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ABSTRACT

The automatic analysis of spatial data sets presumes to have techniques for interpretation and structure recog-
nition. Such procedures are especially needed in GIS and digital cartography in order to automate the time-
consuming data update and to generate multi-scale representations of the data. In order to infer higher level
information from a more detailed data set, coherent, homogeneous structures in a data set have to be de-
lineated. There are different approaches to tackle this problem, e.g. model based interpretation, rule based
aggregation or clustering procedures. In this paper, an approach for the analysis of settlement structures based
on graph clustering techniques is presented.

1 INTRODUCTION AND MOTIVATION

The ever increasing amount of data and information
available demands for an automation of its use. Users
need adequate search tools in order to quickly ac-
cess and filter relevant information. Data Mining has
evolved as a branch of computer science, which tries
to structure data and find inherent, possibly impor-
tant, relations in the data. In general, it deals with
finding facts by inference; finding information in un-
structured data, or in data which is not structured ex-
plicitly for the required purpose.

Besides mere textual information, more and more the
importance of image, graphical or geometric data is
emerging: thus not only the attributes of an object
are important, but also its spatial location. Imagine
that the place of living of a person can also be used
to infer his/her social status. Or the position of a good
in a supermarket can influence the way it is bought.
The general applications of spatial data mining are
abundant: Interpretation and analysis of spatial phe-
nomena, interpretation of images, etc. The basic
tools of (Spatial) Data Mining are machine learning
techniques, cluster analysis and interpretation proce-
dures.

In GIS and digital cartography, respectively, there is
a growing demand for such techniques: huge spatial
data sets are being acquired and have to be kept up
to date at ever increasing cycles; furthermore, infor-
mation of different levels of detail is required in or-
der to compensate for the requirements of different
applications. One important application is the scale

dependent data representation for quick visualization
on a computer screen. In cartography, typically the
data of different scales are acquired, managed and
updated separately – a highly time consuming and
labor intensive task. In order to accelerate update
cycles and deliver actual information on-the-fly, tools
and techniques for automation of initial data capture
and update are required.

In Germany, the digital cadastral map (ALK) in scale
1:1,000 and the digital topographic database in scale
1:25,000 (ATKIS 25) are acquired totally separately.
Therefore, also the updates have to be carried out
in both data sets separately. If automatic generaliza-
tion tools were available, the less detailed data set
could be derived from the higher detailed one. This
is envisioned by the german surveying agency in a
project to derive the scale 1:50,000. There is a deci-
sion to derive this scale totally automatically from the
scale 1:25,000. In order to do so, generalization or
aggregation procedures and interpretation tools are
needed. In this context, the automatic generation of
settlement structures is a big challenge. Starting from
a highly detailed representation including individual
buildings and their respective attributes, an interpre-
tation strategy has to automatically derive settlement
areas. This task corresponds to the problem of find-
ing a higher level structure in a collection of lower
level details.

Figure 1 shows an example of a data set used in this
study and the desired result: the regions which are
outlined manually show similar characteristics both in
geometric structure (local density) and in semantics
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Figure 1: Building ground plans and settlement struc-
tures

(here indicated by different colors / shades of gray).
The task is to automate this process and find mean-
ingful clusters automatically.

An earlier approach [Anders & Sester 1997] focused
on the modeling of the spatial situation in a seman-
tic network and an explicit provision of a set of rules
of how to aggregate objects. The prerequisite is the
availability of an explicit and complete model of the
situation and of the aggregation rules. Such rules are
often hard to find and usually also subjective. The aim
of this paper is to consider the problem as a general
task of finding higher level structures in a seemingly
arbitrary collection of (labeled) objects. This can be
transferred to the abstract problem of considering the
objects and their behaviour as a stochastic point pro-
cess. In this point-collection, meaningful structures
have to be identified, namely homogeneous clusters.
Thus the approach relies on physiological observa-
tions of humans: humans use spatial neighborhood
relations in order to find gestalt objects and separate
objects from background.

Homogeneity here is considered both concerning ge-
ometry, i.e. point density, and concerning semantics,
i.e. thematic ’density’, namely similarity. Ideally, data
mining approaches do not rely on any prior informa-
tion, e.g. thresholds or parameters, which tune the
process. In cluster analysis, usually the number of
clusters or an information about the statistical distri-
bution of the data is required. This approach focuses
on procedures which are most generally applicable
(independent on the type of objects) and need no
or only few parameters. Furthermore it is important
that arbitrary cluster forms can be identified, when no
prior knowledge about the objects is assumed to be
known. Such tasks can be tackled by clustering pro-
cesses – the important prerequisite is the modeling of
the neighborhood, which can be achieved by neigh-
borhood graphs.

