surface geometry.
However in most industrial cases surfaces are not very cooperative with respect to texture detail. One method
thus is to use an artificial static texture pattern projected onto the object by a slide projector. Instead of using
a static 2D texture pattern, one can just use a single spot, most often generated by a laser beam, which is moved
across the surface. Alternatively one-dimensional structures, most often a line, can be projected. To speed up
the process several lines can be projected in parallel, leading to the method of coded light projection.

All the methods mentioned above are triangulation-based methods. Completely different approaches use the
time-of-flight or interferometer principle to determine distance. These approaches have just recently become
popular in close range applications now that several commercial laser scanners are available on the market.
While each of the methods has its unique advantages and disadvantages, triangulation has the best potential for
accurate measurement at very close distances. Because of the speed of measurement a stripe projection system
is the most frequent choice for industrial applications in the measurement of small parts and was thus chosen
for our project. Since every sensor system has its unique features and also unique problems, we will detail below
the sensor system we use.

2.1. Sensor Hardware

We use a LCD type projector for our experiments. The line pattern is generated by switching lines on a two
dimensional LCD. This type of projector has the advantage that there are no moving parts. On the other
hand, due to the LCD with polarizing filters, brightness is inferior to projectors using metal-coated glass plates.
While normal LCD stripe projectors use two glass plates with conducting stripes aligned precisely, a cross-pattern
projector has one of the glass plates turned by 90 degrees. Since all stripes can be switched individually, arbitrary
vertical and horizontal stripe patterns can be generated (albeit no arbitrary 2D patterns can be generated, since
the 2D pattern always results from a XOR of the two line patterns). In the context of a photogrammetric
evaluation, this means that the projector can be modeled as an inverse camera delivering 2D ’image’ coordinates.
On the down side, twice as many stripe patterns have to be projected per sequence in order to obtain x and y
coordinates.



The projector we use features a LCD with 640 × 640 lines with a line spacing of 0.09 mm. Patterns can be
switched in 14 milliseconds making it feasible to acquire images in video realtime, although we do not use this
option since it requires hardware support. Commands and pattern sequences can be sent to the projector via
a RS-232 interface. The camera we use is a digital CCD camera with a resolution of 1300 × 1030 pixels and
approximately 0.0067 mm pixel size. Projector and camera are mounted on a stable aluminum profile with a
fixed relative orientation.

Figure 1. The sensor hardware used for the experiments consists of a LCD stripe projector and a digital camera.

2.2. Sensor Calibration

Sensor calibration is a fundamental prerequisite for any vision system that relies on quantitative measurements of
the observed scene. Although it is very common to calibrate optical 3-D systems, like stripe projectors, by means
of direct calibration techniques (e.g. polynomial models) we found it favorable to use model based calibration,4

where parameters of a geometric model of the sensor, so called intrinsic and extrinsic parameters, are determined.
The fact, that model parameters hold true for all the measurement volume of the sensor increases flexibility and
omits problems with measurements lying outside the volume originally covered by calibration. In addition,
residuals and the obtained covariance matrix give a clear diagnosis for the determination of the calibration
parameters and object point coordinates. The model parameters describe how points in 3-D space are projected
onto the image plane, considering imperfect cameras and lenses. For a camera this means to find appropriate
values for the focal length, principal point position and lens distortion. If a sensor consists of multiple components
their relative position and orientation must also be determined. The stripe projection systems are either modeled
as inverse cameras or used as an aid to establish point correspondences between at least two cameras e.g. the
cameras of the stereo head.

Despite the existence of techniques in photogrammetry to simultaneously estimate these parameters during
measurement tasks, we are using a specially designed test object to effectively compute the desired quantities from
a few calibration measurements. Since any short-term geometrically stable object can be used for calibration,
there is no need for an accurate calibration normal. Nonetheless, since absolute measurements are required, one
accurate distance is given from a scale bar to fix the scale.

