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ABSTRACT

Seven institutes of the University of Stuttgart have applied successfully for the funding of a special research field to set up and investigate
a multi-sensor measurement robot for industrial close range inspection. The application was preceded by the work of a research group
which has shown the feasibility of the approach by setting up a measurement cell which uses optical sensors and actors to identify
and gauge industrial objects located in the measurement volume. This paper describes the results that have been obtained so far and
were demonstrated during a test run in 1997. It then focuses on our latest developments concerning 3D data acquisition, registration,
segmentation, model generation from CAD data and object recognition.

1 INTRODUCTION

In the last 20 years we have seen dramatic changes in produc-
tion methods for industrial goods. The advent of general purpose
industrial robots made it feasible to have the same robot for dif-
ferent tasks or across different products. It became evident that,
whereever practical, it is more economical to have non-specialized
production units. This way, the cost of change can be kept small
after a product has been redesigned. Nowadays, the situation is
characterized by two contrary developments: part complexity in-
creases and production lot size decreases. Time-to-market is more
important than ever before. For an example, just take a look at the
ever-decreasing development cycles in the automobile industry.

Apart from the changes in production, all other steps of the product
cycle are affected as well. Considering product design, parts are
modeled using feature based and parametric CAD systems, which
allow rapid changes. Part design is evaluated at early stages for
technical soundness by simulation methods. Aesthetic quality is
judged by the early fabrication of models that look almost like the
final product, which has become feasible using rapid prototyping
techniques such as stereolithography and vacuum moulding.

However, looking at quality assurance, we find that changes have
not been as dramatic as in other areas. Still, in many cases part
geometry is checked against the specification by individually pre-
pared gauges or specialized measuring systems. Sometimes, ran-
dom samples are drawn and measured by coordinate measure-
ment machines (CMM). Facing the trend towards a 100% quality
control, it is obvious that those techniques are too expensive and
provide not enough flexibility.

Optical measurement techniques, on the other hand, have several
properties which make them ideally suited for flexible gauging and
inspection tasks: they are able to measure thousands of points in a
matter of seconds; they are applicable to a wide range of materials,
including deformable objects; and they can yield very accurate re-
sults when used in conjunction with proper calibration techniques.
Moreover, optical techniques can capture other important object
features like transparency, color and surface gloss. And, since the
object is captured anyways, some simple vision tasks like reading
a barcode on the object or checking for completeness can be done
without the expense of additional sensors.

Despite their advantages, optical measurement techniques are not
very well accepted in industry (Grün, 1994). One reason for this
is that traditional measurement techniques, like CMM’s, are well
established whilst optical systems with comparable performance

have not been commercially available until recently. Also, prop-
erties like surface roughness today are defined in terms of CMM
measurement results, which necessitates the definition of an “op-
tical equivalent” before market acceptance can be expected. An-
other drawback is that optical techniques are considered to be too
complicated to operate under factory conditions. Furthermore, op-
tical measurements often give accuracies which depend on the
specific object. In unfavourable cases, for example if an object’s
surface is soiled, measurement may become impossible using
fixed sensor and lighting positions. But changing these conditions
(e.g. by changing the sensor, lighting or object positions) usually
requires some skilled person familiar with that particular measur-
ing system. Therefore, the measurement systems that have made
their way into industrial applications usually use very stable fea-
tures such as retroreflective targets (Beyer, 1995) or very well con-
trolled environments (Bösemann and Sinnreich, 1994).

However, in our opinion, the slow industry acceptance of optical 3D
measurement techniques is not a vote against those techniques
but rather reflects the standard learning process in industry. Un-
fortunately, heavy competition and outsourcing of product devel-
opment to supplier companies often limit the research horizon to
one or two years. On the other hand, we see a parallel to vi-
sion systems used in 2D inspection such as number recognition
and completeness tests. Due to technical progress in the fields of
camera (CCD and CMOS high dynamic range technology, “intel-
ligent” cameras with integrated processing) and software technol-
ogy (standardized image processing modules, reliable implemen-
tations), nowadays vision applications can be developed fast (i.e.
cheap). Consequently, we can see a growing number of manufac-
turers and installations for 2D vision systems.

(a) (b) (c)

Figure 2: (a) Laser projector. (b) Multi-parametric camera.
(c) Stereo camera.

To develop techniques in the area of 3D inspection and measure-
ment, a research group has been funded by the German Research



Figure 1: View of the experimental measuring platform during a test run. Foreground: several general purpose computers used for sensor
specific processing, image processing, system and machine control. Background: control cabinet (left) and measuring platform (right).