Thus, in this paper the notion of neighborhood is ex-
tended: in the original research project, neighbor-
hood was defined by topologic neighborhood, i.e. ob-
jects sharing a common edge. Here neighborhood is
defined object dependent in the clustering process.
Our procedure requires the following steps: trans-
formation of the data into a point-process, clustering
of the points based on neighborhood graphs, delin-
eation of the cluster shapes and finally derivation of
cluster characteristics. These characteristic features
can be used for object identification and classifica-
tion.

The paper is structured as follows: After a short re-
view of related work, the theoretical background of
our concept, namely the clustering based on rela-
tional graphs is presented: The individual steps for
clustering of point processes are identified, i.e. the
establishment of the neighborhood graph, the clus-
tering based on geometric (density) and thematic
aspects, as well as the delineation of the cluster-
shapes. After the presentation of the conceptual
background, the concrete application of derivation of
settlement structures is presented. First results are
given and the next steps of our work are identified.
Finally, an outlook on possible extensions and other
applications concludes the paper.

2 RELATED WORK

In the context of data aggregation, there are many ap-
proaches in GIS and in digital cartography, namely in
model or database generalization. [Richardson 1996]
and [van Smaalen 1996] present approaches to come
from one detailed scale to the next based on a set of
rules. If such rules are known or models of the sit-
uation are available, good results can be achieved
(cf. [Sester, Anders & Walter 1998]). However, the
main problem being the definition of the rules and
the control strategy to infer new data from it [Ruas
& Lagrange 1995]. Current concepts try to integrate
learning techniques for the derivation of the nec-
essary knowledge [Plazanet, Bigolin & Ruas 1998],
[Sester 1999].

Clustering is a well established technique for data
interpretation. It usually requires prior information,
e.g. about the statistical distribution of the data or
the number of clusters to detect. Existing clustering
algorithms, such as k-means [Jain & Dubes 1988],
PAM [Kaufman & Rousseeuw 1990], CLARANS [Ng
& Han 1994], DBSCAN [Ester, Kriegel, Sander &
Xu 1996], CURE [Guha, Rastogi & Shim 1998], and
ROCK [Guha, Rastogi & Shim 1999] are designed
to find clusters that fit some static models. For ex-
ample, k-means, PAM, and CLARANS assume that
clusters are hyper-ellipsoidal or hyper-spherical and
are of similar sizes. The DBSCAN algorithm assumes
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that all points of a cluster are density reachable [Ester
et al. 1996] and points belonging to different clusters
are not. All these algorithms can breakdown if the
choice of parameters in the static model is incorrect
with regarding to the data set being clustered, or the
model did not capture the characteristics of the clus-
ters (e.g. shapes, sizes, densities). In the following,
we give a brief overview of existing clustering algo-
rithms.

2.1 Non-hierarchical Schemes

Non-hierarchical clustering techniques are also
called partitional clustering techniques. These ap-
proaches attempt to construct a simple partitioning
of a data set into a set of k non-overlapping clus-
ters such that the partitions optimize a given crite-
rion. Each cluster must contain at least one data ele-
ment, and each data element must belong to exactly
one group. In most of the partitional methods an ini-
tial partitioning is chosen and then the cluster mem-
bership is changed in order to obtain a better par-
titioning. Centroid based methods like the k-means
method [MacQueen 1967], [Jain & Dubes 1988] and
the ISODATA [Ball & Hall 1965] method try to assign
data elements to clusters such that the mean square
distance of data elements to the centroid of the as-
signed cluster is minimized. These techniques are
suitable only for data in metric spaces, because they
have to compute a centroid of a given set of data ele-
ments. Medoid based approaches as CLARANS [Ng
& Han 1994] and PAM [Kaufman & Rousseeuw 1990]
try to find a so called medoid which is a representa-
tive data element that minimize the sum of the dis-
tances between the medoid and the data elements
assigned to this medoid.

One disadvantage of centroid and medoid based
methods is that not all values of k lead to natural clus-
ter so it is useful to run the algorithm several times
with different values for k to select the best partition.
With a given optimization criterion this decision can
be automated. The main drawback of both methods
is that they will fail for data sets in which data ele-
ments belonging to a cluster are closer to the repre-
sentative of another cluster than to the representative
of their own cluster. This case is typical for many nat-
ural clusters if the cluster shapes are concave or their
sizes vary largely.