2.3. Sensor Performance

To be able to assess the accuracy of our sensor system and to determine the amount and nature of noise we have
performed a series of tests using a certified test object. The object is a precise sphere with a diameter of 100
mm which is certified to 0.001 mm in shape. We acquired several shots of the object with the sensor. The range
data was then fit to a sphere. We have used an implicit polynomial for the fitting. Least squares adjustment
was performed using an eigenvalue approach. The minimization criterion we used is the algebraic distance. On
a measurement area of about 300× 300 mm we have found the standard deviation of the error of fit to be 0.02



mm. The sampling distance on the object’s surface is approximately 2 tenth of a millimeter. Of the 25000 points
tested 99.8% were below 0.07 mm in deviation. The exact distribution of deviations is given in figure 2.

More important than the magnitude of noise is the nature of the noise on the object’s surface. Since the
system uses two components incorporating a grid structure we experience Moiré effects on the surface data.
They result in concentric ripples across the surface (see figure 2). The amplitude of the ripples is approximately
one hundredth of a millimeter. This type of noise is actually worse than purely statistical noise since it is more
difficult to filter out and it locally changes surface characteristics. However the sensors accuracy is still more
than adequate and allows capturing shape in great detail.

Figure 2. Rendering of a data set acquired with our stripe projection sensor. The object is a precise sphere. Deviations
of the sensed data from the ideal sphere are shown on the right. The number of points is plotted over the deviations in
millimeters.

3. THREE-DIMENSIONAL SHAPE

In order to find an initial grouping of the pixels of a range image we have to establish quantities characterizing the
local behavior of a surface. The following describes the most fundamental quantities and gives the mathematical
formulas to compute these quantities.5

3.1. Fundamentals

Any parameterized surface X in three-dimensional space is given by the projection of an open set U over �2 into
the space �3 :

X : U ⊂ �2 → �3

There are three fundamental ways to describe a surface:

• using a vector-function

X(u, v) =


 x(u, v)

y(u, v)
z(u, v)


 , (u, v) ∈ U

• using an explicit function
X : w = F (u, v)

• using an implicit expression
X : F (u, v, w) = 0



The partial derivatives ∂X
∂u and ∂X

∂v are noted as Xu and Xv. In the case of a vector function these partial
derivatives are easily computed as:

Xu =
(

∂x(u,v)
∂u , ∂y(u,v)

∂u , ∂z(u,v)
∂u

)
Xv =

(
∂x(u,v)

∂v , ∂y(u,v)
∂v , ∂z(u,v)

∂v

)

Every explicit function can be converted to vector notation:

X = (u, v, F (u, v))

and its partial derivatives are given by:

Xu =
(
1, 0,

∂F (u, v)
∂u

)
, Xv =

(
0, 1,

∂F (u, v)
∂v

)

It is important to note, that every surface can be locally described by an explicit function.

3.2. Fundamental Forms

A differentiable surface X is given with the condition Xu ×Xv �= 0. The unit normal vector N is then given as

N =
Xu ×Xv∥∥Xu ×Xv

∥∥
The expression

I = dX · dX
= (Xudu+Xvdv) · (Xudu+Xvdv)
= Edu2 + 2Fdudv +Gdv2

with
E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv

is called first fundamental form.

The expression

II = dX · dN
= −(Xudu +Xvdv) · (Nudu+Nvdv)
= Ldu2 + 2Mdudv +Ndv2

with
L = −Xu ·Nu, M = −1

2
(Xu ·Nv +Xv ·Nu), N = Xv ·Nv

is called second fundamental form. The above condition can be rewritten as

L = Xuu ·N, M = Xuv ·N, N = Xvv ·N

3.3. Curvature

Surface curvature is derived from the fundamental forms given above. The principal curvatures are the maximum
curvature k1and minimal curvature k2. Alternatively the mean curvature H and Gaussian curvature K can be
used to describe the surface locally:

k1,2 = H ±
√

H2 −K



and

K =
LN −M2

EG− F 2

H =
EN +GL− 2FM

2(EG− F 2)

They are translation- and rotation-invariant. While k1, k2 and H, K are both valid pairs for local surface
characterization,2 there are further considerations which may favor the one over the other. For one to compute
the principal curvatures is computationally slightly more expensive. Since the expression of which the square
root is taken can become negative due to numerical instabilities, additional precautions have to be taken. The
mean curvature is the average of the two principal curvatures and is therefore less sensitive to noise. On the
other hand since Gaussian curvature is the product of the two it is much more sensitive to noise. Using only the
signs of the curvatures six basic surface types can be determined using principal curvature while eight can be
determined using mean and Gaussian curvature.

