
Abstract 

We present a complete data acquisition and processing 
chain for the reliable inspection of industrial parts 
considering anisotropic noise. Data acquisition is 
performed with a stripe projection system that was 
modelled and calibrated using photogrammetric 
techniques. Covariance matrices are attached 
individually to points during 3D coordinate computation. 
Different datasets are registered using a new multi-view 
registration technique. In the validation step, the 
registered datasets are compared with the CAD model to 
verify that the measured part meets its specification. 
While previous methods have only considered the 
geometrical discrepancies between the sensed part and its 
CAD model, we also consider statistical information to 
decide whether the differences are significant. 

1 Introduction 
Coordinate measuring machines are the defacto 

standard for industrial part inspection, but suffer from 
limitations such as high cost and low measurement speed 
[7]. On the other hand, optical 3D shape acquisition 
systems provide fast and dense surface measurements 
without the need for physically probing surfaces, thus 
making them ideally suited for various applications in 
industrial inspection and reverse engineering. However, 
industry acceptance does not adequately reflect the 
theoretical and practical performance of these systems. 
One reason for the slow industry acceptance is the 
absence of standards, as they exist for coordinate 
measurement machines on a national and international 
level [19]. To fill this gap, some national standard 
organizations are now working on similar standards for 
optical measurement systems [30]. Another reason is 
measurement uncertainty, which is not constant over the 
measurement volume. It rather depends on a number of 
factors like sensor hardware, sensing geometry and the 
shape and reflectance properties of the object under 

consideration. Inspection results usually require a number 
of further processing steps. Thus, the achieved accuracy is 
hard to estimate, even for experienced operators. 

In this paper, we present a complete processing chain 
for industrial part inspection that provides the user not 
only with the geometric difference between the measured 
object and its CAD model, but also with the uncertainty in 
the obtained results. Data acquisition is performed using a 
commercial stripe projection system. We replaced the 
manufacturers software by our own calibration and 
processing methods, which are based on photogrammetric 
techniques. This allows us to quantify measurement 
uncertainty, characterized by an error covariance matrix 
and propagate it through all processing steps. Covariance 
information is also used to improve registration accuracy 
within pairwise registration and within a new multi-view 
registration procedure. The geometric deviation between 
the sensed surface and the CAD model is computed in the 
validation step. Statistical tests can then be applied to 
convert the validation results into a traffic light model 
where red stands for a significant discrepancy, yellow 
indicates potential problems and green indicates that the 
part or a specific feature meets its specification. 
Therefore, the user can easily judge the results in a 
transparent manner. 

The remainder of this section presents a short survey of 
previous work on the related topics. Section 2 covers 
calibration and data acquisition issues. Section 3 describes 
new methods in view registration. Section 4 concludes the 
paper and discusses the obtained results. 

1.1 Previous Work 
A number of different sensor architectures have been 

proposed for the construction of range sensors. 
Comprehensive reviews can be found in [3] and [14]. 
Active triangulation is one of the most common methods 
for 3D surface acquisition. Such systems project specific 
light patterns onto the object. The light patterns are 
distorted by the object surface and observed by at least 
one camera. The distorted patterns can then be used to 
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efficiently reconstruct the objects surface. The systems 
differ primarily in the type of illumination (laser or 
incoherent light source) and the dimensionality of the 
camera (matrix or linear array) and the pattern (dot, stripe, 
multi dot/stripe or freely programmable, e.g. LCD 
projector) [23,35]. 

More recently, authors made an effort to improve 
aspects like calibration, accuracy and reliability. [10] 
consider the time evolution of the reflected pattern while 
sweeping a laser plane over the object. Their so-called 
spacetime analysis considerably reduces a number of 
error sources in traditional methods if surface 
discontinuities and changes in surface reflectance are 
present. Trucco et al [26] addressed the issues of 
calibration, stripe location and measurement consistency. 
They proposed several explicit consistency tests based on 
two-camera geometry. 

