
TOWARDS AUTOMATED SEGMENTATION OF DENSE RANGE SCANS

Jan Böhm
Institute for Photogrammetry, University of Stuttgart, Geschwister-Scholl-Str. 24, 70174 Stuttgart, Germany -

jan.boehm@ifp.uni-stuttgart.de

KEY WORDS: Segmentation, Classification, Extraction, Surface Feature, CAD

ABSTRACT

This paper addresses the problem of segmenting dense range data containing curved surfaces. Segmentation is a crucial
step in the processing of range data for applications in object recognition, measurement, reengineering and modeling.
We propose a two stage process using model-based curvature classification as an initial grouping. Features based on
differential geometry, mainly curvature features, are ideally suited for processing objects of arbitrary shape including of
course curved surfaces. The second stage uses a modified region growing algorithm to perform the final segmentation.
The approach is demonstrated on a test scene acquired with a stripe projection sensor.

1 INTRODUCTION

Today a full variety of range sensing devices is available
for all kinds of object sizes, resolution demands and pur-
poses. Applications range from industrial inspection, multi-
media, as-built-documentation to cultural heritage and oth-
ers. Be it active triangulation or time-of-flight systems,
scanners are able to densely sample surfaces with great ac-
curacy. Oftentimes hundreds of thousands or even millions
of points are obtained from only a single scan. Usually the
result of a single scan is represented as an ordered point
cloud. Most of the times the topology is based on a grid
either given by a frame sensor or by the scan movement.

While this type of data is easily triangulated and directly
suited for visualization purposes, most applications require
data of another quality. Be it for measurement purposes,
reengineering, construction or design purposes it is nec-
essary to give an interpretation to the point cloud, that is
to group individual points into meaningful entities. This
grouping is called a segmentation. Just what ’meaningful’
really is, is determined by the application. In the context
of range data, most often a segmentation into individual
surfaces is desired.

Several possibilities exist for the segmentation of dense
range data. Among the first and most prominent are region
growing approaches. The crucial point in region growing
is the selection of seed regions. When seed regions are se-
lected to close to the rim of a surface, the resulting region
is usually meaningless. Today we see the first implemen-
tations of region growing approaches in commercial appli-
cations. The problem of seed region selection is left to the
operator, who selects regions manually. This manual oper-
ation can be quite time consuming considering the size of
the point cloud and is generally a tedious task. Thus it is
evidently desirable to automate the process.

The work by J.P. Besl (Besl, 1988) has been among the first
to present automated region growing for range image seg-
mentation containing curved surfaces. By initially group-
ing the pixels of a range image according to the sign of
the Gaussian and Mean curvature an over segmentation is
achieved. By successively applying morphological opera-
tors the region are shrunk to minimal size. These minimal

regions are then used as seed regions for region growing.
While the algorithms were shown to produce good results,
the complexity of the approach and the large number of
user supplied parameters have prevented the wide-spread
adoption of the approach in practice.

In the course of our work on industrial inspection using
range imaging, we have developed methods for range im-
age processing and feature extraction. We have earlier re-
ported on our developments of a range image classifica-
tion framework using differential geometry (Böhm et al.,
2000). Features based on differential geometry, mainly
curvature features, are ideally suited for processing objects
of arbitrary shape including of course curved surfaces. Fur-
thermore these features are suited for object recognition
purposes as they are invariant to rotation and translation.

While the curvature-based classification approach gives an
interpretation to each individual pixel and by performing a
cluster analysis in curvature space effectively gives a group-
ing of the pixels, this grouping does not take into account
the topology of the point cloud. This is a major shortcom-
ing when comparing the classification result to a segmen-
tation. Using the classification result as an initial grouping
we now present our work on extending the classification to
a segmentation of the point cloud. This two stage process
uses a modified region growing algorithm to perform the
segmentation based on the topology. While our approach
shares some concepts with the one mentioned above, it ex-
tends the idea in several ways. First the absolute value of
curvature is used for initial classification, not only the sign
of curvature. Secondly model knowledge of the object is
incorporated into the process and thus greatly enhances re-
liability. When the type of surface can already be derived
from model knowledge, this information can be used to
check for the homogeneity of a group of points during the
growing process.

