
Towards On-line Pose Measurement for Robots
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Abstract. We present a photogrammetric system for on-line pose mea-
surement of a robot. The system is based on photogrammetric measure-
ment techniques, namely resection. We describe the theoretical founda-
tions of our approach as well as early details of our implementation and
hardware set-up. The results achieved are compared to those of a com-
mercial ball-bar system.

1 Introduction

While industrial robots typically can achieve a repeatability of 0.1mm or less,
their absolute accuracy can be in the range of only 1mm or worse. Many new ap-
plications in robotics, including flexible optical measurement, require improved
absolute accuracy. Photogrammetry has been used for several years to perform
off-line calibration in order to increase accuracy. However when operating a
robot under shop-floor conditions the accuracy is expected to decrease again
over time. Clearly an on-line pose correction is desirable. We present a system
for the on-line pose measurement based on photogrammetry.

2 Photogrammetric System

Photogrammetric measurement is based on the classical collinearity equations
defining the condition, that the projection center, a point in object space and
its corresponding point on the image plane are on a straight line. Let c be the
principal distance of the camera, (X0, Y0, Z0) the principal point, (X, Y, Z) the
coordinates of the object point and (x, y) the coordinates of the corresponding
image point. Then the collinearity equation is (see [7])

x = x0 − c (X−Xc)r11+(Y −Yc)r12+(Z−Zc)r13
(X−Xc)r31+(Y −Yc)r32+(Z−Zc)r33

= x0 − cZx

N

y = y0 − c (X−Xc)r21+(Y −Yc)r22+(Z−Zc)r23
(X−Xc)r31+(Y −Yc)r32+(Z−Zc)r33

= y0 − c
Zy

N

with the condition that rij are the elements of a 3-D orthogonal rotation
matrix. For many applications in photogrammetry the rotation matrix R is pa-
rameterized using Cardan angles ω, φ, κ. However, it has shown to be favorable



(see [10]) to use a parameterization using quaternions. We use Hamilton nor-
malized quaternions to describe a rotation matrix:

R = (I + S)(I − S)−1, S =




0 −c b
c 0 −a

−b a 0




2.1 Camera Model

While the basic camera model in photogrammetry is the pin-hole camera, addi-
tional parameters are used for a more complete description of the imaging device.
The following parameters are based on the physical model of D. C. Brown ([1]).
We follow the notation for digital cameras presented by C. S. Fraser ([3]). Three
parameters K1, K2 and K3 are used to describe the radial distortion. Two pa-
rameters P1 and P2 describe the decentring distortions. Two parameters b1 and
b2 describe a difference in scale between the x- and y-axis of the sensor and
shearing. To obtain the corrected image coordinates (x, y) the parameters are
applied to the distorted image coordinates (x′, y′) as follows

x = x′ − x0

y = y′ − y0

�x = xr2K1 + xr4K2 + xr6K3 + (2x2 + r2)P1 + 2P2xy + b1x+ b2y
�y = yr2K1 + yr4K2 + yr6K3 + 2P1xy + (2y2 + r2)P2

x = x+�x
y = y +�y

Where (x0,y0) is the principal point and r =
√

x2 + y2 is the radial distance
from the principal point. The camera’s parameters are determined in a bundle
adjustment using a planar test field. The bundle adjustment process is carried
out before-hand.

2.2 Resection

The problem of (spatial) resection involves the determination of the six param-
eters of the exterior orientation of a camera station. We use a two-stage process
to solve the resection problem. A closed-form solution using four points gives
the initial values for an iterative refinement using all control points.

Closed-form Resection Several alternatives for a closed form solution to the
resection problem were given in literature. We follow the approach suggested by
Fischler et. al. [2]. Named the “Perspective 4 Point Problem” their algorithm
solves for the three unknown coordinates of the projection center when the co-
ordinates of four control points lying in a common plane are given. Because the
control points are all located on a common plane the mapping in-between image-
and object points is a simple plane-to-plane transformation T . The location of



the projection center can be extracted from this transformation T when the prin-
cipal distance of the camera is known. For a detailed description of the formulas
please refer to the original publication.

To complete the solution of the resection problem we also need the orienta-
tion of the camera in addition to its location. Kraus [8] gives the solution for
determining the orientation angles when the coordinates of the projection center
are already known. The algorithm makes use of only three of the four points.