Calibration is usually performed using one of two basic 
approaches. Direct calibration uses an arbitrary 
calibration function (usually a polynomial) to describe the 
mapping from observations to three-dimensional 
coordinates. The parameters of this function are obtained 
by measuring a large number of well-known points 
throughout the measuring volume. An immediate 
advantage is, that no care has to be taken to model any 
phenomena, since every source of error is implicitly 
handled by the computed coefficients [26]. However, 
direct calibration requires a highly accurate calibration 
normal. Especially for sensors with a large measurement 
volume, this requirement complicates the calibration 
procedure or makes it even impossible. Since the 
calibration function acts as a black box, there is no 
information about the quality of measurements. 

In model-based calibration, parameters of a geometric 
model of the sensor, so called intrinsic and extrinsic 
parameters, are determined. The model describes how 
points in 3D space are projected onto the image plane, 
considering imperfect cameras and lenses. Most 
commonly a specially designed test object is used to 
effectively compute the desired quantities from a few 
calibration measurements [8,15]. Since any short-term 
geometrically stable object can be used for calibration, 
there is no need for an accurate calibration normal. 
Nonetheless, at least one accurate distance (e.g. from a 
scale bar) is needed to fix the scale if absolute 
measurements are required. On the down side, highly 
accurate measurements require complicated sensor 
models and some effects in the image formation process 
might remain uncorrected. While direct calibration 
techniques are very popular for light stripe range finders, 
projection devices that generate 2D patterns have also 
been modeled as inverse cameras [25,28,29,34]. 

A range finder can only acquire those parts of an 
object, which are visible from a given viewpoint. Hence it 
is necessary to transform data from different viewpoints 

into one common coordinate system. Most of the 
techniques to perform this so-called registration task are 
more or less variations of the Iterative Closest Point (ICP) 
algorithm proposed by Besl and McKay [4]. The 
algorithm can briefly be sketched as follows. Assuming a 
reasonable good initial registration, the relative 
orientation between two datasets is iteratively refined by 
pairing a number of points on one surface with the closest 
points on the other surface and minimizing the sum of 
squared distances between the point sets. 

Closed form solutions to find the rigid body 
transformations between two point sets are readily 
available e.g. [1,17,18,31] and have been compared by 
Eggert et al [13]. Although [17] considered an isotropic 
noise model to reflect measurements of unequal quality, 
none of the methods is capable to handle anisotropic 
noise. In addition, the methods yield no information about 
the accuracy of the estimated transformation parameters. 

Numerous extensions have been proposed to overcome 
shortcomings of the original ICP algorithm. A number of 
heuristics address the problem of partially overlapping 
surfaces. It is very common to discard correspondences 
that are too far apart and correspondences that lie on the 
surface boundary [6,27]. Other authors discard point pairs 
that are not compatible with the neighboring pairs [11].  

All pairwaise registration techniques have problems to 
find a good solution for the case of multiple datasets, 
since errors in the estimated transformations accumulate 
if views are added consecutively [9]. For that reason 
global registration techniques are needed. The solution of 
Turk and Levoy [27] requires a cylindrical scan that 
covers a large portion of the object. Linear scans are then 
registered to this scan using the overlapping portions. 
Although the method works fine, not all sensors might be 
able to generate such a cylindrical scan. Blais and Levine 
[6] define a sequence of transformations between 
consecutive pairs of images and also between the first and 
the last image in the sequence. Very fast simulated 
annealing, a stochastic optimization method, is used to 
minimize a total cost function. However, the high 
dimensional minimization problem requires a large 
processing time. Bergevin et al [2] build a network of 
transformations between different views. One view 
defines the reference frame. The correspondences from all 
possible pairings are used to simultaneously compute the 
transformations for all views at each iteration. Because of 
a possible accumulation of registration errors, care has to 
be taken that the network topology minimizes the lengths 
of the paths between the nodes. The solution of Pulli [22] 
enforces constraints from pairwise registration in the 
global registration step. The method is particularly suited 
to register large data sets. Since only the constraints are 
used in global registration there is no need to keep the 
entire data set in memory, but good pairwise alignments 
are required. Stoddart and Hilton [24] and Eggert et al 



[12] independently followed a completely different 
approach. They perform a force-based optimization by 
simulating the interconnection of the data sets with 
springs between corresponding points and then solve the 
equation system of the resulting dynamic system. 