While the proposed framework in principle is general to
range data, we show its application in the context of indus-
trial measurement purposes. All range data for this project
has been acquired with a stripe projection system devel-
oped at the Institute for Photogrammetry. The scanner sys-
tem itself is described in detail in the next chapter including



an examples of the sensor’s performance. Chapter 3 de-
scribes the fundamental quantities characterizing the local
behavior of a surface and gives the mathematical formulas
to compute these quantities. In chapter 4 the actual clas-
sification and segmentation process is presented detailing
our approach to curvature approximation from range data.
The proposed approach is demonstrated on a test scenario
acquired with our sensor.

2 DENSE RANGE ACQUISITION

For dense surface measurement several alternative mea-
surement techniques are available. If the object’s surface
shows sufficient radiometric detail, image matching tech-
niques can be employed to recover surface geometry. How-
ever in most industrial cases surfaces are not very cooper-
ative with respect to texture detail. One method thus is to
use an artificial static texture pattern projected onto the ob-
ject by a slide projector. Instead of using a static 2D texture
pattern, one can just use a single spot, most often generated
by a laser beam, which is moved across the surface. Alter-
natively one-dimensional structures, most often a line, can
be projected. To speed up the process several lines can be
projected in parallel, leading to the method of coded light
projection.

All the methods mentioned above are triangulation based
methods. Completely different approaches use the time-
of-flight or interferometer principle to determine distance.
These approaches have just recently become popular in
close range applications now that several commercial laser
scanners are available on the market. While each of the
methods has its unique advantages and disadvantages, tri-
angulation has the best potential for accurate measurement
at very close distances. Because of the speed of mea-
surement a stripe projection system is the most frequent
choice for industrial applications in the measurement of
small parts and was thus chosen for our project. Since ev-
ery sensor system has its unique features and also unique
problems, we will detail below the sensor system we use.

2.1 Sensor Hardware

We use a LCD type projector for our experiments. The
line pattern is generated by switching lines on a two di-
mensional LCD backlit from behind. This type of pro-
jector has the advantage that there are no moving parts.
On the other hand, due to the LCD with polarizing filters,
brightness is inferior to projectors using metal coated glass
plates. While normal LCD stripe projectors use two glass
plates with conducting stripes aligned precisely, a cross-
pattern projector has one of the glass plates turned by 90
degrees. Since all stripes can be switched individually, ar-
bitrary vertical and horizontal stripe patterns can be gener-
ated (albeit no arbitrary 2D patterns can be generated, since
the 2D pattern always results from a XOR of the two line
patterns). In the context of a photogrammetric evaluation,
this means that the projector can be modeled as an inverse
camera delivering 2D ’image’ coordinates. On the down
side, twice as many stripe patterns have to be projected per
sequence in order to obtain x and y coordinates.

Figure 1: The sensor hardware used for the experiments
consists of a LCD stripe projector and a digital camera.

The projector we use features a LCD with 640×640 lines,
line spacing of 0.09 mm (LCD size 57.62 mm, and a halo-
gen light source of 400W). Patterns can be switched in
14 milliseconds making it feasible to acquire images in
video realtime, although we do not use this option since
it requires hardware support. Commands and pattern se-
quences can be sent to the projector via a RS-232 interface.
The camera we use is a digital CCD camera with a resolu-
tion of 1300 × 1030 pixels and approximately 0.0067 mm
pixel size. Projector and camera are mounted on a stable
aluminum profile with a fixed relative orientation.

2.2 Sensor Calibration

Sensor calibration is a fundamental prerequisite for any vi-
sion system that relies on quantitative measurements of the
observed scene. Although it is very common to calibrate
optical 3-D systems, like stripe projectors, by means of di-
rect calibration techniques (e.g. polynomial models) we
found it favorable to use model based calibration (Brenner
et al., 1999), where parameters of a geometric model of the
sensor, so called intrinsic and extrinsic parameters, are de-
termined. The fact, that model parameters hold true for all
the measurement volume of the sensor increases flexibil-
ity and omits problems with measurements lying outside
the volume originally covered by calibration. In addition,
residuals and the obtained covariance matrix give a clear
diagnosis for the determination of the calibration param-
eters and object point coordinates. The model parameters
describe how points in 3-D space are projected onto the im-
age plane, considering imperfect cameras and lenses. For
a camera this means to find appropriate values for the fo-
cal length, principal point position and lens distortion. If
a sensor consists of multiple components their relative po-
sition and orientation must also be determined. The stripe
projection systems are either modeled as inverse cameras
or used as an aid to establish point correspondences be-
tween at least two cameras e.g. the cameras of the stereo
head.