2.2 Hierarchical Schemes

Hierarchical cluster schemes constructs a dendro-
gram is a tree structure which represents a sequence
of nested clusters. This sequence represents multi-
ple levels of partitioning. On the top is a single clus-
ter which includes all other clusters. At the bottom are
the data elements representing single element clus-
ters. Dendrograms can be constructed top-down or

bottom-up. The btotom-up method is known as the
agglomerative approach, where each data element
starts out as a seperate cluster. In each step of an
agglomerative algorithm the two most similar clusters
are grouped together based on similarity measures in
subsequent steps and the total number of clusters is
decreased by one. These steps can be repeated until
one large cluster remain or a given number of clus-
ters is optained or the distance between two closest
clusters is above a certain threshold. The top-down
method known as the divisive approach works in the
reverse direction. Agglomerative methods seems to
be the most popular in the literature.

In the literature one can find many different variations
of hierarchical algorithms. Basically, these algorithms
can be distinguished by their definition of similarity
and how they update the similarity between existing
clusters and the merged clusters. In general, the
aproaches described are alternative formulations or
minor variations of the following three concepts:

� centroid or medoid based methods,

� linkage based methods,

� variance or error sum of squares error.

The centroid or medoid based approaches also fail
on clusters of arbitrary shapes and different sizes like
non-hierarchical methods, such as k-means and k-
medoid. The oldest linkage based method is the
single linkage algorithm, sometimes referred to as
the nearest neighbor approach. In the single link-
age method, no representative exists. The cluster is
represented by all data elements in the cluster and
the similarity between two clusters is the distance be-
tween the closest pair of data elements belonging to
different clusters. The single linkage method is able
to find clusters of arbitrary shape and different sizes,
but it will fail at poorly seperated clusters and is sus-
ceptible to noise and outliers.

In order to avoid these drawbacks algorithms like
the shared near neighbors method [Jarvis & Patrick
1973], CURE [Guha et al. 1998] or ROCK [Guha et
al. 1999] were proposed. Instead of using a sin-
gle centroid to represent a cluster, CURE choose
a constant number of representative points to de-
scribe a cluster. The ROCK algorithm operates
on a derived similarity graph and scales the aggre-
gate inter-connectivity with respect to a predefined
inter-connectivity model. The shared near neighbors
method use a k-nearest-neighbour graph to deter-
mine the similarity between two clusters. The advan-
tage of this clustering method over most other alter-
natives is that it is independent of absolute scale.

A major limitation of existing agglomerative hierarchi-
cal schemes such as the Group Averaging Method
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[Jain & Dubes 1988], CURE, and ROCK is that the
merging decisions are based on static modeling of
the clusters to be merged. More information about
the limitations of existing hierarchical methods can be
found in [Karypis, Han & Kumar 1999].

3 GRAPH-BASED CLUSTERING

The most powerful methods of clustering in difficult
problems, which give results having the best agree-
ment with human performance, are the graph-based
methods [Jaromczyk & Toussaint 1992]. The idea is
extremely simple: Compute a neighborhood graph
(such as the minimal spanning tree) of the original
points, then delete any edge in the graph that is much
longer (according to some criterion) than its neigh-
bors. The result is a forest and each tree in the forest
represents a cluster.

3.1 Similarity

In general, hierachical cluster algorithms work implic-
itly or explicitly on a similarity matrix such that every
element of the matrix represents the similarity be-
tween two elements. In each step of the algorithm
the similarity matrix is updated to reflect the revised
similarities. Basically, all these algorithms can be dis-
tinguished based on their definition of similarity and
how they update the similarity matrix. In spatial clus-
tering algorithms one can discriminate between spa-
tial similarity and semantic similarity which means the
similarity of non-spatial attributes.

Spatial Similarity implies the definition of a neighbor-
hood concept which can be defined on geometric at-
tributes, such as coordinate, distance, density, and
shape. The computation of a spatial similarity ma-
trix can be seen as the construction of a weighted
graph, so called neighborhood graph, where each el-
ement is represented by a node and each neighbor-
hood relationship (similarity) is an edge. There are
efficient algorithms to compute neighborhood graphs
[Jaromczyk & Toussaint 1992] which can be used to
compute a spatial similarity matrix.