Only very few registration algorithms have addressed 
the issue of varying or anisotropic noise. Turk and Levoy 
[27] take advantage of the optional weighting term in 
[17]. They assign a confidence value to each point, which 
is computed as the dot product between the local surface 
normal and the line of sight of the sensor. A complete 
framework to describe and treat uncertainty in point set 
registration has been developed by Pennec and Thirion 
[20]. They use extended Kalman filtering to estimate the 
parameters of a rigid body transformation and the 
parameters covariance matrix. However, the method does 
not solve the global registration problem. Stoddart et al 
[24] extended this framework to the problem of surface 
registration. Pito [21] addressed the problem of 
insufficient shape information. He performed a qualitative 
analysis of geometric constraints with respect to rotation 
and translation and introduced a mechanical registration 
aid, on which he places the object. 

Williams and Bennamoun [33] recently described a 
global method for point set registration considering a 
three dimensional Gaussian error model. They also 
applied a robust (least median of squares) estimation 
technique but did not address the problem of surface 
registration. The results were demonstrated using rather 
small sets of points (10 to 40 points) but with a significant 
level of outliers. 

2 Data Acquisition 
2.1 Physical Setup 
Our measurement system consists of a commercial stripe 
projector (ABW LCD 640 Cross, 90 mµ  line width at 
640 640×  lines [35]), one or more monochrome cameras 
(Basler A113 with 2/3� imagers, 6.7 mµ  pixel size at 
1296 1024×  pixels and 12mm  Schneider-Kreuznach 
lenses) and a 3-axis positioning device to place the object 
or the calibration plate in front of the sensor. The cameras 
and the projector are mounted on a stable aluminum 
profile. A PC is used to control the system and process the 
data. The patterns are generated by switching lines on a 
two-dimensional LCD illuminated from behind. This type 
of projector has the advantage that there are no moving 
parts involved. While normal LCD projectors use two 
glass plates with conducting stripes aligned precisely, a 
cross-pattern projector has one of the glass plates turned 
by 90 degrees. Since all stripes can be switched 
individually, arbitrary horizontal and vertical stripe 
patterns can be generated (albeit no arbitrary 2D patterns 

can be generated, since the 2D pattern always results from 
a XOR of the two line patterns). 
 

 
Figure 1. Physical setup of the measurement 
system. 

2.2 System Calibration 
Although calibration is a well-known problem in 

computer vision and photogrammetry, its importance is 
often underestimated. In our opinion, system calibration is 
the limiting factor for the accuracy of most 3D 
measurement systems. 

The calibration method also determines, the way 3D 
object coordinates are computed. Since we are interested 
in the covariance matrices of the measured points, too, the 
black box approache of direct calibration techniques is not 
appropriate. Consequently, we use a model-based 
photogrammetric technique to solve for the parameters 
describing the image formation process. Since the 
projector is able to generate horizontal and vertical 
patterns, it can be modeled and calibrated like an inverse 
camera using a planar test field and a convergent setup. 

Our test field consists of an aluminum plate, on which 
we fixed a sheet of self-adhesive paper showing white 
dots on a black background. Five of those targets are 
surrounded by white rings. These rings allow determining 
the orientation of the test field. In the next step all visible 
target points are measured and identified fully 
automatically. Image coordinates for the camera are 
obtained by computing the weighted centroid. 
Corresponding projector coordinates are then computed 
with sub-pixel accuracy by a sampling at the centroid 
positions. A typical calibration sequence consists of eight 
views, where the orientation of the calibration plate is 
changed between different views. The parameters are 
estimated using the �Australis� software package from the 
Department of Geomatics of the University of Melbourne. 

We use a camera model with 10  parameters, namely 
the focal length c , the principal point offsets x∆  and 

y∆ , 1K , 2K  and 3K  for radial symmetric distortion, 1P , 

2P  for decentering distortion and 1B  and 2B  for scale 
and shear [15]. 