Despite the existence of techniques in photogrammetry to
simultaneously estimate these parameters during measure-
ment tasks, we are using a specially designed test object to
effectively compute the desired quantities from a few cali-



bration measurements. Since any short-term geometrically
stable object can be used for calibration, there is no need
for an accurate calibration normal. Nonetheless, since ab-
solute measurements are required, one accurate distance is
given from a scale bar to fix the scale.

2.3 Sensor Performance

To be able to assess the accuracy of our sensor system and
to determine the amount and nature of noise we have per-
formed a series of tests using a certified test object. The ob-
ject is a precise sphere with a diameter of 100 mm which is
certified to 0.001 mm in shape. We acquired several shots
of the object with the sensor. The range data was then fit
to a sphere. We have used an implicit polynomial for the
fitting. Least squares adjustment was performed using an
eigenvalue approach. The minimization criterion we used
is the algebraic distance. On a measurement area of about
300×300 mm we have found the standard deviation of the
error of fit to be 0.02 mm. The sampling distance on the
object’s surface is approximately 2 tenth of a millimeter.
Of the 25000 points tested 99.8% were below 0.07 mm in
deviation. The exact distribution of deviations is given in
figure 2.

More important than the magnitude of noise is the nature
of the noise on the object’s surface. Since the system uses
two components incorporating a grid structure we expe-
rience Moiré effects on the surface data. They result in
concentric ripples across the surface (see figure 2). The
amplitude of the ripples is approximately one hundredth
of a millimeter. This type of noise is actually worse than
purely statistical noise since it is more difficult to filter out
and it locally changes surface characteristics. However the
sensors accuracy is still more than adequate and allows to
capture shape in great detail.

3 THREE-DIMENSIONAL SHAPE

In order to find an initial grouping of the pixels of a range
image we have to establish quantities characterizing the lo-
cal behavior of a surface. The following describes the most
fundamental quantities and gives the mathematical formu-
las to compute these quantities (do Carmo, 1976).

3.1 Fundamentals

Any parameterized surface X in three-dimensional space
is given by the projection of an open set U over �2 into the
space �3 :

X : U ⊂ �2 → �3

There are three fundamental ways to describe a surface:

• using a vector-function

X(u, v) =


 x(u, v)

y(u, v)
z(u, v)


 , (u, v) ∈ U

• using an explicit function

X : w = F (u, v)

• using an implicit expression

X : F (u, v, w) = 0

The partial derivatives ∂X
∂u and ∂X

∂v are noted as Xu and
Xv. In the case of a vector function these partial deriva-
tives are easily computed as:

Xu =
(

∂x(u,v)
∂u , ∂y(u,v)

∂u , ∂z(u,v)
∂u

)
Xv =

(
∂x(u,v)

∂v , ∂y(u,v)
∂v , ∂z(u,v)

∂v

)

Every explicit function can be converted to vector notation:

X = (u, v, F (u, v))

and its partial derivatives are given by:

Xu =
(

1, 0,
∂F (u, v)

∂u

)
, Xv =

(
0, 1,

∂F (u, v)
∂v

)

It is important to note, that every surface can be locally
described by an explicit function.

3.2 Fundamental Forms

A differentiable surfaceX is given with the conditionX u×
Xv �= 0. The unit normal vector N is then given as

N =
Xu ×Xv∥∥Xu ×Xv

∥∥

The expression

I = dX · dX
= (Xudu + Xvdv) · (Xudu + Xvdv)
= Edu2 + 2Fdudv + Gdv2

with

E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv

is called first fundamental form.