Foundation for a period of three years. Five institutes of the Uni-
versity of Stuttgart were involved, including mechanical and optical
engineering, photogrammetry and computer science. As a result
of this work, research goals have now been extended and a special
research field was initiated in January, 1998. Now, seven institutes
will continue this long term research for an expected duration of
nine years.

2 EXPERIMENTAL CONCEPT VALIDATION

In order to validate the concepts on 3D inspection developed by
the research group, an experimental measuring system has been
set up. It will be adapted continuously to the needs of the group.
However, during a test run in 1997, the group was already able to
demonstrate that handling of such a complex system is feasible.
The demonstration included the tasks of calibration, object identifi-
cation and localization, and measurement.

The experimental measurement system currently consists of the
following sensors (Figs. 1, 2):

1. a laser projector which is used to obtain height maps via the
coded light approach

2. a multi-parametric 3-chip CCD camera which has the ability
to change parameters like focus, focal length, aperture and
several electronic parameters, based on the interpretation of
the image

3. a stereo camera which employs two standard CCD cameras

4. a wide angle CCD camera used for capturing the entire mea-
surement volume.

The size of the measuring volume is about 1000�1000�700mm3.
Lighting is provided by four light source arrays with 16 individually
controllable lights each. All sensors (except the overview camera)
were mounted on actor modules with 3 (laser projector) or 5 axes
(multiparametric camera, stereo camera), totalling 13 axes. The
actor modules are held magnetically at the ceiling of the measure-
ment volume. An air cushion is formed between the ceiling and
the modules; they are horizontally moved according to the Sawyer
motor principle where the ceiling forms the stator. This linear step-
ping motor design allows for a very precise positioning. All axes are
controlled by a VME-bus system which in turn is connected to a PC

that receives positioning requests via the parallel virtual machine
(PVM) protocol. The entire setup consisted of about 10 computers
of different platforms (PC, Silicon Graphics, Sun). Data and control
information is transferred using a standard ethernet network and
the PVM communication protocol.

The demonstration incorporated the following steps which were
performed by the system automatically:

1. The coarse location of the object using an overview camera.
With a focal length of about 4 mm, this camera was able to
capture almost the entire measurement volume. Images were
first corrected for lens distortion (Fig. 3(a–b)). Then, they were
rectified (using four point correspondences determined after
system setup). Using image processing, the object was seg-
mented from the background formed by the white ground plate
of the measurement volume. Based on this segmentation and
the known field of view, three positions and orientations for the
stereo camera were generated (Fig. 3(c)).

2. Calibration of the ground plate coordinate system. In order to
position the stereo camera at those positions, the transforma-
tion between the machine coordinate system and the ground
plate coordinate system has to be established. To this end,
the ground plate contained several testfields. These fields
consist of a specially striped pattern which allows the fully
automatic determination of point numbers and subpixel ac-
curate point location of a large number of points (Fig. 4). The
reference positions of all testfield points were determined in
advance by bundle calibration. During the demonstraion run,
the camera moved over four testfields (given by approximate
machine coordinates) and the resulting images were evalu-
ated. Then, the transformation between the machine coordi-
nate system and the ground plate system was computed.

3. (More precise) object location. Using the stereo camera, im-
ages were taken based on the positions and orientations gen-
erated from the coarse location step. Those images were
merged by image processing to obtain a single synthetic im-
age (Fig. 5). Again, image segmentation was used to sepa-
rate the object from the background (Fig. 6(a)).

4. Object recognition. This step was done using a hypothesize-
and-test approach. Based on the scene segmentation (Fig.
6(a)) and an object model which contained a polygonal de-
scription of the object’s edges, hypotheses were generated for
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Figure 3: (a) Original image taken with the overview camera. (b) The same image after correction of lens distortion. (c) Again, the same
image after rectification. Each image pixel now corresponds directly to a certain metric area on the ground plate. The object is segmented
and three locations for the stereo camera are generated.

(a) (b)

Figure 4: (a) View of the measuring volume. The overview camera is in the top right corner. On the ground plate, four small and four large
testfields can be seen. Between them, the metal sheet object to be measured. (b) Result of automatic testfield evaluation. This image
shows the rectified image overlaid by the detected target areas and measured target centroids.

the possible object location and orientation (Fig. 6(b)). All hy-
potheses were refined using a iterative closest point algorithm
similar to the method described in (Besl and McKay, 1992).
In our case, however, a projective transform was estimated
rather than a 3D transformation. After refinement, the so-
lutions were compared against the image segmentation and
the best solution was selected (Fig. 6(c)). The transforma-
tion defined by this solution was used to render a synthetic
view of the scene consisting of the targets on the ground
plate (which define the world coordinate system) and the ob-
ject model transformed into the world coordinate system (Fig.
6(d)).