Based on principal curvature further local properties of a surface can be derived. Koenderink and van Doorn6

have proposed a shape classification scheme based on two quantities called S and C:

S =
2
π
· arctan

(
k1 + k2

k1 − k2

)
k1 ≥ k2

C =
√

k2
1+k2

2
2

Where S describes the shape, and C the strength of curvature. (C is the square root of the deviation from
flatness, another derived quantity in differential geometry). Points of same value for S but differing C, can be
seen as points of same shape with stronger curvature. The main difference to the description using mean and
Gaussian curvature is the possibility to describe surface flatness with a single quantity C < θ. We will detail the
analogy to our approach below. A study comparing both description schemes7 found no significant difference of
the two. Other authors have extended the SC scheme and have given different formulas for the shape parameter.
For our studies we have decided to use the HK scheme.

4. CLASSIFICATION AND SEGMENTATION

In the previous chapter we have given the mathematical quantities used to describe a surface locally. In order
to apply these quantities in a classification we have to compute them from range data. Due to the nature of
the data described earlier reliable curvature estimation becomes a difficult task crucial to the success of the
segmentation process. The suggested procedures have been applied to external test data set as well as to our
own test scenario (see figure 3).

4.1. Curvature Estimation

Several methods for curvature estimation have been presented in the past. An overview of the most prominent
methods has been given Flynn and Jain.8 For simple approximation the curvature can be computed from the
change of orientation from the point of interest to its neighbor. Some methods based on this idea have been
presented especially for triangulated surfaces, where surface normals are computed per mesh. These simple
techniques are often used for edge pixel detection for example in mesh simplification. Since these methods use
information only in the direct neighborhood of a point they are extremely sensitive to noise. Since we require
exact quantities for our classification these methods were not considered.

Precise estimates of curvature can be obtained from analytic methods. The general strategy of analytical
methods is to fit a surface in the local neighborhood of the point of interest and then compute the partial



(a) (b)

Figure 3. (a) Test scene containing basic shapes as acquired with our stripe projection sensor. (b) Two-dimensional
curvature histogram of Gaussian curvature over mean curvature.

derivatives needed to determine curvature. The main difference of the analytic methods is in the method for local
surface fitting. Besl and Jain9 have proposed a method that is implemented as a series of separable convolution
operations one for each partial derivative. The approach is known as orthogonal polynomial approximation. The
advantage of their approach is the potential speed of the process using optimized convolution operations. On
the down side using a convolution mask does not allow for individual elimination of single points. Thus if the
data set contains small holes or outliers within the area of the convolution mask the curvature will deviate by a
large amount and the convolution mask causes box shaped artifacts.

We have chosen to use an estimation process based on classical least squares. Moving a square filter mask
over the data set individual points are added as observation to the estimation process. Invalid pixels can be
easily discarded. This approach even allows us to give individual weights to every pixel in the range image. We
fit the data to a second degree explicit polynomial:

z = ax2 + bxy + cy2 + dx+ ey + f

where the minimization criterion is
∑
(f(xi, yi)− zi)2. The partial derivatives are derived directly from the

surface parameters.

In order to reliably estimate curvature from range data the data has to be filtered to eliminate noise artifacts.
As mentioned above we experience considerable aliasing effects. Median filtering otherwise popular is not suited
for this type of noise.10 A simple weighted averaging is suitable for the purpose. The size of the filter mask has
to be established during a test run on a known geometry beforehand, since the noise is specific to every sensor.