The expression

II = dX · dN
= −(Xudu + Xvdv) · (Nudu + Nvdv)
= Ldu2 + 2Mdudv + Ndv2

with

L = −Xu·Nu,M = −1
2
(Xu·Nv+Xv·Nu), N = Xv·Nv

is called second fundamental form. The above condition
can be rewritten as

L = Xuu ·N, M = Xuv ·N, N = Xvv ·N



Figure 2: Rendering of a data set acquired with our stripe projection sensor. The object is a precise sphere. Deviations
of the sensed data from the ideal sphere are shown on the right. The number of points is plotted over the deviations in
millimeters.

3.3 Curvature

Surface curvature is derived from the fundamental forms
given above. The principal curvatures are the maximum
curvature k1and minimal curvature k2. Alternatively the
mean curvature H and Gaussian curvature K can be used
to describe the surface locally:

k1,2 = H ±
√

H2 −K

and

K =
LN −M2

EG− F 2

H =
EN + GL− 2FM

2(EG− F 2)

They are translation- and rotation-invariant. While k1, k2

and H, K are both valid pairs for local surface character-
ization, as is noted in (Besl, 1988), there are further con-
siderations which may favor the one over the other. For
one to compute the principal curvatures is computationally
slightly more expensive. Since the expression of which the
square root is taken can become negative due to numerical
instabilities, additional precautions have to be taken. The
mean curvature is the average of the two principal curva-
tures and is therefore less sensitive to noise. On the other
hand since Gaussian curvature is the product of the two
it is much more sensitive to noise. Using only the signs
of the curvatures six basic surface types can be determined
using principal curvature while eight can be determined us-
ing mean and Gaussian curvature.

Based on principal curvature further local properties of a
surface can be derived. (Koenderink and van Doorn, 1992)
have proposed a shape classification scheme based on two
quantities called S and C:

S =
2
π
· arctan

(
k1 + k2

k1 − k2

)
k1 ≥ k2

C =
√

k2
1+k2

2
2

Where S describes the shape, and C the strength of cur-
vature. (C is the square root of the deviation from flat-
ness, another derived quantity in differential geometry).
Points of same value for S but differing C, can be seen
as points of same shape with stronger curvature. The main
difference to the description using mean and Gaussian cur-
vature is the possibility to describe surface flatness with
a single quantity C < θ. We will detail the analogy to
our approach below. A study comparing both description
schemes (Cantzler and Fisher, 2001)found no significant
difference of the two. Other authors have extended the SC
scheme and have given different formulas for the shape pa-
rameter. For our studies we have decided to use the HK
scheme.

4 CLASSIFICATION AND SEGMENTATION

In the previous chapter we have given the mathematical
quantities used to describe a surface locally. In order to
apply these quantities in a classification we have to com-
pute them from range data. Due to the nature of the data
described earlier reliable curvature estimation becomes a
difficult task crucial to the success of the segmentation pro-
cess. We have tested the algorithms described below on a
dataset of a test scene consisting of a planar, a cylindrical
and a spherical region, which was acquired with our sensor
(see figure 3).

4.1 Curvature Estimation

Several methods for curvature estimation have been pre-
sented in the past. An overview of the most prominent
methods has been given in (Flynn and Jain, 1989). For
simple approximation the curvature can be computed from
the change of orientation from the point of interest to its
neighbor. Some methods based on this idea have been pre-
sented especially for triangulated surfaces, where surface
normals are computed per mesh. These simple techniques
are often used for edge pixel detection for example in mesh



Figure 3: Test scene containing basic shapes as acquired
with our stripe projection sensor.

Figure 4: Box shaped artifacts in curvature estimation us-
ing convolution approach.

simplification. Since these methods use information only
in the direct neighborhood of a point they are extremely
sensitive to noise. Since we require exact quantities for
our classification these methods were not considered.

Precise estimates of curvature can be obtained from ana-
lytic methods. The general strategy of analytical methods
is to fit a surface in the local neighborhood of the point
of interest and then compute the partial derivatives needed
to determine curvature. The main difference of the an-
alytic methods is in the method for local surface fitting.
(Besl and Jain, 1986) have proposed a method that is im-
plemented as a series of separable convolution operations
one for each partial derivative. The approach is known as
orthogonal polynomial approximation. The advantage of
their approach is the potential speed of the process using
optimized convolution operations. On the down side using
a convolution mask does not allow for individual elimina-
tion of single points. Thus if the data set contains small
holes or outliers within the area of the convolution mask
the curvature will deviate by a large amount an cause box
shaped artifacts (see figure 4).