5. Measurement tasks. After the object had been located, ded-
icated measurements took place at measurement locations
which were defined in advance relative to the object model.
One of them was the measurement of a drilling hole using the
light array to minimize shadows. The other was to acquire a
dense height model of a certain part of the object using the
coded light sensor. Those tasks will not be described in more
detail here.

3 OBJECT RECOGNITION USING 3D CAD MODELS

The demonstration described above was an important step for us,
since it showed that a complex measurement platform can be real-
ized – albeit it was no “industrial strength” setup. Also, basic con-
cepts were realized such as a coarse-to-fine strategy (overview to
detailed image) and an object recognition based on a hypothesize-
and-test approach. However, many of the solutions that were used
rely on 2D information rather than on 3D information. For example,
the overview image is rectified which might not work reliably for
objects with larger heights. As another example, object recogni-
tion was based on the polygonal description of the object’s outline,
which, of course, cannot be regarded as a general solution. An-
other problem is that since no CAD model was available for the

complex metal sheet object used for our experiments, the object
model was constructed by photogrammetric techniques. Ideally, it
should be derived automatically from the CAD model.

3.1 General remarks on object recognition

The typical approach of object recognition systems is depicted in
figure 7 (Bhanu and Ho, 1987, Flynn and Jain, 1991). From this,
we can determine the following tasks which have to be addressed:

1. The definition of object models which are useful for object
recognition

2. Scene segmentation and feature extraction

3. Matching the model and the scene.

The importance of the modelling step has often been underrated.
In the context of industrial parts, one can use specific models, so
the problems associated with parametric or generic models can be
avoided. Still, there are many possible choices for the features and
attributes which can be used.

Using global object properties such as volume, roundness or
higher order moments, objects can be described by a single pa-
rameter vector. Matching objects to models then reduces to a
comparison of parameter vectors using some measure for simi-
larity. Although these global approaches are used frequently for
simple vision tasks, they are generally not considered to be robust
enough, particularly in the presence of occlusion and clutter (Grim-
son, 1990).

Thus, the approach used by many researchers uses geometric
primitives, like points, contours, surfaces and volumes. Matching
is accomplished by establishing a number of feature correspon-
dences between an object model and the scene. Non-global fea-
tures and feature properties ensure that a match is still possible
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Figure 5: (a)–(c) Single images taken by the stereo camera. (d) Synthetic image obtained by merging images (a)–(c) using the known
exterior orientations.

(a) (b)

(c) (d)

Figure 6: (a) Segmentation of the synthetic image. Note how the segmentation is erroneous due to bright (glossy) areas on the metal
surface. (b) Four hypotheses are generated for the possible object location and orientation. (c) The best hypothesis is selected (which is
the correct solution). (d) Synthetic view of the object model transformed into the scene.

even when parts of the object are occluded or are not present in
the scene at all.

The selection of useful features is another important topic. Since
the complexity level of features can be chosen, one is free to adopt
either sensor-specific or model-specific, low-level or high-level fea-
tures. Sensor specific and low-level features might produce fea-
tures that are easily detectable in the scene; however it is their
low information content and abundancy which makes subsequent
matching steps computationally expensive. Model specific and
high-level features can be derived easily from the model and their
rareness guarantees a low complexity of the matching algorithm;
on the other hand, their extraction from the scene might be hard
or impossible. For example, it is so far not possible to use a CAD
representation directly for matching, because automatic extraction
of the high-level CAD objects from sensor data is not feasible.

Since it is nevertheless desirable to obtain object models automat-
ically and a growing number of industrial parts today is manufac-
tured using CAD/CAM technology, several researchers have used
CAD data as a basis for object models (Bolles and Horaud, 1986,
Hansen and Henderson, 1989, Flynn and Jain, 1991). This way,
CAD data is not used directly but rather an intermediate processing
step is used to “enrich” CAD data and derive explicit descriptions
for what is given implicitly in the CAD data.

3.2 Object recognition by feature matching

We will now turn to task 3 from the above list. Let us suppose we
are given a set of features S = f1; f2; :::; fn describing the scene
and a second set M = F1; F2; :::FN describing the model. The
task of the object recognition step is to find a global correspon-
dence, i.e. a set of scene-model pairings (f1; Fm1

); (f2; Fm2
); : : :

where each feature in the scene is listed with its corresponding
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Figure 7: Typical object recognition system. The left part of the diagram can be solved in advance (off-line) whereas the right part has to
be solved each time a new object is to be recognized (on-line).

feature from the model. Theoretically, there are O(Nn) different
possibilities of such pairings. Of course, only a fraction of those
constitute valid solutions. In order to limit combinatorial explosion,
researchers have used different techniques like generalized Hough
transform, graph matching, maximal cliques, relaxation labeling
and constrained tree search (Faugeras, 1993).