The calibration parameters are introduced to form the 
well-known extended collinearity model: 
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These equations describe the perspective 
transformation between the object space (object point X, 
Y, Z and perspective center X0, Y0, Z0 with rotation matrix 
R) and the image space (image point x, y), where the 
coefficients ∆x and ∆y contain the distortion parameters. 

The results of the calibration process are the intrinsic 
and extrinsic parameters of the projector and all cameras 
in a common coordinate frame. 

2.3 Solving the Correspondence Problem 
The correspondence problem can be stated as follows. 

Given a token in one image, find the corresponding 
tokens in all other images. Once the correspondence 
problem is solved, the computation of object coordinates 
is straightforward. 

In a previous publication [16] we have proposed a new 
pattern design, together with a new evaluation method. 
The so-called line shift pattern consists of a Gray code 
sequence, followed by a sequence of parallel lines, 
achieved by illuminating each nth projector line. For our 
system, we have chosen 6n = . 
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Figure 2. Gray code sequence (top) and line shift 
sequence (bottom) for a 32 line sensor. 

 
The evaluation of the line shift images is performed 

similar to the evaluation of images obtained with a light 
stripe range finder, but in a highly parallel manner. Six 
images for the x and six images for the y coordinates are 
needed to exploit the whole resolution of the projector 
(plus 20 Gray code images for ambiguity resolution). 

The line centers are detected with sub-pixel accuracy 
using a peak detector proposed by Blais and Rioux [5]. 
The detector performs a convolution of the greyvalue 

image with a fourth or eighth order linear filter (derivative 
operator). It then determines the sub-pixel position of the 
zero crossing in the convolved image. The Gray code 
sequence is used to resolve ambiguities and determine 
uniquely the projector line number. An oversampling 
technique makes ambiguity resolution more robust  
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Figure 3. (a) The sub-pixel position of the line center 
is detected by a linear interpolation of the zero 
crossing in the convolved line shift image. (b) The 
distance between consecutive lines in one image is 
three times the resolution of the Gray code. The 
oversampling is used to establish support regions 
during the labeling process, yielding a more robust 
solution. 

 
In the next step the lines joining the detected stripe 

centers are intersected to obtain sub-pixel camera 
coordinates for each projector coordinate. 

The transition from the camera domain to the projector 
domain is particular for the new method. Performing the 
same steps for an arbitrary number of cameras, 
immediately gives us not only the correspondences 
between image points of a single camera/projector 
combination but also corresponding points between any 
of the cameras linked by a common projector. 

We have also adapted spacetime analysis to work with 
our system using the line shift sequence. Because the 
evaluation is faster, it is the method of choice if only one 
camera is used. 

2.4 Object Point Coordinates 
Object point coordinates are computed by iterative 

non-linear least squares adjustment using equations (1) 
and (2). The solution is found by inverting a 3 3×  matrix, 
which afterwards contains the covariance information. 
Points that exhibit large residuals, as well as points seen 
at a steep angle are removed. 

Accuracy and reliability can be significantly improved 
if image data from multiple cameras is available, all 
sharing the same projector. Because line shift processing 
directly links projector lines to camera coordinates, 
corresponding pairs of image points between different 
cameras can be found easily. Each pair contributes four 
observations to solve for the three unknown object point 
coordinates. It is obvious, that a large number of 



observations, corresponding to a high redundancy, yield 
more accurate results. 

The data, obtained by multiple cameras, is also used to 
enforce explicit consistency tests. Specular reflections, as 
they are likely to occur on the surface of machined metal 
parts, cause spurious 3D point measurements. The 
consistency tests are based on the observation, that 
specular reflections are viewpoint dependent. If the 
cameras view the object from different angles we can 
compute the deviation between object points, computed 
from different pairings of image points. This allows us to 
discard inconsistent measurements. 

The points and their associated covariance matrices are 
stored in a multi-dimensional image array. It is 
remarkable that the image, containing the covariance 
information for the z coordinates usually looks like an 
embossed image of the object under consideration, 
because mixed-pixel effects cause larger errors near 
surface discontinuities. 