Iterative Refinement The closed-form solution makes use of only four con-
trol points. Usually much more control points are available and the solution is
more accurate if all observations are used in a least squares adjustment. For an
iterative solution, the collinearity equations have to be linearized. This is stan-
dard in photogrammetry. While most of the partial derivatives of the classical
bundle adjustment remain the same, the elements for rotation have changed be-
cause of our use of quaternions . Six new partial derivatives replace the common
∂ξ
∂ω , ∂ξ

∂φ , . . .:

∂ξ
∂b =

−2f
N2D (−Z2

x + cZxZy − aZyN − N2)
∂ξ
∂a =

−2f
N2D (cZ

2
x + ZxZy + bZyN + cN2)

∂ξ
∂c =

−2f
N2D (−aZ2

x − bZxZy + ZyN − aN2)
∂η
∂b =

−2f
N2D (−ZxZy + aZxN + cZ2

y + cN2)
∂η
∂a =

−2f
N2D (cZxZy − bZxN + Z2

y +N2)
∂η
∂c =

−2f
N2D (−aZxZy − ZxN − bZ2

y − bN2)

Using the results from the closed-form solution as described above, we can
now iteratively refine the solution for all control points available.

Simulated Results Simply using the formulas given above and applying error
propagation we can now do a simulation of the resection to predict the expected
errors in resection. Assuming a focal length of 12mm and with a standard pixel
size of 6.7 µm, the expected errors in x, y and z for a certain error in image
measurement are given in table 1.

3 Implementation

The algorithms described above were implemented in an on-line pose measure-
ment system. The systems components, both mechanical and electronic are de-
scribed below. In addition the test configuration using an industrial robot is
described.

3.1 Hardware

The optical sensor we are using is a Basler A113 camera, with a Sony CCD
chip, which has a resolution of 1300×1030 pixels. The camera provides a digital



output according to IEEE standard RS644. A frame-grabber is integrated into
a standard PC. The digital camera system is superior to an analog camera
system since it does not exhibit line jitter problems thus enabling more precise
measurements. Schneider-Kreuznach lenses with 12mm focal length are mounted
onto the camera.

To maximize the signal intensity we use retro-reflective targets and a ring
light on the camera. To minimize the effects of external light sources we use
near-infrared LEDs as light source and a filter on the lens. (see figure 1, left)

The control points are fixed onto a plane, also used as a calibration plate. We
use coded targets to achieve automated identification of the targets. The circular
center of the target is used for sub-pixel precise measurement of the targets
position. A circular code surrounding the center carries a binary representation
of the unique identifier. (see figure 1, center)

The set-up for our experiments consists of a Kuka KR15 robot. It is a six
axis robot with a maximum payload of 15 kg at maximum range of 1570mm.
The robot is specified with a repeatability of ±0.1mm. The absolute accuracy
is not specified.

Fig. 1. Left: camera and ring LED mounted onto the robot. Center: part of the test
field. Right: Ball-bar tester.

3.2 Image Processing

Image processing is performed on a standard PC. The images are first binarized
using an optimal thresholding algorithm introduced by Otsu (see [9]). Then a
consistent component labeling is performed to find targets. We discriminate the
circular centers from all other ’blobs’ by size and a simple shape-test. Since the
targets can be smaller than 10 pixels in diameter we do not perform ellipse fitting
(see [4]). The center of the target is computed as the weighted centroid.

In addition the elliptic axes and the pose angle are computed. The center,
the axes and the angle are used to determine the code ring. The code ring is
read with six-times oversampling. The acyclic redundant code provides unique
identifiers for up to 352 targets.



In addition to the coded target much smaller uncoded targets were added
to the test field. After the closed-form resection has been computed using the
coded targets, the approximate position of these targets can be projected onto
the image since their three-dimensional location is known from calibration. Thus
these additional targets can be easily identified through their position.

3.3 Results

The sensor delivers a frame rate of about 12 frames per second. The implemented
system is capable to process a single image in 420ms. A typical image will contain
about 30 coded and about 200 uncoded targets. This gives us a processing speed
of 500 targets per second including all image processing steps and the resection.
The standard deviations obtained in a first test run are given in table 1.

standard deviations simulation test-run

image measurement 1
5
pixel 1

10
pixel . . .

resection in x 0.06 mm 0.03 mm 0.2 mm

resection in y 0.06 mm 0.03 mm 0.2 mm

resection in z 0.02 mm 0.009 mm 0.06 mm
Table 1. Standard deviations of resection.