To verify the correctness of a global correspondence we can com-
pute one rigid body transformation from all pairings and check
whether each single scene feature is correctly transformed onto
its corresponding model feature. To check the consistency of a lo-
cal correspondence we can apply so called geometric constraints.
Unary constraints are fulfilled if a scene-model pairing is locally
consistent. Examples are line length, circle radius, curvature, cir-
cumference, bounding box dimensions, area and volume. Binary
constraints check whether a pairing is mutually consistent with all
other pairings established at that point. The angel and the distance
between two patches of the scene compared to the same relations
of the corresponding features in the model can be used as binary
constraints (Grimson, 1990).

In our first experiments, we used graph matching, which is one
popular way used in conjunction with region oriented segmenta-
tion. The result of the segmentation step is stored in a region ad-
jacency graph (RAG), where each vertex represents one region.
Two vertices are connected by an arc if the corresponding regions
are adjacent. The model information is stored in the same man-
ner. We now search for a projection of the vertices of the one RAG
onto the other which preserves the topology of the graph, i.e. two
vertices (not) connected by an arc in the one RAG should (not)
be connected in the other. In other words, we are looking for a
subgraph isomorphism. Of course, since we are dealing with sen-
sor data we can not expect to find an ideal match of all vertices,
therefore we have to allow for some error correction such as the
addition and removal of vertices and edges. Vertices as well as
edges can carry attributes to further reduce the search space by
applying geometric constraints. However, since only adjacent re-
gions are connected by arcs only they will be considered for the
binary constraints. Therefore not all of the geometrical information
available is used. One problem of graph matching is the computa-
tional cost. Since the problem is NP-complete, the time generally
grows exponentially with the number of vertices and edges. One
way to reduce this cost is to partition the set of vertices into distinct
subsets, also known as labeling. This can drastically reduce the
search space and thereby save time. We have used graph match-
ing in previous studies (Böhm, 1997), but have found it difficult to

cope with computational cost. Because it is hard to find any sensi-
ble labeling of the vertices if all features are of the same kind (e.g.
planes) we sometimes experienced worst case behavior. We were
only able to match very small subgraphs (less than 10 vertices).
Furthermore, adjacency is not a very stable characteristic in 3D
segmentation. Problems in the alignment process and shortcom-
ings in the segmentation both contribute to this.

Because of this experience, we decided to follow the constrained
tree search approach in this work. Considering the notation as in-
troduced above, we first start with one scene-model feature pair
(fi; Fmi

). For each possible pairing we find, search goes on to
the next level, where a correspondence for the second feature is
sought. This leads to the matching path (fi; Fmi

); (fj ; Fmj
). This

search proceeds in a recursive manner. It is well-known as depth-
first search. Again, the computational cost grows exponentially
with the number of features. The key for finding a solution in a
reasonable amount of time is the choice of the constraints used
to bound the branching in the tree. For each scene feature only
a subset of model features is selected as possible matches us-
ing unary constraints. At each stage of the search process we
check the binary constraints of the current pairing with all pairings
along the path to the root. In our experiments, we found that the
circumference and the area of a surface patch are not ideal can-
didates for determining local consistency. The circumference of a
segmented patch in sensor data tends to be much larger than that
of an CAD model. In contrast, due to holes in the sensor data and
segmentation, the area tends to be much smaller. The attributes
(width and height) of the canonical bounding box and the maxi-
mum distance within a region provide excellent means to reduce
the number of possible pairings. In the experiments conducted so
far, we were not confronted with cluttered scenes or partial occlu-
sion. What we do have are slight deviations of the manufactured
part from the CAD model. Therefore, we can not expect to find a
correspondence for all model features and vice versa. This prob-
lem is increased by the difficulties in the segmentation stage where
a great number of small “sliver regions” is produced which do not
correspond to any model feature. To deal with this situation in the
context of computation time, we first sort the scene features by size
(area) and then prune the set of features to the size of the set of
model features. During the search, we allow the skipping of fea-
tures, i.e. if no correspondence can be found for a certain scene
feature we remove this feature for the current matching path and
continue with the next.



(a) (b) (c)

Figure 8: (a) Object “bearing 1” as constructed using the CAD system Pro/ENGINEER. (b) Object “bearing 2” constructed with minor
changes. (c) Object “bearing 3” with major changes.