Whereas geometric similarity can be evaluated based
on a given metric scale, in order to evaluate seman-
tic similarity, adequate measures, so called nominal
scales have to be established. The simplest possi-
bility is to use identity; more sophisticated measures
are the Hamming distance, Dice coefficient, Tanimoto
coefficient or the Levenshtein distance. These mea-
sures, however, only work by comparing the differ-
ences of the strings. Another way is to establish
compatibility matrices, which indicate the semantic
closeness of objects: in the context of buildings, a
garage and a residential building are more close than
a garage and an industrial building. Such values

can be derived empirically by evaluating the neigh-
borhood relationships of objects in existing data sets.

In order to integrate both semantic and geometric ho-
mogeneity constraints in the clustering process, dif-
ferent strategies are possible:

� two-step procedure:

1. clustering based on geometry alone using
RNG (no parameters necessary)

2. semantic clustering inside these clusters

� one-step procedure: definition of an integrated
measure of spatial and semantic distance (prob-
lem to evaluate thematic against spatial dis-
tance). One simple example for an integrated
measure is the mean value of the spatial and se-
mantic similarity.

3.2 Neighborhood Graphs

A general introduction to the subject of proximity
graphs is given in [Jaromczyk & Toussaint 1992].
Neighborhood graphs also called proximity graphs
[Toussaint 1991], are used as tools in disciplines
where shape and structure of point sets are of pri-
mary interest. These include for example visual per-
ception, computer vision and pattern recognition, car-
tography and geography, and biology.

Relative neighborhood graphs (RNG’s), introduced
by [Toussaint 1980], capture proximity between
points by connecting nearby points with a graph edge.
The many possible notions of nearby (in several met-
rics) lead to a variety of related graphs. It is easiest to
view the graphs as connecting points only when cer-
tain regions of space are empty. Some typical neigh-
borhood graphs are

� Relative neighborhood graph [Toussaint 1980],

� Gabriel graph [Gabriel & Sokal 1969],

� �-skeleton [Kirkpatrick & Radke 1985],

� Sphere of influence graph [Toussaint 1988],

� �-graphs [Edelsbrunner, Kirkpatrick & Seidel
1983].

3.3 Shape and Characteristics of Clusters

After the cluster generation, the characteristics of the
clusters can be calculated. These characteristics are
geometric features, like size, shape, average density,
etc. In addition to these unary features, also binary
features – relations – between the clusters can be
used. These characteristics can then help either to
identify clusters with similar characteristics, or even to
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Figure 2: Starting situation: buildings given in poly-
gonal representation

identify objects. This can be achieved by well known
pattern recognition or interpretation procedures, e.g.
model based interpretation. In this way, e.g. dense
inner city centers can be differentiated from rural or
industrial areas.

The computation of the shape of a point set is a non-
trivial problem. In contrast to other geometric notions,
such as diameter, volume, or convex hull the geomet-
ric notion of shape has no associated formal mean-
ing [Edelsbrunner & Mücke 1994]. A fair amount of
related work has been done for planar point sets, and
some for three dimensional point sets. One of the
first who considered the problem of computing the
shape of a point set as a generalization of the con-
vex hull was [Jarvis 1977]. A general and mathemat-
ically well defined concept of shape, called �-shapes
was introduced by [Edelsbrunner et al. 1983] and was
generalized to three dimensions in [Edelsbrunner &
Mücke 1994]. The �-shapes has been used for clus-
ter analysis, molecular modeling, and the analysis of
medical data, among other applications.

4 CLUSTERING OF SETTLEMENT
STRUCTURES

In order to separate meaningful settlement structures,
different steps have to be taken. Starting point is a
typical spatial data set of buildings, given in terms of
polygonal object description (cf. Figure 2). The task
is to identify coherent, homogeneous regions in the
data set.

4.1 Preprocessing

In order to apply the above mentioned clustering
techniques, the data has to be transformed into a

initial similarity matrix, which will be done by com-
puting the relative neighborhood graph of the given
building groundplans. This graph structure consists
of nodes which represent the building groundplans
and edges representing the spatial relations between
the building groundplans. Given a similarity matrix,
many methods can be used to find a graph represen-
tation [Jarvis & Patrick 1973], [Jain & Dubes 1988],
[Guha et al. 1999], [Karypis et al. 1999]. Modeling
data items as a graph is very common in many hier-
archical clustering algorithms. Algorithms based on
the single linkage, complete linkage, or group aver-
age method [Jain & Dubes 1988] operate on a com-
plete graph. Other methods like the shared near
neighbours approach or CHAMELEON are using the
k-nearest-neighbor graph which is a sparse graph.

In our approach we use the relative neighborhood
graph 5. There are three reasons for using the RNG.

� The RNG is a sparse graph.

� The RNG can be computed using the Delaunay
triangulation (DT).