We have chosen to use an estimation process based on clas-
sical least squares. Moving a square filter mask over the
data set individual points are added as observation to the
estimation process. Invalid pixels can be easily discarded.
This approach even allows us to give individual weights to

SURFACE LABEL H K

PLANE −0.0000 0.0000
CYLINDER −0.0200 0.0000

SPHERE −0.0200 0.0004

Figure 5: Model information used for the test scene.

every pixel in the range image. We fit the data to a second
degree explicit polynomial:

z = ax2 + bxy + cy2 + dx + ey + f

where the minimization criterion is
∑

(f(xi, yi) − zi)2.
The partial derivatives are derived directly from the surface
parameters.

In order to reliably estimate curvature from range data the
data has to be filtered to eliminate noise artifacts. As men-
tioned above we experience considerable aliasing effects.
Median filtering otherwise popular is not suited for this
type of noise (Karbacher et al., 2001). A simple weighted
averaging is suitable for the purpose. The size of the filter
mask has to be established during a test run on a known
geometry beforehand, since the noise is specific to every
sensor.

4.2 Classification

After mean and Gaussian curvature have been computed
for each valid pixel in the range image, each pixel is classi-
fied according to its curvature. The model data is entered in
the form of HK clusters (see figure 5). A simple minimum
distance classification is then used to map every pixel to its
corresponding curvature cluster. An additional threshold
is used to prevent classification of points with curvature
information which deviates strongly from its nearest clus-
ter. Since mean and Gaussian curvature are two different
quantities with different magnitudes two separate thresh-
olds can be used to eliminate outliers. (Cantzler and Fisher,
2001) have proposed a formula to derive the threshold for
the Gaussian curvature from the threshold for mean cur-
vature. However this formula uses the maximum of mean
curvature, a quantity which is difficult to obtain reliably.
We have chosen to use only a single threshold for both cur-
vatures. For a planar patch this effectively is similar to the
approach of Koendrink mentioned above, since it uses a
single threshold to determine planarity of a local region.
The result of initial classification is shown in figure 6.

4.3 Region Growing

After initial classification each pixel is either labeled ac-
cording to its corresponding surface or remains unlabelled.
The results show a considerable amount of points which
were misclassified, i.e. were assigned a wrong label or
were not assigned a label but should have. These misclas-
sifications are caused by false curvature estimation. Es-
pecially on the cylinder it becomes evident that not all of
the ripples were removed during smoothing. These classi-
fication errors have to be removed in a second processing
step.



Figure 6: Segmentation results on the test scene. On the left the results after initial classification are shown. On the right
the result after region growing and removal of sliver regions is shown.

The most dominant regions, i.e. regions above a certain
size threshold, are selected as seed regions for a region
growing process. Region growing is implemented as a
morphological operation. A 3 × 3 mask is moved over
the dataset. When a neighbor to the point of interest (the
center of the mask) has a label assigned, the point of in-
terest is checked for compatibility to that region. In case
it is found to be compatible it is assigned the label of the
corresponding region. If there are conflicting regions, i.e.
there is different regions adjacent to the point of interest,
the largest region is preferred. This is also the case if the
center pixel is already labeled.

The compatibility check is performed by a least squares fit
to a second degree explicit polynomial as described above.
If the error of fit is below a certain threshold the point is ac-
cepted as compatible. The threshold has to be established
beforehand, when evaluating the sensor system. The result
of the region growing is shown in figure 6.

5 CONCLUSION

We have presented an efficient technique for the model-
based segmentation of dense range scans. The joint use of
model-based classification and region growing results in a
reliable segmentation and overcomes most of the problems
caused by misclassification. Curvature estimation still is a
crucial part of the process and remains a topic of intense
research. The proposed method is aimed at inspection and
measurement task of industrial objects, but also has poten-
tial for the application in the automated segmentation of
laser scans. In the future we plan to extend the process
by improving the compatibility check during region grow-
ing. Since the surface type is assumed to be known from
initial classification, the surface fit can be constrained to a
specific surface type.
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