2.5 Mesh Construction 
We use triangular meshes in the further processing 

steps. Consequently, we have to convert the coordinate 
arrays into mesh representation. Besides the geometric 
position, additional information like the components of 
the covariance matrix and surface intensity information is 
stored as vertex attributes. Special care has to be taken to 
avoid the generation of incorrect topology in the presence 
of surface discontinuities. Our mesh generation algorithm 
discards triangles if the length of any edge exceeds a 
distance threshold. We have made good experience using 
a distance threshold of two to four times the sampling 
distance. The magnitude of steps in either coordinate 
direction can be limited, too. The mesh generation 
algorithm is very similar to the one described in [27]. 

3 Registration and Model Validation 
Registration is required for two purposes within our 

processing chain. First, measurements from different 
viewpoints need to be transformed into one common 
coordinate frame. In general, multiple datasets are 
concerned, requiring a multi-view registration technique 
to find a globally optimal solution. Second, the 
reconstructed model needs to be aligned with its CAD 
description in order to compute the deviation between the 
two surfaces. In this case, only two surfaces are 
concerned and a pairwise registration procedure is 
appropriate. 

We have developed a pairwise and a global registration 
algorithm. Both algorithms are modifications of the 
iterative closest point (ICP) algorithm [4]. As in most 
registration algorithms, the problem of finding a 
transformation between surfaces is reduced to finding a 
rigid body transformation that minimizes the least-

squared distance between corresponding point pairs. 
Unlike most other methods, we use an iterative solution to 
incorporate anisotropic noise in pose estimation. 

3.1 Pose Estimation 
Let S be a set of n points 3

i ∈s ! , given in the source 
coordinate frame and D be the set of corresponding points 

3
i ∈d !  given in the destination coordinate frame with 

covariance matrices 
i

Σs  and 
i

Σd  respectively. Let 
( , ) ( ( ), )T T=q t R q t  be a rigid body transformation with 

rotation matrix 3 3
3| T×∈ =R R R I!  and translation vector 

3∈t ! . ( )R q  is parameterized using the unit quaternion  

[ ] 2 2 2 2
0 1 2 3 0 0 1 2 3| 0 1Tq q q q q q q q q= ≥ ∧ + + + =q . 

The residuals between the transformed source point 
( , )i iT′ =s q t s  and the destination point id  are defined as 

 ( , ) ( )i i i i iT= − = − +v d q t s d R q s t  (3) 
It is the goal of pose estimation to find the parameters q  
and t  such that the covariance weighted least-squares 
objective function 
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with 1
i iW −= Σ  is minimized. Assuming the points is  and 

id  to be independent, the covariance Matrix iΣ  is 
computed as 
 

i i

T
iΣ = Σ + Σd sR R  (5) 

We use a modified version of the iterative non-linear 
least squares solution described in [32]. They derive a 
simple form for the Jacobian of rotation with respect to 
quaternions when evaluated at the identity quaternion Iq . 
In fact, only three rotation parameters (the vector part 
[ ]1 2 3

Tq q q  of the quaternion) are estimated and used to 
incrementally update the quaternion. As [32] do not 
consider the covariance of the estimated parameters, we 
extended their solution to yield the covariance matrix of 
all seven transformation parameters (of which only six 
parameters are independent). The method usually requires 
one to five iterations and performs excellent in practice. 

3.2 Corresponding Point Search 
Let DM  be a triangular mesh and 

DMΩ  denote its 
boundary. We can define a corresponding point operator 

( ), , , ,D d aM t tss nC(  which returns a pair ,Σdd  if a 
corresponding point is found or void if no such point 
exists, where s is a source point and sn  its associated 
surface normal, dt  a distance threshold, at  an angular 



threshold, d  the position of the corresponding point and 
Σd  its covariance matrix. 

A corresponding point d is defined as the point on the 
mesh \

DD MM Ω  that is closest to the given point s and 
satisfies the following conditions: 

 dt− <s d  (6) 
and 

 at⋅ >s dn n  (7) 
where dn  is the surface normal of DM  at point d. 