4 Circular Test

ISO 230-4 [6] describes the “Circular tests for numerically controlled machine
tools”. While these test were originally designed for the simultaneous movement
of only two axes, they also have valid implications for other machines. When
the test is carried out the robot performs a circular motion and a measurement
system detects any deviation from the ideal path. The parameters of the test
include

1. diameter of the nominal path
2. contouring feed
3. machine axes moved to produce the actual path

The results of the test include the radial deviation F , which is defined as the
deviation between the actual path and the nominal path, where the center of the
nominal path can be determined either by manual alignment or by least squares
adjustment.

4.1 Ball-bar System

There exist several commercial systems to perform the circular test. We chose
as a reference system the Renishaw ball-bar system. The system consists mainly



of a linear displacement sensor which is placed between two ball-mounts, one
near the tool center point (TCP) of the machine and one in the center of the
circular path. The displacement sensor continually measures the distance of the
two balls and thereby measures any deviations in the radius of the circular path.
(see figure 1, right)

The device has a length of 150mm, a measurement resolution of 0.1 µm, an
approximate accuracy of 1 µm and a measurement range of ±1mm. It is able
to measure the deviation at a frequency of 300 Hz.

For the actual test we programmed a circular path of 149.9mm to ensure
the system will stay within its measurement range. The contouring feed was
10mm/s. Because the TCP orientation was programmed to be constant, all six
axes of the robot were moved to produce the path.

4.2 Photogrammetric Test

For the test of our own system we used exactly the same circular path of the
robot. The calibration plate was placed on the floor, the camera looking down
onto it. The circular path, the calibration plate and the image plane were all
approximately parallel to each other. Our online system continuously records the
six parameters of the exterior orientation. The projection center coordinates are
used to compute the least squares adjustment of the circular path to determine
the center and radius of the ideal path, as suggested by ISO 230-4. The deviation
of the measured coordinates of the projection center to the ideal path is the radial
deviation. The deviations in the rotation angle is also recorded. This feature is
not available in the ball-bar test.

4.3 Results

Figure 2 shows the results of the circular test. We see that currently we are unable
to achieve the same accuracies as the commercial ball-bar system. The deviations
in rotation mentioned above are significant since the camera is mounted onto
the robot with a certain distance (∼ 100 mm) from the TCP. Therefore the
deviations in the projection center not only represent deviations in the position
of the TCP but also in its rotation. We can clearly see from figure 2(c) how
extreme deviations in orientation correspond to extreme deviations in position.
Since the ball-mount of the ball-bar tester is located much closer (∼ 10mm) to
the true TCP, it is less sensitive to errors in rotation.

5 Summary

The implemented system is an improvement of our off-line system published
earlier [5]. It has proven to be quite flexible and we believe it can be easily
integrated into many application in robotics, especially applications in optical
measurement. Currently the accuracies do not compare well to those of a com-
mercial ball-bar system. However the deviations are mostly due to an error in
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Fig. 2. Results of the circular test (a) for the ball-bar system the movement of the
ball-mount center is shown)and (b) for the photogrammetric system the movement of
the camera’s projection center is shown in mm. Deviations are magnified by a factor
of 25. (c) Angular deviation and radial deviation.

the robots TCP orientation. For future work the deviations measured at the pro-
jection center should be re-transformed to the TCP from the known hand-eye
calibration matrix. To achieve on-line pose correction the obtained pose infor-
mation has to be passed directly to the robot control unit.

References

1. Duane C. Brown. Close-range camera calibration. Photogrammetric Engineering,
37(8):855–866, 1971.

2. M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–393, June 1981.

3. Clive S. Fraser. Digital camera self-calibration. ISPRS Journal of Photogrammetry
and Remote Sensing, 52:149–159, 1997.

4. Clive S. Fraser and Juliang Shao. An image mensuration strategy for automated
vision metrology. In A. Gruen and H. Kahmen, editors, OPtical 3-D Measurement
techniques IV, pages 187–197. Wichmann, September 1997.

5. Juergen Hefele and Claus Brenner. Robot pose correction using photogrammetric
tracking. In Machine Visiobn and Three-Dimensional Imagin Systems for Inspec-
tion and Metrology. SPIE, SP, November 2000.

6. ISO. Test code for machine tools - Part 4: Circular tests for numerically controlled
machine tools, August 1996.

7. K. Kraus. Photogrammetrie Band 1. Dümmler, 1984.
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