� The RNG defines the notion of neighborhood
dynamically. Independent from a global neigh-
borhood density value this method computes a
natural form of neighborhood. For example the
DBSCAN [Ester et al. 1996] algorithm needs to
specify a global neighbor density.

Starting with the groundplans, the DT can be calcu-
lated in several ways which basically lead to compa-
rable results. A straightforward method is to approx-
imate the objects by their centroid and apply a De-
launay triangulation on this collection of points. The
other option is to introduce each object point into the
triangulation, and to use a constrained triangulation,
in order to force the object edges to be edges of the
resulting triangulation. This structure has to be an-
alyzed with respect to the relations of the objects to
each other: an object shares relations to all other ob-
jects it is linked to by a common edge. The weight
of the edge (the relation) can be derived from all the
given edges two objects share either as minimum,
maximum, or mean distance value. The result is a
general attributed graph, where the nodes are coor-
dinate free and, the edges represent the neighbor-
hood, including the distances. Whereas in the first
option the edge weight is derived using the distance
between the nodes (centroids), it is directly given
in the second case. Figures 3 and 4 show the re-
sults of the two operations. The computation of
the DT has one great benefit, because the DT can
be used to compute the RNG in O(nlogn) time. In
the euclidean metric the DT is a supergraph of the
RNG [Toussaint 1980]. An algorithm for the RNG in
the euclidean metric using the DT was developed by
[Supowit 1983].
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Figure 3: Triangulation of object centroids.

Figure 4: Constrained triangulation of complete ob-
jects.

Figure 5: Relative Neighborhood Graph (RNG)

4.2 Clustering

When the preprocessing is finished we have a relative
neighborhood graph 5 which is a connected graph.
The following clustering process splits this connected
graph in sub-graphs which represents the final clus-
ters. This splitting has to be done in a adequate way.

In this approach we use only the spatial similarity, be-
cause the semantic similarity is not implemented yet.
The splitting of the graph is based on removing out-
liers edges. For every node in the graph the local
neighbor density is estimated. The size of the Voronoi
cell around a node is the measure of the local den-
sity. Another measure which is used here is based on
the Delaunay triangulation of the preprocessing step.
The mean distance of all adjacent nodes is chosen
as an estimator for the local density.

Methods like CHAMELEON [Karypis et al. 1999] use
a two-phase clustering algorithm. First, the sparse
graph is partitioned into sub-graphs of a given size
and then an agglomerative hierarchical clustering al-
gorithm is used to merge this initial sub-graphs to-
gether.

Figure 7 and 8 give another example of a larger
scene.

The derived clusters are the starting point of the sec-
ond step, the semantic clustering, which is however
subject to our further work. This step presumes to
have the thematic data available, as well as a mea-
sure for semantic similarity, which we will derive from
existing data sets. Finally the cluster shapes will be
outlined and their characteristics computed.
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Figure 6: Result of clustering

Figure 7: Relative Neighborhood Graph (RNG)

Figure 8: Result of clustering

5 CONCLUSION AND OTHER APPLICATIONS

The aim of this research is to find aggregated struc-
tures in spatial data sets similar to the ones defined in
official maps or digital data sets. Another application
is in the context of image interpretation, where the
result of a supervised classification method is a col-
lection of pixels with grayvalues representing differ-
ent object classes. In order to delineate meaningful
objects and their boundaries, region growing proce-
dures have to be applied. If the pixels are however not
coherent such procedures cannot be used. However,
the problem can be tackled with the presented clus-
tering approach, by transforming the pixels into the
graph structure. Such an approach can e.g. then be
used for the interpretation of satellite or aerial images
in order to evaluate the growth rate of cities. In many
regions of the world, this data is not documented nor
planned - such techniques can help to quickly assess
the relevant data in order to support city planning.

The clustering process presented can also be ap-
plied in a hierarchical manner: after clustering and
derivation of cluster characteristics, new objects (i.e.
the new clusters) are identified. These new objects,
in turn, can be introduced in the clustering process
again, after they are transformed into a node-edge
graph structure, etc. In this way, a hierarchical,
pyramid-like structure can be established. Thus the
same cluster principle can be applied – however the
neighborhood and similarity criteria are different and
have to be derived dynamically from the given data.
In the context of settlement aggregation, the follow-
ing hierarchical structure can be derived: buildings
! parts of the city ! whole city ! region.
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L. Plümer, eds, ‘SMATI ’97: Semantic Modelling for
the Acquisition of Topographic Information from Im-
ages and Maps’, Birkhäuser, pp. 89–103.
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