The imposed constraints allow for the registration of 
partially overlapping surfaces. For the most part, the 
constraints are the same as in [27]. We discard 
correspondences where either point lies on the mesh 
boundary and points that are too far apart. In addition, we 
require the normal of both points to have similar 
orientation. The last condition prevents from connecting 
different sides of thin surfaces. It is important to note that 
the corresponding point d  is defined to lie anywhere on 
the 0C  continuous surface DM  and is not necessarily a 
vertex of DM , yielding higher accuracy. 

The corresponding point is located either within or on 
an edge of a triangle { }, ,i j k DT M= ∈d d d . Its covariance 

matrix Σd  is computed as 

 2 2 2
i j k

α β γΣ = Σ + Σ + Σd d d d  (8) 

where , ,α β γ  are the barycentric coordinates of the point 
d  with respect to the triangle T. 

 

Figure 4. Valid correspondences (green/light grey) 
and correspondences that have been rejected by the 
described criteria (red/dark grey). 

 
A naïve implementation would require distance 

computations to all triangles, edges and vertices of DM . 
As this cannot be tolerated for real-world applications, we 
improve efficiency by using a more sophisticated closest 
point search. A sparse grid structure is employed to access 
the relevant triangles in almost constant time. 

3.3 Pairwise Registration 
Our pairwise registration algorithm aligns the source 

surface SM  with the destination surface DM , where SM  

and DM  are triangular meshes with boundaries 
SMΩ  and 

DMΩ . The algorithm performs the following steps: 
1. Preprocessing 

• Build the sparse grid structure for the closest point 
search. 

• Define a set of points \
S SM MC ∈Ω Ω  called 

control points on SM  e.g. by using each nth point. 
2. Closest Point Search. Find the sets of corresponding 

points S and D and their covariance matrices, with 

( ){ }, { } | , , ,
ii i i d aS D S C t t= = ⊂ ∧ = ss d d s ni C( . 

3. Pose Estimation. Find the rigid body transformation 
T that minimizes (4). 

4. Apply transformation T to SM . 
5. Terminate the iteration if the change in the 

parameters falls below a preset threshold or repeat 
steps 2-5. 

The algorithm can register partially overlapping 
surfaces (due to the definition of the corresponding point 
operator) using an anisotropic gaussian error model. In 
addition, the covariance matrix of the transformation 
parameters is estimated to measure transformation 
uncertainty. 

Pito [21] performed a qualitative analysis on how 
constraints from surface geometry affect uncertainty in 
the registration parameters. This work was the motivation 
to quantitatively address this problem in our algorithm. 

 

   
(a) (b) (c) 

Figure 5. Constraints on registration due to surface 
geometry. (a) Unconstrained in two directions. 
(b) Unconstrained in one direction. (c) Fully 
constrained (adapted from [21]). 

 
In Figure 5, case (a) registration is constrained in 

direction of the plane normal, but it is not constrained in 
any orthogonal direction. The reason is, that the 
established point correspondences carry only information 
in direction of the line connecting them. 

This finding can be incorporated in the pose estimation 
algorithm by using a modified weight matrix. With  

 0 i i
i

i i

−=
−

d sv
d s

 (9) 

the variance in direction of 0
iv  can be computed from (5) 

 2 0 0
i

T
i i iσ = Σv v v  (10) 



The new weight matrix must reflect the fact, that 
information is only available in one direction leading to a 
weight matrix of rank 1 
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Replacing iW  by i′W  in equation (4) has two 
advantages: 
1. We achieve a tremendous speed up in convergence 

(for some surfaces more than factor 50 compared to 
the previous solution), since the two surfaces are no 
longer sticked together by apparent observations 
perpendicular to iv . 

2. We get a clear diagnosis how well the surface 
information constraints registration. 

Although the solutions have been derived 
independently and differ in the way the parameters are 
estimated, for the case of isotropic noise our method 
yields a similar objective function as was used in [24]. 
They have also reported a significant reduction in the 
number of iterations. 