4.2. Classification

After mean and Gaussian curvature have been computed for each valid pixel in the range image, each pixel is
classified according to its curvature. A simple minimum distance classification is then used to map every pixel
to its corresponding curvature cluster. An additional threshold is used to prevent classification of points with
curvature information that deviates strongly from its nearest cluster. Since mean and Gaussian curvature are two
different quantities with different magnitudes two separate thresholds can be used to eliminate outliers. Cantzler
and Fisher7 have proposed a formula to derive the threshold for the Gaussian curvature from the threshold for
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Figure 4. (a) The CAD model of “bigwye”. (b)-(d) Extraction results on test dataset. Classification of surfaces is
independent of the pose of the object.

mean curvature. However this formula uses the maximum of mean curvature, a quantity that is difficult to obtain
reliably. We have chosen to use only a single threshold for both curvatures. For a planar patch this effectively is
similar to the approach of Koenderink mentioned above, since it uses a single threshold to determine planarity
of a local region.

First tests of the classification algorithm were made based on data from the SAMPL database maintained
by P. Flynn.11 The database provides CAD models and range images for various simple parts. Most of them
contain only cylindrical and planar surfaces and have few surfaces (less than ten). The data set we present here
contains five cylinders and the according planar surfaces. Figure 4(a) shows this dataset called “bigwye”. Figure
4(b)-(d) show the result of classification. We can see the effect a large mask size has on the performance of the
algorithm near edges. But still the overall results are quite encouraging as the surfaces can be reliably detected
independent of the pose of the object.

We have also tested the algorithms on our own test scene consisting of a planar, a cylindrical and a spherical
region (see figure 3). The data has been acquired with our own sensor system as described above. Figure 3(b)
shows the two-dimensional curvature histogram. One can clearly identify the three clusters corresponding to the
three surfaces. The result of initial classification on this test scene is shown in figure 5. Classification is achieved
using the model information given in the following table:

SURFACE LABEL H K
PLANE −0.0000 0.0000

CYLINDER −0.0200 0.0000
SPHERE −0.0200 0.0004

4.3. Region Growing

After initial classification each pixel is either labeled according to its corresponding surface or remains unlabeled.
The results in figure 5(a) show a considerable amount of points that were misclassified, i.e. were assigned a
wrong label or were not assigned a label but should have. These misclassifications are caused by false curvature
estimation. Especially on the cylinder it becomes evident that not all of the ripples were removed during
smoothing. These classification errors have to be removed in a second processing step.

The most dominant regions, i.e. regions above a certain size threshold, are selected as seed regions for a
region growing process. Region growing is implemented as a morphological operation. A 3 × 3 mask is moved
over the dataset. When a neighbor to the point of interest (the center of the mask) has a label assigned, the
point of interest is checked for compatibility to that region. In case it is found to be compatible it is assigned
the label of the corresponding region. If there are conflicting regions, i.e. there are different regions adjacent to
the point of interest, the largest region is preferred. This is also the case if the center pixel is already labeled.



The compatibility check is performed by a least squares fit to a second-degree explicit polynomial as described
above. If the error of fit is below a certain threshold the point is accepted as compatible. The threshold has
to be established beforehand, when evaluating the sensor system. The result of the region growing is shown in
figure 5(b).

(a) (b)

Figure 5. Segmentation results on the test scene. (a) The result after initial classification. (b) The result after region
growing and removal of sliver regions.

5. CONCLUSION

We have presented an efficient technique for the model-based segmentation of dense range scans. The joint use
of model-based classification and region growing results in a reliable segmentation and overcomes most of the
problems caused by misclassification. Curvature estimation still is a crucial part of the process and remains
a topic of intense research. The proposed method is aimed at inspection and measurement task of industrial
objects, but also has potential for the application in other areas. In the future we plan to extend the process by
improving the compatibility check during region growing. Since the surface type is assumed to be known from
initial classification, the surface fit can be constrained to a specific surface type.
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