(a) (b) (c)

Figure 9: (a) View of the object “bearing 1”, manufactured by a rapid prototyping machine. (b) Example of a range (depth) image obtained
with an ABW structured light projector. The missing part of the object on the left hand side is a typical artefact and results from shadowing.
(c) 3D view of the alignment of three range images (light gray, dark gray, black).

4 EXPERIMENTAL RESULTS

We found it surprisingly difficult to get hold of a CAD data set of an
existing part for which we also have the real, manufactured object.
Thus, we decided to construct and build an object ourselves. We
used the CAD system Pro/ENGINEER to construct a fictitious ob-
ject “bearing 1” with dimensions 75� 70� 50mm3 (Fig. 8(a)). The
object was then manufactured directly from CAD data using a rapid
prototyping machine from Stratasys, Inc. This machine builds the
object layer by layer, applying in each layer a thin stream of ABS
material pressed through a nozzle (Fig. 9(a)). This technique is
called fused deposition modeling; accuracies down to 0.1 mm can
be obtained.

Using an ABW structured light projector with 320 lines (Stahs and
Wahl, 1990), 13 range images of the manufactured part were
taken (Fig. 9(b)). The images were aligned (Fig. 9(c)) and merged
using the POLYWORKS package from InnovMetric Software Inc.
(Bergevin et al., 1996, Soucy, 1997).

As the common domain for model and scene representation, we
chose a surface description based on planar faces. This descrip-
tion consists of the following information for each face: plane equa-
tion, normal vector, 3D boundary polygon, 3D center of canonical
bounding rectangle, transformation into 2D, 2D boundary polygon,
2D bounding rectangle, area, circumference, maximum distance in
region, and bounding box width and height. From the CAD system,
triangulated surfaces are exported with triangles grouped to faces,
which means that no segmentation information is lost. The trian-
gles are then merged into entire faces and the above features are
computed. On the scene side, the merged model is segmented
into planar regions by a region growing algorithm which operates
on triangulated surfaces (Fig. 10). The segmentation algorithm

utilizes the triangle’s normal vector and the distance of the trian-
gle vertices to the estimated plane to determine the homogene-
ity of the planar patch. The plane parameters are estimated us-
ing principal components analysis. Segmentation time is less than
two minutes for 34,000 triangles on a standard 200 MHz Pentium
PC. Again, the features for these regions are computed. Figure
11 shows examples for corresponding faces in the model and the
scene and table 1 lists some of the attribute values.

feature m-0 s-0 m-1 s-1
area 1417 1072 1525 1261
maxDist 66 64 82 78
bBox-w 60 60 75 73
bBox-h 43 43 41 40
circumference 205 244 300 327

Table 1: Numerical values for some attributes of the two
faces shown in figure 11. Abbreviations: m=model, s=scene,
maxDist=maximum distance in region, bBox-w, bBox-h=bounding
box width and height.

Matching is done using constrained tree search. After several
faces are matched, the “best” (in least square sense) rigid body
transformation between scene and model is estimated using a non-
iterative approach described by Sanso (Sanso, 1973). As a mea-
sure for the quality of the match, both the standard deviation of the
parameter estimation and the deviation of scene points from the
object’s surface can be used (Table 2). Figure 12 shows the super-
position of scene and model when the transformation computed by
the matching is applied.

We also conducted experiments with different CAD models. One
model is a slight modification of the original object “bearing 1”,
while the other is drastically different (“bearing 2” and “bearing 3”,



Figure 10: Segmented surface description obtained from the CAD
model (above) and result of segmentation of the merged sensor
data into planar faces (below).

Figure 11: Example for two faces as they appear in the model (left)
and as segmentation result obtained from the scene (right).

see Fig. 8). The matching also yields good results in terms of RMS
error for the modified model, since only the RMS error of corre-
sponding features is computed. For “bearing 3” we were only able
to get a match when we set matching thresholds to unreasonably
high values. However, RMS values for this case differ clearly from
the other two cases (Table 2).

match RMS-1 RMS-2
scene-bearing 1 1.006 1.162
scene-bearing 2 1.006 1.164
scene-bearing 3 5.138 6.994

Table 2: Assessment of matching quality. RMS-1 is the RMS dif-
ference of the features that were used for matching. RMS-2 is the
RMS difference for all scene points.

5 CONCLUSION

We have reported on the ongoing work on a measurement sys-
tem for inspection and gauging of industrial parts. We have shown
the results on system integration which were demonstrated during

a test run in 1997. We also reported on recent results regarding
model generation from CAD data, segmentation and object recog-
nition.

In the future, we will concentrate on more complex models involv-
ing free-form surfaces, the integration of grayvalue and color data,
and new matching approaches.
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