3.4 Multi-View Registration 
Given a set of n triangular meshes 

iSM , our multi-
view registration algorithm simultaneously aligns the 
overlapping parts of all n surfaces. It can be considered as 
a generalization of the ICP algorithm to the case of 
multiple surfaces. The idea is as simple as effective: 
starting from a reasonably good initial registration, we 
iteratively refine the position of so-called tie points jt  by 
computing the weighted average of the corresponding 
points on all surfaces, which are found using 

( ), , , ,
i jS j d aM t tts t nij =C(  and the weight matrix 

ij
′Σs , which 

also considers uncertainty in the transformation 
parameters, where 

iTJ  is the Jacobian of the 
transformation with respect to the parameters q  and t  

 ( ) ( )
ij ij i i i

T T
i i T ij T T ijJ J′Σ = Σ + Σs sR R s s  (12) 

We can then estimate for every surface 
iSM the rigid 

body transformation iT  that minimizes the sum of squared 
distances to all tie points linked to that surface. The poses 
of all surfaces are updated and we can start the next 
iteration until the change in the parameters falls below a 
preset threshold. Since we iteratively refine the mean 
position of the tie-points, we call the algorithm iterative 
mean point algorithm (IMP). The steps are: 
1. Preprocessing 

• Build the sparse grid structures for the closest 
point search. 

• Find a set of tie points TP by regularly sampling 
the volume within the combined bounding box of 
all surfaces. A tie point is created if corresponding 
points on at least two surfaces are found, using a 
larger distance threshold 

Initdt . Each tie point 
stores the indices of all surfaces it is initially 
linked to. Only these surfaces have to be 
considered for searching corresponding points in 
later steps of the algorithm. 

2. Closest Point Search. Find sets of tie points iTP , 
corresponding points iS  and their covariance 
matrices considering only the relevant surfaces. 

( ){ }, { } | , , ,
i j Initi i i ij S j d aTP S s M t t= = = tt s t nij C( . 

3. Mean Point Estimation. Find the mean position jt  of 
all tie points using (12). 

4. Pose Estimation. Find the n rigid body transformation 
iT  that minimize (4) using all the concepts from 

pairwise registration and the covariance matrix of the 
mean points jt . 

5. Apply the transformation iT  to the surfaces 
iSM . 

6. Terminate the iteration if the change in the 
parameters falls below a preset threshold or repeat 
steps 2-6. 

Like the original ICP algorithm, the new method is 
general in the sense, that it is independent from surface 
representation as long as a meaningful corresponding 
point operator could be defined. The generalization to 
higher dimensions is straightforward. Since the closest 
point search could be performed independently for all 
surfaces, the method is ideally suited for a parallel 
implementation. 
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Figure 6. (a) Initial set of tie points. (b),(c) Results of 
the multiview registration process. The errors are 
evenly distributed. 

 

3.5 Surface Validation 
Surface validation is the task of determining if a 

measured object is compatible with its CAD model. For 
this purpose, the sensed dataset is registered with its CAD 
description. If is  denotes a measured point and id  
denotes its corresponding point on the model, we compute 
the distance i i idev = −d s  between the two points and 
compare it to an application dependent threshold devt . 



The uncertainty in the position is  is defined by the 
point�s covariance matrix 

i
Σs , which is computed 

according to equation (12). From equation (10), we can 
compute the standard deviation 

idevσ of idev . The 
possible outcomes of the test are: 

1. 
ii dev devdev t cσ− >  Incompatible. 

2. 
idev dev it c devσ− <  Possibly incompatible. 

3. 
idev dev it c devσ− >  Compatible. 

Where c is a constant to control the level of significance 
α  for our test (usually 3c =  corresponding to 99%α ≈ ).  

4 Conclusions 
A complete processing chain for the acquisition, 

registration and validation of surfaces incorporating 
statistical error models has been presented. 

We adapted photogrammetric techniques for reliable 
data acquisition using a structured light system and to 
provide with point covariance information. 

We have proposed and implemented an improved 
pairwise registration technique and a new multi view-
registration algorithm, called iterative mean point 
algorithm (IMP). Both algorithms achieve higher 
accuracy and a significant reduction of iterations by using 
a weighted pose estimation reflecting uncertainty in the 
observations. 

Validation was performed by comparing the measured 
dataset with its CAD description, considering the 
uncertainty in the computed deviation. 
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